脊柱牵引系统的制作方法

文档序号:1198940阅读:289来源:国知局
专利名称:脊柱牵引系统的制作方法
技术领域
本发明的领域一般地涉及用于治疗骨骼系统紊乱的医疗器械。
背景技术
脊柱侧凸是用于脊柱侧向(横向)弯曲的常用术语,通常发生在胸部或胸腰部区域。脊柱侧凸通常分为不同的治疗组,青少年特发性脊柱侧凸(Adolescent Idiopathic Poliosis)、早发型脊柱侧凸(Early Onset Scoliosis)以及成人脊柱侧凸(Adult Scoliosis)0青少年特发性脊柱侧凸(AIS)通常影响10岁到16岁的儿童,而且在身体发育的快速成长期间变得最为严重。到2%的10岁到16岁之间的儿童有一定量的脊柱侧凸。每1000个儿童中有2到5个严重的发育弯曲,需要接受治疗。脊柱侧凸程度一般用 CcAb角说明,通常在X射线图像中,通过取弯曲部分顶点上方和下方最倾斜的椎骨,并测量垂直于顶部椎骨的顶部以及底部椎骨的底部而绘制的相交线之间的角来确定。术语特发性 (idiopathic)指这种弯曲的准确成因不能确定的事实。一些人推测在快速成长阶段,当脊柱的黄韧带(ligamentum flavum)太紧并阻碍了脊柱的对称发育时发生脊柱侧凸。例如, 由于脊柱前部的伸长快于后部,于是胸椎开始变直,直到其横向弯曲,通常伴随着旋转。在更严重的情况中,这种旋转实际上造成一种显明的畸形,其中一个肩膀低于另一个。当前, 很多学区进行脊柱的外部目测评估,例如在所有的五年级学生中(进行此项评估)。如果在这些学生中发现“S”形或“C”形而不是“ I ”形,医师会建议其进行脊柱检查,并且通常会进行后续定期的脊柱X射线。通常,20°或更小CcAb角的患者不作治疗,但随后通常会继续进行X射线。40° 或更大CcAb角的患者通常建议进行融合手术。应该指出的是,许多患者由于很多原因不接受这种脊柱评定。许多学区不进行这种评定,并且很多学生没有定期地拜访医师,因此这种弯曲往往迅速并且严重地恶化。人数众多的成年人患有未经治疗的脊柱侧凸,极端情况下 CcAb角高达90°或更大。虽然这些成年人中很多没有与这种畸形相关的疼痛,并过着相对正常的生活,尽管有时移动或行动不便。在AIS中,10°以下弯曲的女性与男性比率大约是 1比1,然而,在超过30°的角度中,女性则多于男性,其比例高达8比1。融合手术可以在 AIS患者或在成年脊柱侧凸患者中进行。在典型的后部融合手术中,沿着背部的长度,向下形成一个切口,并沿着弯曲部分放置钛或不锈钢校直棒(straightening rods) 0这些棒通常以一种让脊柱变直的方式固定到椎体,例如通过钩或骨钉(bone screw),或更具体地通过椎弓根螺钉。通常在需要融合的部分移除椎间盘并放置骨移植材料,以制造融合。如果这是自体材料,通过单独的切口从髋部获取骨骼。可替换地,融合手术可在前部进行。形成一个侧前部切口用于进入。通常,一个肺泄气以允许从这个前部路径进入到脊柱。在前部步骤的一个低侵入式类型中,在患者一边的几个肋间隙(肋骨之间)中做大约5个切口,替代单独的长切口,每个大约3到4cm长。 在这种最低侵入式手术的一个类型中,放置系绳(tethers)和骨钉并固定到椎骨弯曲的前部凸面部分。目前进行使用U形钉(staple)替代系绳/骨钉组合的临床试验。这个手术与后部方法相比的一个优点是切口留下的疤痕不明显,尽管依然位于可见区域,例如当穿泳衣的时候。U形钉在临床试验中有一些难度。当达到临界应力水平时,U形钉容易拉出骨头。在一些情况下,手术后,患者要在发生融合过程的几个月中佩戴护具(保护性矫形器,protective brace) 0 一旦患者达到脊柱成熟,很难在随后的手术中移除棒和相关构件(hardware),因为椎骨的融合通常合并棒本身。标准的做法是保持终身植入。对于这两种手术方法中的任一种,在融合后,现在患者的脊柱变直,但基于多少椎骨融合,经常在灵活性程度上(弯曲和扭转)都存在着限制。随着这些经融合的患者成熟,融合部分会给邻近的未融合椎骨带来较大压力,并且通常其他包括疼痛的问题会发生在这些区域,有时迫使患者进行进一步的手术。这易于发生在老年患者易于出问题的脊柱腰椎部分。现在许多医师对脊柱侧凸的非融合性手术感兴趣,这或许能够消除融合的一些缺点。—组脊柱尤其有活力的患者是称为早发型脊柱侧凸(EOS)的小团体,通常发生在小于5岁的儿童中,并且经常是男生超过女生。这是一种较为少见的病症,10000个儿童中只有约一或两个发生,但会相当严重,有时影响器官的正常发育。由于这些儿童的脊柱在治疗后依然成长很大量的事实,已经开发了称为成长棒(growing rods)的非融合性牵引装置以及称为VEPTR-垂直可扩展的假肢钛肋骨(“Titanium Rib”)的装置。这些装置通常每 6个月进行适当调整,以匹配儿童的成长,直到儿童到至少8岁,有时直到他们到15岁。每次调整需要手术切口以进入装置的可调整部分。因为患者可在早至6个月大的时候接受该装置,因此这种治疗需要大量的手术。由于大量的手术,这些患者有较高感染的可能。回到AIS患者,对那些CcAb角在20°和40°之间的患者的治疗方法相当有争议。 许多医师禁止矫形器(矫正支架,brace)(例如,波士顿矫形器(Boston Brace)),患者必须每天佩戴其在衣服下面的身体上18到23小时直到他们骨骼发育成熟,例如到16岁。因为这些患者都正在经历他们社交要求的青春期,必须选择佩戴有些笨重的覆盖大部分上身的矫形器,做可能留下大的疤痕并同样限制行动的手术,或者无所事事并且冒着毁容以及可能残疾的风险,这是相当严重的预期。许多患者有时隐藏他们的矫形器,例如放在校外的灌木中,以避免任何相关的尴尬,这是众所周知的。顺从矫正器佩戴的患者变得如此有问题, 使得已存在构建为可感测患者身体并且记录佩戴矫形器的每天的时间量的特殊矫形器。患者甚至已知道放置物体到未佩戴的这种类型的矫形器中以欺骗传感器。加上患者对矫形器使用的不一致的顺从性,许多医师感觉即使正确使用,矫形器在治疗脊柱侧凸中根本无效。 这些医师会同意矫形器可减缓甚至暂时地停止弯曲(CcAb角)恶化,但他们已经注意到治疗期间一结束,矫形器就不再被佩戴,经常使得脊柱侧凸快速恶化,达到比治疗开始时甚至更为严重的CcAb角。一些人称假定的矫形器无效的原因是其只在躯干一部分上起作用,而不是在整个脊柱。当前,一项预期的随机500名患者的称为BrAIST(青少年特发性脊柱侧凸试验中矫形器)临床试验正在招募患者,其中50%会接受矫形器治疗,且另外50%将简单地进行观察。将连续测量CcAb角数据,直到骨骼发育成熟,或者直到达到50° CcAb角, 那时患者可能接受手术。许多医师感觉BrAIST试验将说明矫形器完全无效。如果情况就是这样,怎样治疗20°到40°之间CcAb角的AIS患者的窘境只会变得更加明显。应该指出的是,“20°到40° ”的患者人数多达“40°以上”的患者人数的10倍。当前,遗传学家正在致力于找到一个或多个易患脊柱侧凸的基因。一旦确定,一些人仍然会怀疑基因治疗是否可以防止脊柱侧凸,然而脊柱侧凸基因的存在无疑允许可能的手术患者更容易并更早地被确定。

发明内容
在第一实施方式中,脊柱牵引系统包括具有第一端和第二端的牵引棒(牵引杆, distraction rod),第一端被构造用于在第一位置固定至主体的脊柱,该牵引棒具有含凹槽的第二端,该凹槽具有设置在其中的带螺纹部分(threaded portion) 0牵引系统还包括被构造用于相对于主体的脊柱在远离第一位置的第二位置处放置的可调部分,该可调部分包括容纳磁性组件的外壳,磁性组件通过横向通过导螺杆的锁定销在其一端固定到导螺杆,导螺杆可操作性地连接至带螺纹部分。在第二实施方式中,脊柱牵引系统包括具有第一端和第二端的牵引棒,第一端被构造用于在第一位置固定至主体的脊柱,该牵引棒具有含凹槽的第二端,该凹槽具有设置在其中的带螺纹部分(threaded portion)。可调部分被构造用于相对于主体的脊柱在远离第一位置的第二位置处放置,可调部分包括容纳磁性组件的外壳,磁性组件在其一端固定至导螺杆,该导螺杆可操作性地连接至带螺纹部分。该系统还包括邻近一端设置于外壳的内部的凹槽,该凹槽在其中具有至少一个0型环(o-ring),其被定尺寸以与牵引棒形成流体密封(fluid tight seal)。


图1示出了患有脊柱侧凸的人的脊柱。图2示出了脊柱侧凸脊柱的CcAb角。图3示出了在现有技术的脊柱侧凸融合手术期间形成的大的切口。图4示出了安装在主体脊柱上的一个示例性牵引装置。图5A是沿(垂直于)牵引棒纵轴的垂直轴截取的牵引棒和可调部分的截面图。图5B示出了沿着图5A中的线B' -B截取的牵引棒和可调部分的截面图。图5C示出了图5B中的细部C的放大截面图。图6A示出了设置在位于牵引棒一端的内部凹槽中的螺母的透视图。
图6B是图6A的螺母的端视图。图6C是沿着图6B中的线C’ -C截取的螺母的截面图。图7A示出了牵引棒一端的透视图,其示出了花键齿(花键尖端,splined tip)。图7B是带有导螺杆的管状外壳的侧截面图,其中为了清楚移除了磁性组件。图7C是沿着图7B中线C’ -C截取的管状外壳的截面图。图7D示出了图7C中细部D的放大视图。图8A是磁性组件、锁定销、轴承以及导螺杆的分解透视图。图8B是示出了通过锁定销(被轴承挡住)连接至导螺杆的磁性组件的透视图。导螺杆的偏轴摆动(off axis wiggle)通过锥形包套(envelope) α说明。图9Α是磁性组件的端视图。
图9B是磁性组件的侧视图。图9C是沿线C’ -C截取的图9B中示出的磁性组件的截面图。图10示出了根据一个实施方式的外部调节装置的透视图。移除外壳或外盖 (cover)以示出外部调节装置的各个方面。图11示出了图10中外部调节装置的侧视图或端视图。图12示出了图10中外部调节装置的透视图,其中外壳或外盖处于适当位置。图13A示出了位于患者皮肤上的外部调节装置的横截面示图。图13A示出了在 0°位置的永磁体。图13B示出了位于患者皮肤上的外部调节装置的横截面示图。图13B示出了在 90°位置的永磁体。图13C示出了位于患者皮肤上的外部调节装置的横截面示图。图13C示出了在 180°位置的永磁体。图13D示出了位于患者皮肤上的外部调节装置的横截面示图。图13D示出了在 270°位置的永磁体。图14示意性示出了根据一个实施方式的用于驱动外部调节装置的系统。
具体实施例方式图1示出了一位脊柱侧凸患者100。在患者100的左侧104可看到脊柱弯曲的凹面部分102,并且在患者100的右侧108可看到凸面部分106。当然,在其他患者中,凹面部分102可以出现在患者100的右侧108而在患者的左侧104可以看到凸面部分106。另外, 如图1所示,存在脊柱110的一些旋转,而且看到左肩112和右肩114之间不平。图2示出了脊柱侧凸患者脊柱110的CcAb角116。为了确定CcAb角,从椎骨122 和IM分别绘制直线118和120。通过由直线118和120形成90°角130和132,绘制交叉垂直线1 和128。垂直线1 和1 交叉形成的角116定义为CcAb角。在完全直挺的脊柱中,这个角是0°。在许多CcAb角为40°以上的青少年特发性脊柱侧凸(AIS)患者中,脊柱融合手术通常是第一选择。图3示出了通常在后部脊柱侧凸融合手术中给患者100造成的长切口 134。在现有技术中,这类融合手术是已知的。该长切口 134在上端136和下端138之间延伸。该切口 134的长度长于需待融合的椎骨部分的长度。上端136和下端138之间的实际长度基于患者的尺寸以及脊柱侧凸的程度而变化,但在AIS患者中该长度明显长于15cm。 通常情况下,其长于25cm。图4示出了根据本发明的一个实施方式的用于治疗脊柱侧凸的牵引装置200。牵引装置200,是一种可植入装置,在其上端202及下端204固定至患者的脊柱500上。示出的脊柱500的实例包括通常包围脊柱侧凸弯曲(例如青少年特发性脊柱侧凸患者的弯曲) 的特殊胸椎和腰椎。图4中分别描绘了 T3到T12胸椎,503、504、505、506、507、508、509、 510、511、512以及L3到L3椎骨、513、514、515,其并非在严重的脊柱侧凸的症状下,而是在很轻微的残余弯曲中,其表现为在移植过程中已经部分地或完全校直的适度弯曲(modest curve)ο每个椎骨在其尺寸和形状方面不同于其他椎骨,其中上部椎骨通常小于下部椎骨。然而,椎骨通常具有相似的结构并包括椎体516,棘突518、520,椎板526,横突521、522 以及椎弓根524。在这个实施方式中,牵引装置200包括牵引棒206,其通过连接的可调部分208可(纵向)调节。牵引装置200通过位于牵引棒206上端202的夹钳(Clamp)600 固定到脊柱500。在图4中,夹钳600固定于T4椎骨504的横突521周围。可替换地,夹钳600可以固定到邻近肋骨(未显示)或肋骨面(rib facet)周围。在另一个可替换形式中,夹钳可用椎板和椎弓根钩系统或椎弓根螺钉系统替代。示例性的椎弓根钩系统或椎弓根螺钉系统可在美国专利申请号12/121,355以及12/250,442中找到,其全部内容结合于此供参考。再参照图4,示出了通过包括连杆532以及两个脚趾框夹(脚趾夹钳,toe clamps) 538,540的椎弓根螺钉系统531固定到脊柱500的牵引装置200。示出的连杆532 以“J”形弯曲回到其自身上。然后连杆532与可调部分208接合。如下面的详细解释。可调部分208优选包含磁性组件,其具有被构造成基于内磁体的旋转方向来驱动导螺杆的永磁体,使用可调部分208伸长或收缩牵引棒206。例如,牵引棒206的延长会赋予脊柱500 牵引力。收缩牵引棒206会减弱或移除脊柱500上的牵引力,例如,如果牵引力太大会引起疼痛或并发症。再参照图4,可以松动固定螺钉534以调整连杆532的角度达到期望方向,然后可旋紧(tighten)锁定螺钉534以便脚指框夹538牢固地将连杆532保持在适当位置不再旋转。以相同的方式通过旋紧锁定螺钉536调整第二脚趾框夹M0。因为脊柱侧凸脊柱也旋转(通常中心部分旋转到AIS患者的右边),这里示出的非融合实施方式允许自然发生脊柱 500的反向旋转(de-rotation),这是由于在牵引装置200的中间部分没有固定。为进一步促进这种反向旋转,牵引装置200允许在其端部自由旋转。例如,可调部分208可通过铰接接头(articulating joint)连接至连杆532。美国专利申请号 12/121,355和12/250,442描述了各种铰接接口 (interfaces)或接头(joints),其可用于将可调部分108连接到连杆532等。应注意的是,可用正常矢状脊柱的典型形状预弯曲牵引棒206,但同样应注意的是,弯曲稍微不同于标准的脊柱侧凸融合方法(instrumentation),因为这里说明的非融合实施方式中,牵引装置200不与脊柱齐平,而是置于皮下或者筋膜下,因此不在背肌下面。 牵引装置200中被设计成置于肌肉下方的仅有部分是夹钳600以及紧邻夹钳600的牵引棒 200的部分、椎弓根螺钉系统531以及连杆532。因此图4示出了其中与牵引装置200相联的大部分构件(harware)置于肌肉之上的实施方式。然而,应当理解的是,在可替换的构造中,整个可植入实施方式的任何其他部分可置于肌肉下方(即肌肉下)。应该认识到,与当前的融合步骤相比,在步骤中需要切割显著少量的肌肉。这允许明显更短的步骤、显著更少的失血、显著更快的恢复以及在医院中的时间更少/感染的风险更小。进一步地,值得期望的是,在其最高应力点产生连杆532的“J”弯曲或在具有可选凸缘(法兰,flanges)或肋条(肋片,ribs)的连杆532的任何其他弯曲,以增加其在苛刻植入条件下的持久性。图5A-5C示出了具有可调部分208的牵引棒206接口(interface)的截面图。图 5A是沿着垂直于牵引棒206纵轴的垂直轴截取的牵引棒206和可调部分208的截面图。图 5B示出了沿着图5A中的线B' -B截取的牵引棒206和可调部分208的截面图。图5C示出了图5B中细部C的放大截面图。从图5C中可最好地看出,牵引棒206的一端210包括细长凹槽212。细长凹槽212长度可为大约60_。凹槽212被定尺寸为接收导螺杆沈0。导螺杆260可由高强度材料制成,例如钛。至少部分导螺杆260包括外螺纹沈2,外螺纹262 被构造成啮合被整合至凹槽212中的螺母214。螺母214在牵引棒206的凹槽212上提供带螺纹部分(threaded portion) 0例如,尽管或多或少可以被使用,导螺杆260每英寸可以有80个螺纹。螺母214在外径上可包括螺纹或倒棱面(chamfered surface) 216以便更好地确保与牵引棒206的凹槽212的内径可靠地连接。例如,螺母214可使用粘合剂粘合至牵引棒 206,例如 EPOTEK 353ND,其可购自 EPOXY TECHNOLOGY, INC. , 14 Fortune Drive, Billerica,MA。这允许牵引棒206用单块更坚固的材料制造。这还在导螺杆260和牵引棒 206的内径之间提供空隙(clearance)。可替换地,带螺纹部分可直接形成在凹槽212中, 无需单独的螺母214的辅助。 图6A到6C示出了螺母214单独的视图。螺母包括与导螺杆沈0的外螺纹262相啮合的内螺纹218。一方面,螺母214由铝-青铜#630制成。通过使用不同硬度值的不同金属(钛用于导螺杆260而铝-青铜用于螺母214),在导螺杆260和螺母214之间产生较小的磨损/紧固(gall/bind)。这使得还能够以较小的摩擦操作导螺杆沈0以及螺母214。可选地,可使用各种湿式或干式润滑剂以减少在导螺杆260和螺母214之间的摩擦。湿式润滑剂的一个实例包括生物相容性硅油,如MED-360 (100, OOOcp),其可购自NuSil Technology, 1050 Cindy Lane, Carpinteria, CA 93013。 再参照图5C,牵弓I棒206的一端包括花键齿220,其包括一个或多个突出222与对应的纵槽224(未示出在图5C中)接合,纵槽2 设置在管状外壳226的内表面中。图7A 示出了花键齿220的透视图。示出的花键齿220具有四(4)个突出222,与四(4)个形成在管状外壳2 (图7B-D所示)内的对应纵槽2 (两对为对称相对)相接合。纵槽2 可通过线EDM加工形成。而图7A-7D示出了使用沿着四(4)个纵槽(可存在或多或少)的四 (4)个突出222的实施方式。花键齿220与纵槽224的紧密度容限(tight tolerance)使牵引棒206居中于管状外壳226内。另外,花键齿220以及对应槽224的结合充当抗旋转特征,其防止牵引棒206相对于管状外壳2 旋转。如果装置用于融合应用中而不是所说明的非融合应用中,则允许牵引装置200 “硬化(僵化,rigidized)”是必要的。例如,在融合应用中,值得期望的是,脊柱500在进行融合的几个月中不能过多弯折或旋转。在融合应用或非融合应用中,抗旋转特征防止例如由于患者运动所造成的牵引棒206的偶然伸长或回缩。图7C是沿着图7B中线C,-C截取的管状外壳的截面图。图7D示出了图7C中细部D的放大视图。在所示出的实施方式中,从图7D的详细视图中最好地看出,小退切(small reliefs) 228被并入纵槽224的侧面或角落。这些退切2 可以是略微过度切割的线EDM 切口,防止突出222的角接触管状外壳226的内壁。突出222与纵槽2 之间的较少接触引起较小摩擦力并减少紧固(binding)的可能性。可选地,突出222的顶部可以弯曲,例如从直径切割而不是直角。当牵引棒206和可调部分208之间施以扭应力时,突出222的圆化(制圆,rounding)会避免突出222与纵槽2M紧固。这种可选性修改使牵引棒106更容易制造并消除了对退切2 过度切割的需要。再次参照图5B和5C,0型环密封套(gland) 230固定或不然结合到管状外壳2 的一端。例如0型环密封套230是电子束(e-束)或激光焊接到管状外壳226的一端。在图5C中最好地示出,0型环密封套230具有的内径小于管状外壳的内径。在这点上,形成止动件(stop) 231防止花键齿220进一步行进而离开管状外壳226。这将确保牵引棒206不会相对于可调部分208而过度牵引,因此完整性得以保持(例如牵引棒206不会断开或堵塞)。0型环密封套230还包括凹槽232,其被定尺寸以接收0型环234。0型环234可由生物相容性材料制成,例如硬度为70硬度计的乙丙二烯烃M类橡胶(70 durometer ethylene propylene diene M-class rubber, EPDM),其可购自 Precision Associates, Inc. (740 North Washington Ave.,Minneapolis, MN,55401-1188)。0 型环 234 可具有约· 241 英寸 +/-· 005英寸的内径,其中横截面为.030英寸+/-. 003英寸。牵引棒206的一端210的外径可以是大约.25英寸。生物相容性润滑剂如生物相容性硅油(如MED-360,可购自NuSil Technology)可应用到0型环234上。因此0型环234与牵引棒206的外表面形成流体密封。因此,牵引棒206能够相对于外壳2 叠缩(telescope)而同时防止异物进入外壳226。虽然图5C中示出的是单个0型环234,但多个0型环也可用于在密封完整性上提供额外的信心。对于图5C中示出的单个0型环234,0型环的径向压缩大于7%,优选落入约13%到18%的范围内。进一步地,在所有情况中0型环密封套230的凹槽232的填充体积被设计成小于75 %,更具体地,在约40 %到约50 %的范围内。值得期望的是,使所有接触 0型环234的表面平滑。例如,凹槽232可设计成有平滑的表面抛光(表面终饰,surface finish) 0粗抛光(粗终饰,rough finishes)可破坏0型环234或提供潜在的穿过密封表面的泄漏路径。示例性的表面抛光是16微英寸RMS。0型环234在保持异物离开管状外壳2 方面可提供几个优势。具体地,在制造过程中,管状外壳226内会产生正气压。正气压提供额外存储的推动力以辅助牵引棒206的牵引。正气压还辅助防止异物的进入。0型环密封套230的凹槽232内0型环234的使用允许牵引棒206的叠缩运动(telescopic movement),同时相对于外部环境而密封管状外壳226的内部。活体内动物实验已经证实这种布置保持了管状外壳226的完整性超过7个月。在猪的活体内进行的7个月的研究中,移除牵引装置200而可调部分208的功能性完整。在图5C、8A、8B中最好地看出,牵引棒206通过锁定销238连接到磁性组件236。导螺杆260在近端包含相对于导螺杆260的纵轴横向定向的孔沈4,其被定尺寸以接收锁定销 238。下面更详细地描述磁性组件236,其包括上杯体(upper cup) 240以及下杯体(lower cup) 2420上杯体240终止于容座(接收器,rec印tacle) M4,容座244具有的内径被定尺寸以接收包含孔264的导螺杆260的一端。容座244还具有与轴承246的内表面接合的外径。轴承246可包括在管状外壳226内可旋转地支承上杯体240 (通过容座M4)的径向滚珠轴承。容座244包括孔M8J49,通过孔248、249放置锁定销238将导螺杆260锁定到磁性组件236。锁定销238保持在适当位置,因为当在适当位置时,轴承M6防止锁定销238 滑出容座M4中的孔M8J49。这种重叠(overlap)也有力地缩短磁性组件236的整个长度。可替换地,只使用单个孔248并且锁定销238的相反一端可与位于容座244相反一侧的凹槽接合。导螺杆260和磁性组件236之间的接口(interface)有几个作用。接口必须经受较重的压缩载荷(compressive loads) 0同样需要经受较大的拉伸载荷(tensile loads) 0此外,接口必须将扭矩从旋转磁性组件236传送到导螺杆沈0。接口还必须保持导螺杆260 以及螺母214之间的同心对准。对于压缩载荷,它们沿导螺杆260传送并经过锁定销238 进入磁性组件236。从图5C中最好地看出,磁性组件236倚靠在推力球轴承(thrust ball bearing) 250上。提供端盖252,其位于管状外壳226的一端。端盖252可激光或电子束焊接到管状外壳226。端盖252可用于与接头(如铰接接头)连接或不然接合,该接头例如与如图4所示的连杆532连接或不然相连。对于拉伸载荷,它们从磁性组件236经过锁定销238传送到导螺杆沈0。锁定销 238在轴承246所保持的磁性组件上拉伸。锁定销238可用坚固材料制成,例如已经经过热处理以增加强度的440C不锈钢。例如,440C不锈钢可以加热以达到至少C58洛氏(C58 Rockwell)硬度。锁定销238可有约.185英寸的长度以及约.0314英寸的直径。锁定销 238的两端可以是斜面的。在实验中已经确定锁定销238所不能承受的极限拉伸强度是 353磅(Ibs)。这样,锁定销238在直至约350磅的拉伸载荷力下能够保持其结构完整性。 这明显高于预期的最高牵引力。例如,其他研究人员发现成长棒所能承受的峰值牵引力约为 124 磅或小于 124 磅。参见 Teli et al. , Measurement of Forces Generated During Distraction of Growing Rods, J. Child Orthop) 1 :257-258(2007).。因此,这里描述的锁定销238,在给定牵引棒206所承受的预期牵引力的情况下,提供了广泛的安全性。扭矩力从磁性组件236通过锁定销238传送到导螺杆沈0。由于有效的扭矩被限制,即使是由于部件结合造成的小机械损失也是问题。然而,这里,锁定销238和导螺杆沈0 之间的空隙允许导螺杆260在磁性组件236的上杯体240中自由“摆动”。图8B示出了通过锁定销238与导螺杆260的结合所允许的偏轴“摆动”所追踪的锥形包套α。这种摆动或运转(Play)允许导螺杆沈0以及螺母214进行自对准(self-align)以减少紧固(binding)。图9A-9C示出了磁性组件236。图9A示出了磁性组件236的端视图而图9B示出了磁性组件236的侧视图。图9C是沿着图9B中的线C’-C截取的磁性组件236的截面图。 如上所述的磁性组件236包括上杯体MO以及下杯体M2。永磁体2M位于形成在上杯体 240以及下杯体242的内部之间的凹槽中。尽管会用到其他尺寸,永磁体邪4优选是具有直径约.28英寸、长度约.73英寸的圆柱形磁体。永磁体2M可包括例如稀土磁体,其例如由钕-铁-硼形成。磁体可由N35级或更高级制成,例如N50级。永磁体2M粘结或不然固定于上杯体240或下杯体M2。可以使用环氧胶粘剂,如使用EPOTEK 353ND将永磁体2M粘结到上杯体240和下杯体M2。这允许施加到永磁体254的扭矩传送到上杯体240并由此传送到导螺杆260上。永磁体254的长度短于上杯体MO以及下杯体M2的内腔(internal cavities)的结合长度。这确保当磁性组件236承受压缩时,上杯体240以及下杯体242受到应力,而不是永磁体254。图10示出了用于从外部赋予旋转运动或“驱动”位于牵引装置200内的磁性组件 236的外部调节装置1130。外部调节装置1130包括用于向两个永磁体1134、1136赋予旋转运动的电机1132。两个永磁体1134、1136位于相同的驱动器1130中,并且被构造用于布置在患者或主体身体的同一侧。电机1132可包括例如DC驱动的电机或通过完整包含在外部调节装置1130内的一节或多节电池(未显示)驱动的伺服电机(servo)。可替换地,电机1132可以通过连接到外电源的电源线等供电。例如,外电源可以包括一节或多节电池甚至是转化成DC的交流电源。
仍然参照图10,两个永磁体1134、1136优选是圆柱形永磁体。尽管其他稀土磁体也可以,但永磁体例如由稀土磁体材料,如钕-铁-硼(NdFeB)制成。例如,每个磁体1134、 1136可具有约1. 5英寸的长度和约1. 0到3. 5英寸的直径。两个磁体1134、1136都径向磁化(磁极垂直于每个永磁体1134、1136的纵轴)。磁体1134、1136可容纳于非磁性外盖或外壳1137中。在这点上,磁体1134、1136能够在将磁体1134、1136与外部环境分开的固定外壳1137内旋转。优选外壳1137是刚性的,并且至少在直接包覆永磁体1134、1136的部分,壁相对较薄,以使永磁体1134、1136与磁性组件236之间的间隙(如图13A-13D所示) 最小化。如图10所示,永磁体1134、1136旋转安装在相对的基板构件(bases members) 1138、1140之间。每个磁体1134、1136可包括安装在每个磁体1134、1136的相反轴面上的轴或心轴1142、1144。轴1142、1144可安装在各自安装在基础构件1138、1140中的轴承(未显示)上。如图10所示,从动轮(driven pulleys) 1150安装在一组轴1142和 1144上。从动轮1150可选地包括用于与容纳在传送带(drive belt)(线路IlM表示)内的对应凹槽或齿1156(部分显示在图11中)相啮合的凹槽或齿1152。仍然参照图10,外部调节装置1130包括传动装置(drive transmission) 1160,其包括两个沿着多个滑轮1162A、1162B、1162C以及滚轴1164A、1164B、1164C的从动轮1150, 多个滑轮1162A、1162B、1162C以及滚轴1164A、1164B、1164C上安装有传送带1154。滑轮 1162A、1162B、1162C可选地包括用于咬合(啮合,grip)传送带IlM的对应凹槽或齿1156 的凹槽或齿1166。滑轮1162A、1162B、1162C以及滚轴1164A、1164B、1164C可安装到各自轴承(未显示)上。如图10所示,滑轮1162B机械连接到电机1132的驱动轴(未显示)。 滑轮1162B可直接安装到驱动轴或者,可替换地,通过适当的齿轮装置(gearing)连接。一个滚轴1164B安装到偏置臂(biased arm) 1170上,因此向传送带IlM提供张力。各种沿着传送带1154的滑轮1150、1162A、1162B、1162C以及滚轴1164A、1164B、1164C可容纳在安装到基板(base) 1138(如图12所示)的外盖或外壳1172内。为了安全方便,可期望的是, 外部调节装置1130具有可移动的防护罩(safety cover),例如在储存期间,将其布置在包含永磁体1134、1136的部分之上,以便高磁场不能紧密接触任何可能会被其强烈吸引或损坏的物质。外部调节装置1130也可应用在壳体(case)中,例如具有由磁屏蔽材料制成的薄片的壳体,以将壳体外部的磁场最小化。Giron或高导磁合金(mu-metal)就是这种材料的两个实例。如图10和11所示,滑轮1162B的旋转移动引起传送带IlM围着各种滑轮1150、 1162A、1162B、1162C以及滚轴1164A、1164B、1164C移动。在这点上,电机1132的旋转移动通过传动装置1160转变成两个永磁体1134、1136的旋转移动。在本发明的一个方面中, 切割基板构件1138、1140以便形成位于两个磁体1134、1136之间的凹槽1174。在使用期间,外部调节装置1130压在患者的皮肤上,或者压在遮盖皮肤的衣服上(例如外部调节装置1130可穿过衣服使用,这样患者就不需要脱衣)。一小块永磁体可放在患者的衣服上以确定植入的永磁体254(通过两块磁体相吸)的位置。凹槽1174允许皮肤以及下方组织在凹陷区域1174内聚集或压缩,如图13A和1 所示。这会有利地减小外部驱动磁体1134、 1136以及容纳于牵引装置200的磁性组件236内的永磁体邪4之间的总距离。通过减小该距离,意味着外置磁体1Π4、1136和/或内部磁体1064可做得更小。这在肥胖患者的情况下尤其有用。在一个实施方式中,两个永磁体1134、1136被构造以相同的角速度旋转。在另一个实施方式中,两个永磁体1134、1136各自具有至少一个北极以及至少一个南极,外部调节装置1130被构造以转动第一磁体1134以及第二磁体1136,这样通过第一和第二磁体 1134,1136的充分转动,第一磁体1134的至少一个北极的角度位置基本上等同于第二磁体 1136的至少一个南极的角度位置。图13A和1 示出了具有植入的牵引装置(为了清楚没有显示)的患者的截面图, 其中永磁体邪4容纳在磁性组件236内(为了清楚没有显示在图13A和13B中)。可发现, 内部永磁体2M设置在椎骨1185的一侧上。而且,可发现,内部永磁体254,相对于主体的筋膜1184以及肌肉1186,位于外面或外部。图13A和1 示出了一位肥胖患者,其中,皮肤和其他组织聚集在凹槽1174内。应该理解的是肥胖的青少年特发性脊柱侧凸患者很少, 并且图13A和1 通常表示的是最坏病例情况,但是在图13A和1 中可以看出,多余的皮肤以及其他组织很容易地容纳在凹槽1174内,从而能够在内部永磁体邪4以及外部驱动磁体1134、1136之间紧密定位。对于大多数的AIS患者而言,内部永磁体254以及外部驱动磁体1134、1136之间的气隙或距离通常是1英寸或更小。在图13A到13D中,描绘的内部永磁体2M多少大于其实际尺寸大,以便其各自的磁极能够更清晰地可视化。再参照图10和图11,外部调节装置1130优选包括用于正确且精准地测量外部磁体1134、1136的移动(如转动)程度的编码器1175。在一个实施方式中,编码器1175安装在基板构件1138上并包括光源1176以及光接收器1178。光源1176可包括指向或朝向滑轮1162C的LED。同样地,光接收器1178可朝向滑轮1162C。滑轮1162C包括多个围绕滑轮1162C外围的规律间隔的反射标记1177。基于滑轮1162C的转动方向,光反射或不反射回光接收器1178。然后光接收器1178产生的数字开/关信号可用于确定外部磁体1134、 1136的转动速度以及位移。图13A、13B、13C和13D示出了使用期间外部磁体1134、1136以及位于牵引装置 200内的内部永磁体254的行进。图13A、i;3B、13C和13D示出了紧靠患者邻近脊柱的皮肤 1180的外表面而设置的外部调节装置1130。在所描述的非侵入调节步骤中,患者100以俯卧姿势平躺,外部调节装置1130放置在患者背部。然而,患者仰卧、站立或其他姿势也可实现调节。外部调节装置1130以这种方式紧靠皮肤1180放置,以远程转动内部永磁体254。 正如这里所阐述的,内部永磁体254的转动引起磁性组件236的转动移动。然后这种转动移动通过将导螺杆260连接到磁性组件236的锁定销238而被传送到导螺杆沈0。基于导螺杆沈0的转动方向,牵引棒206以叠缩方式移出或移入可调部分208。在这点上,通过使用外部调节装置1130控制磁性组件236的转动移动,操作员能够以可控的方式调节牵引棒 206的线性运动。磁性组件236可具有旋转运动,尽管小于磁性组件236的全旋转的360°。 可替换地,磁性组件236可通过大于360° (例如,多个旋转,全旋转)具有旋转运动。如图13A、13B、13C以及13D所示,外部调节装置1130可用一定程度的力压到患者皮肤1180上,以便皮肤1180以及其他组织如脂肪1182的下层被压入或被迫进入外部调节装置1130的凹槽1174。图13A、13B、13C以及13D示出了当内部永磁体254响应外部调节装置1130的永磁体1134、1136的移动而经受全旋转时的磁性取向。参照图13A,所示的内部永磁体邪4相对于两个永磁体1134、1136通过角θ定向。这个角θ可取决于多种因素,包括,例如,两个永磁体1134、1136之间的分隔距离、可植入接口 1104所定位的位置以及深度、外部调节装置1130按压患者皮肤的力度。通常在包括一些肥胖患者的应用中,角θ应该为90°或大约90°以达到最大的操作灵活性(例如扭矩)。发明人已经计算到,在AIS应用中,在有一些肥胖患者的情况下,当永磁体1134、1136 具有约2(2. 0)到3(3. 0)英寸的外径时,对于大多数患者优选约70°的角。图13Α示出了两个永磁体1134、1136以及内部永磁体254的初始位置。这表示初始或起始位置(例如所示出的0°位置)。当然,应该理解的是,在实际应用中,两个永磁体 1134、1136以及内部永磁体邪4的具体取向会变化,并且不太可能具有图13Α中示出的起始取向。在图13Α中示出的起始位置中,两个带有其磁极的永磁体1134、1136以N-S/S-N安排取向。然而内部永磁体2Μ —般垂直于两个永磁体1134、1136的磁极取向。图1 示出了两个永磁体1134、1136转动过90°后两个永磁体1134、1136以及内部永磁体254的取向。两个永磁体1134、1136以箭头A (例如顺时针方向)的方向转动而内部永磁体254以箭头B表示的相反的方向(例如逆时针方向)转动。应该理解的是,两个永磁体1134、1136可以以逆时针方向转动而内部永磁体2M可以顺时针方向转动。两个永磁体1134、1136以及内部永磁体2M的转动继续进行,如图13C以及13D中示出的180° 以及270°取向所表示的。转动继续进行,直到再次到达起始位置(0° )。在操作外部调节装置1130期间,通过在任一方向上的一次或多次全旋转,根据需要驱动永磁体1134、1136转动内部永磁体254以增加或减少牵引装置200的牵引。当然, 也可以通过部分转动(例如1/4、1/8、1/16)驱动永磁体1134、1136转动内部永磁体254。 两个磁体1134、1136的使用,相对于单个外部磁体的使用是优选的,因为内部永磁体2M可不在转动开始时精准取向,所以一个外部磁体1134、1136可能不能提供其最大扭矩,这在一定程度上取决于内部永磁体254的取向。然而,当使用两个( 外部磁体(1134、1136) 时,1134、1136两个中的一个,相对于内部永磁体254,具有比另一个更好或更佳的取向。另外,每个外部磁体1134、1136所赋予的扭矩是加合的(additive)。在现有技术的磁力驱动装置中,外部驱动装置受到内部驱动磁体的特定取向的支配。这里描述的两个磁体的实施方式能够保证更大的驱动扭矩-比AIS应用中的单磁体实施方式大出高达75% -因此内部永磁体邪4可以设计成尺寸更小且质量更小(less massive)。当较小的内部永磁体254 进行MRI (磁共振成像)时会有一个较小的图像伪影(image artifact),当使用脉冲序列如通常用于乳腺成像的梯度回波(gradient echo)时尤其重要,并且从植入的磁体中导致最大的伪影。在某些构造中,使用三个或更多外部磁体甚至可能是最佳的,包括一个或多个磁体各自置于身体的不同侧(例如前胸和后背)。图14示出了根据本发明的一个方面用于驱动外部调节装置1130的系统1076。图 14示出了压到患者1077(横截面中所示的朝下的躯干)表面的外部调节装置1130。示出了包括内部永磁体254的牵引装置200的部分。位于磁性组件236(安装于患者1107体内)内的永磁体邪4通过患者的皮肤和其他组织磁力连接到位于外部调节装置1130中的两个外部磁体1134、1136。正如这里说明的,外部磁体1134、1136的一次旋转引起磁性组件 236(包括永磁体254)相应的单次旋转。以一个方向转动磁性组件236引起牵引装置200 延长,或者增大牵引力,而以相反方向转动则引起牵引装置200缩短,或者减小牵引力。牵引装置200的改变与磁性组件236的转动次数直接相关。
通过可操作性地连接到可编程逻辑控制器(PLC) 1080的电机控制电路1078来控制外部调节装置1130的电机1132。PLC 1080向电机控制电路1078输出与电机1132的期望速度成比例的模拟信号。PLC 1080也可选择电机1132的转动方向(如正向或反向)。 一方面,PLC 1080从轴角编码器(shaft encoder) 1082接收输入信号,轴角编码器用于以高精准度和准确度识别外部磁体1134、1136的确切相对位置。例如,轴角编码器1082可以是图10-11中描述的编码器1175。在一个实施方式中,信号是脉冲调制的双通道正交信号 (quadrature signal),表示外部磁体1134、1136的角位置。PLC 1080可包括可显示信息、 警告等的内置屏幕或显示器1081。PLC 1080可选地包括用于输入数据的键盘1083或其他输入设备。PLC 1080可直接并入外部调节装置1130或其可以是电气连接到主外部调节装置1130的单独部件。在本发明的一方面中,能够感测或确定内部永磁体2M转动或角位置的传感器 1084并入外部调节装置1130中。传感器1084可获取位置信息应用,例如声波、超声波、 光、辐射或者甚至是内部永磁体2M和外部磁体1134、1136之间的磁场或电磁场的改变或扰动。例如,传感器1084可探测从内部永磁体邪4或所附的连接结构(例如转子)反射的光子或光。例如,光以有助于通过组织的(一种或多种)波长通过患者的皮肤和其他组织。 内部永磁体邪4部分或相关结构可包括当内部永磁体2M移动时将光反射回患者体外的反射表面。然后反射的光可被包括例如光电探测器等的传感器1084探测到。另一方面,传感器1084可以霍尔效应操作,其中两个额外的磁体位于可植入组件内。当内部永磁体2M转动时并因此当牵引增大或减小时,额外磁体相对于彼此轴向移动, 允许限制装置当前尺寸的确定。在图14的实施方式中,传感器1084是设置在外部调节装置1130上的扩音器。例如,扩音器传感器184可设置在外部调节装置1130的凹陷部分1174。扩音器传感器1084 的输出指向放大并过滤探测到的音频信号的信号处理电路1086。在这点上,音频信号可包括“滴答声”或通过内部永磁体2M转动周期性产生的其他杂音。例如,内部永磁体2M每次完成全旋转后会发出滴答声。滴答声的音高(频率)基于转动方向而不同。例如,一个方向转动(例如延长)可产生较低的音高而另一个方向转动(例如缩短)可产生较高的音高信号(或反之亦然)。然后来自信号处理电路1086的放大并过滤的信号可传到PLC 1080。关于各种声音和其他探测形式的操作的其他细节可在美国专利申请号12/121,355 中找到。在系统1076操作过程中,每位患者将具有对应于其牵引装置200的调节设置或尺寸的编号或标记。该编号可储存在患者携带的可选存储装置1088(例如存储卡、磁卡等) 中(如图14所示)或与牵引装置200整合形成。例如,作为系统一部分或单独植入的RFID 标签1088可设置于患者体内(例如皮下或作为装置的一部分)并且可通过天线1090读取以及写入以更新牵引装置200的当前尺寸。一方面,PLC 1080能够从存储装置1088中读取对应于牵引装置200尺寸和设置的当前编号。PLC 1080也能够将牵引装置200调整后的或再次更新的当前尺寸或设置写入存储装置1088。当然,当前尺寸可以手动地记录在患者的病例中(例如图表、卡片或电子病历),然后每次患者拜访他/她的医师时检查并酌情更改。因此患者随身携带其病例,并且如果例如他们在其他地方或甚至是其他国家,且需要调整时,RFID标签1088具有需要的所有信息。此外,RFID标签1088可用作安全装置。 例如,RFID标签1088可用于只允许医师调节牵引装置200而不允许患者调节。可替换地, RFID标签1088可用于只允许通过外部调节装置1130的具体型号或序号调节牵引装置的某些型号或构造(makes)。一方面,将牵引装置200的当前尺寸或设置输入到PLC 1080中。可以通过自动完成或通过例如与PLC 1080相连的键盘1083人工输入。PLC1080因此了解患者的起始点。 如果患者的记录丢失,可通过X射线测量牵引装置的长度并且PLC 1080可人工编程到这个已知的起始点。命令外部调节装置1130进行调节。这可以通过预先设定的命令进入PLC 1080 (例如“将牵引装置200的牵引位移增大0. 5厘米”或“将牵引装置200的牵引力增大到20磅”) 来完成。PLC 1080为电机1132构造正确的方向并开始电机1132的转动。当电机1132旋转时,编码器1082能够直接地(如图14所示)或者通过机械连接到电机1132的另一个轴或表面连续监测电机的轴位置。例如,编码器1082可读取位于如图10中公开的滑轮1162C 的外部的标记1177的位置。然后可计数电机1132的每次转动或部分转动并用于计算牵引装置200的调整后的或新的尺寸或设置。可包括扩音器传感器1084的传感器1084可持续地被监测。例如,电机1132每次转动均会产生适当次数和音高的由牵引装置内永磁体转动产生的滴答声。如果电机1132 转动一次全旋转但没有感应到滴答声,则磁力连接可能已丢失,PLC 1080的显示器1081可将错误信息显示给操作员。类似地,如果传感器1084获取听觉信号的错误音高(例如传感器1084探测到缩短音高而外部调节装置1130被构造以伸长),错误信息可显示在显示器 1081 上。虽然已经示出并说明了本发明的实施方式,但是在不背离本发明范围的情况下可进行各种修改。因此除了所附权利要求书以其等同替换之外,本发明不受任何限制。
权利要求
1.一种脊柱牵引系统,包括具有第一端和第二端的牵引棒,所述第一端被构造成用于在第一位置固定至主体的脊柱,所述第二端包含其中设置有带螺纹部分的凹槽;可旋转磁性组件,被构造成用于相对于所述主体的脊柱在远离所述第一位置的第二位置放置;以及具有第一端和第二端的导螺杆,所述第一端可操作性地连接至所述磁性组件的一端, 所述第二端可操作性地连接至所述凹槽的所述带螺纹部分,其特征在于,所述导螺杆的所述第一端以铰接布置连接至所述磁性组件的一端。
2.根据权利要求1所述的脊柱牵引系统,其中,所述铰接布置包括横向通过所述导螺杆和所述磁性组件的至少一部分的锁定销。
3.根据权利要求2所述的脊柱牵引系统,其中,所述锁定销包括经热处理的不锈钢。
4.根据权利要求3所述的脊柱牵弓I系统,其中,所述锁定销保持结构完整性直至1 磅的拉伸载荷。
5.根据权利要求4所述的脊柱牵弓I系统,其中,所述锁定销保持结构完整性直至350磅的拉伸载荷。
6.根据权利要求2所述的脊柱牵引系统,其中,所述磁性组件包括第一杯体和第二杯体,所述第一杯体包括具有孔的容座,所述孔被定尺寸以接收所述锁定销。
7.根据权利要求6所述的脊柱牵引系统,还包括围绕所述容座设置的轴承。
8.根据权利要求6所述的脊柱牵引系统,其中,所述容座被定尺寸以允许所述导螺杆相对于所述磁性组件的纵轴的角位移。
9.根据权利要求8所述的脊柱牵引系统,其中,所述磁性组件的旋转导致所述导螺杆沿锥形包套运动,不与所述凹槽的所述带螺纹部分接触。
10.根据权利要求1所述的脊柱牵引系统,其中,所述磁性组件包括至少一个可旋转磁体。
11.根据权利要求1所述的脊柱牵引系统,其中,所述磁性组件包括圆柱形磁体,所述圆柱形磁体具有第一长度,所述第一长度容纳在形成于第一杯体和第二杯体之间的腔体内,其中,所述腔体的长度长于所述第一长度。
12.根据权利要求1所述的脊柱牵引系统,其中,所述带螺纹部分包括的材料不同于所述导螺杆的材料。
13.根据权利要求12所述的脊柱牵引系统,其中,所述带螺纹部分包括铝青铜。
14.根据权利要求1所述的脊柱牵引系统,还包括容纳所述磁性组件的外壳;以及凹槽,邻近一端设置在所述外壳的内部,在所述凹槽中具有至少一个0型环,所述0型环被定尺寸以与所述牵弓I棒形成流体密封。
15.根据权利要求14所述的脊柱牵引系统,其中,所述流体密封包括气密封。
全文摘要
一种脊柱牵引系统包括具有第一端和第二端的牵引棒,该第一端被构造用于在第一位置固定至主体的脊柱,该牵引棒具有包含其中设置有带螺纹部分的凹槽的第二端。该系统还包括被构造用于相对于主体的脊柱在远离第一位置的第二位置固定的可调部分,该可调部分包括容纳磁性组件的外壳,该磁性组件在其一端固定至导螺杆,该导螺杆可操作性地连接至带螺纹部分。锁定销可将导螺杆紧固至磁性组件。设置在外壳一端上的O型环密封套可与牵引棒形成动态密封。
文档编号A61B17/58GK102325504SQ201080008758
公开日2012年1月18日 申请日期2010年2月10日 优先权日2009年2月23日
发明者布莱尔·沃克, 斯科特·普尔 申请人:埃利普斯科技有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1