用于减少刀片暴露的系统和方法与流程

文档序号:13560137阅读:185来源:国知局
用于减少刀片暴露的系统和方法与流程

相关申请

本专利申请要求于2015年5月15日提交的题为“systemandmethodforreducingbladeexposures”的美国临时专利申请62/176,893的优先权和权益,其全部内容通过引用的方式并入本文。

本公开总体涉及具有铰接臂和末端执行器的设备的操作,并且更具体地涉及微创切割器械的操作,以便减少刀片暴露。



背景技术:

越来越多的设备正被自主和半自主电子设备替代。这在如今具有存在于手术室、介入病房、重症监护病房、急诊室等中的大批自主和半自主电子设备的医院尤其如此。例如,玻璃和水银温度计被电子温度计替代,静脉滴注管线现在包括电子监测器和流量调节器,并且传统的手持式外科手术器械正被计算机辅助医疗设备替代。

使用计算机辅助医疗设备的微创外科手术技术通常试图在最小化对健康组织的损伤的同时执行外科手术规程和/或其他规程。可以通过使用具有外科手术器械的计算机辅助医疗设备来远程执行一些微创规程。对于许多计算机辅助医疗设备,外科医生和/或其他医务人员通常可以使用操作者控制台上的一个或多个控制装置来操纵输入设备。当外科医生和/或其他医务人员在操作者控制台处操作各种控制装置时,将命令从操作者控制台传送到安装有一个或多个末端执行器和/或外科手术器械的患者侧设备。以这种方式,外科医生和/或其他医务人员能够使用末端执行器和/或外科手术器械对患者执行一个或多个规程。根据期望的规程和/或正在使用的外科手术器械,期望的规程可以部分或完全地在使用远程操作的外科医生和/或医务人员的控制下执行和/或在半自主控制下执行,在半自主控制中,外科手术器械可基于外科医生和/或其他医务人员的一个或多个激活动作来执行一系列操作。

无论是以手动方式致动、以远程操作方式致动和/或以半自主方式致动,微创外科手术器械都可以用于各种操作和/或规程,并且可以具有各种配置。许多此类器械包括安装在轴的远端处的末端执行器,该轴可以安装到铰接臂的远端。在许多操作情况下,轴可以被配置为(例如,以腹腔镜方式、以胸腔镜方式和/或类似方式)插入穿过开口(例如,体壁切口、自然孔口和/或类似开口),以到达远程外科手术部位。在一些器械中,铰接腕机构可以安装到器械的轴的远端,以支撑末端执行器,其中铰接腕提供改变末端执行器相对于轴的纵向轴线的取向的能力。

可以使用不同设计和/或配置的末端执行器来执行不同的任务、规程和功能,以便允许外科医生和/或其他医务人员执行各种外科手术规程中的任何一种。示例包括但不限于烧灼、消融、缝合、切割、吻合(stapling)、融合、封闭等和/或它们的组合。因此,末端执行器能够包括各种部件和/或部件的组合以执行这些外科手术规程。

与微创规程的目标一致,末端执行器的尺寸通常保持尽可能小,同时仍允许其执行其既定任务。保持末端执行器的小尺寸的一种方法是通过使用通常位于患者外部的外科手术器械的近端处的一个或多个输入装置来完成末端执行器的致动。然后可以使用各种齿轮、杠杆、滑轮、缆线、杆、带和/或类似机构沿外科手术器械的轴传输来自一个或多个输入装置的动作并致动末端执行器。在具有适当的外科手术器械的计算机辅助医疗设备的情况下,在该器械的近端处的传动机构与设置在患者侧设备或患者侧推车的铰接臂上的各种马达、螺线管、伺服机构、主动致动器、液压装置、气动装置和/或类似装置接合。马达、螺线管、伺服机构、主动致动器、液压装置、气动装置和/或类似装置通常通过主控制器接收控制信号,并在传动机构的近端处提供力和/或扭矩形式的输入,各种齿轮、杠杆、滑轮、缆线、杆、带和/或类似机构最终传输所述输入以致动传动机构的远端处的末端执行器。

由于此类末端执行器的操作的远程性质,在一些情况下,外科医生和/或其他医务人员在致动期间可能难以知道末端执行器的一个或多个部件的位置以执行期望的规程。例如,在一些情况下,外科手术器械的其他部分(包括末端执行器本身)和/或患者的解剖结构的部分可能在一个或多个部件的致动期间使外科手术器械的一个或多个部件不被看见。另外,当部件中的一个或多个在试图执行期望的规程时遇到故障状况的时候,由于末端执行器的有限的可见性、外科手术器械操作的有限空间、对外科手术器械的有限使用权、末端执行器相对于外科医生和/或其他医务人员的远程位置和/或类似因素,外科医生和/或其他医务人员可能难以检测和/或校正故障状况。

此外,安全条件也可能是外科手术器械的设计和/或操作中的因素。在一些示例中,外科手术工具的末端执行器(诸如切割工具)可以包括锋利的切割刀片。当切割刀片不被主动地用于切割时,切割刀片可以被封套和/或停放在末端执行器上的壳体或停放区内,使得该切割刀片通常被定位在非操作期间不能意外地切割患者的组织和/或操纵外科手术工具的医务人员的位置。类似地,末端执行器的一个或多个精密部件也可以被封套和/或停放,以防止在非操作期间损坏精密部件。

当切割刀片不能够返回到停放区时,可发生被称为刀片暴露的差错。在一些情况下,当组织和/或其他碎屑干扰切割刀片朝向停放区的路径并防止切割刀片在切割操作之后回缩到停放区时,可能发生刀片暴露。在一些情况下,当切割刀片从用于引导切割刀片的末端执行器中的凹槽或轨道中出来并防止切割刀片回缩到停放区时,可能发生刀片暴露。避免刀片暴露通常是一个好的想法,因为并不总是能够在无需首先从患者体内抽出切割工具和末端执行器的情况下校正刀片暴露并使切割刀片回缩到停放区。

因此,期望用于外科手术器械(诸如切割器械)的操作的改进方法和系统。在一些示例中,可能期望降低刀片暴露的可能性。



技术实现要素:

与一些实施例一致,一种与计算机辅助医疗设备一起使用的外科手术切割器械包括位于外科手术切割器械的远端处的末端执行器、一个或多个驱动单元、耦合到驱动单元的轴、将末端执行器耦合到轴的铰接腕以及在轴中用于将来自一个或多个驱动单元的力或扭矩耦合到末端执行器和铰接腕的一个或多个驱动机构。末端执行器包括可对立的夹持夹钳和切割刀片。为了执行切割操作,外科手术切割器械被配置为测量夹持夹钳之间的夹钳角度,测量铰接腕的铰接状态,基于铰接腕的铰接状态校正夹钳角度,基于校正的夹钳角度确定对切割操作的约束以及基于该约束执行或防止切割操作。

与一些实施例一致,一种使用与计算机辅助医疗设备一起使用的外科手术切割器械执行切割操作的方法包括通过一个或多个处理器并且使用一个或多个第一传感器来测量外科手术切割器械的末端执行器的夹持夹钳之间的夹持角度;通过一个或多个处理器并且使用一个或多个第二传感器来测量将末端执行器耦合到外科手术切割器械的轴的铰接腕的铰接状态;基于铰接腕的铰接状态通过一个或多个处理器来校正夹钳角度;基于校正的夹钳角度通过一个或多个处理器来确定对切割操作的约束;以及基于该约束执行或防止切割操作。

与一些实施例一致,一种非瞬态机器可读介质包括多个机器可读指令,所述机器可读指令在由与计算机辅助医疗设备相关联的一个或多个处理器执行时适于使得一个或多个处理器执行一种方法。该方法包括测量由计算机辅助医疗设备操作的外科手术切割器械的末端执行器的夹持夹钳之间的夹钳角度;测量将末端执行器耦合到外科手术切割器械的轴的铰接腕的铰接状态;基于铰接腕的铰接状态校正夹钳角度;基于校正的夹钳角度确定对切割操作的约束;以及基于该约束使用一个或多个驱动单元执行或防止切割操作。

与一些实施例一致,一种计算机辅助医疗设备包括一个或多个处理器、铰接臂和耦合到铰接臂的远端的外科手术器械。外科手术器械包括位于外科手术器械远端处的末端执行器。末端执行器包括可对立的夹持夹钳和切割刀片。外科手术器械还包括位于外科手术器械的近端处的一个或多个驱动单元、耦合到驱动单元的轴、将轴耦合到末端执行器的铰接腕以及在轴中用于将来自一个或多个驱动单元的力或扭矩耦合到末端执行器和铰接腕的一个或多个驱动机构。计算机辅助医疗设备被配置为通过以下操作来使用切割刀片执行切割操作:测量夹持夹钳之间的夹钳角度、测量铰接腕的铰接状态、基于铰接腕的铰接状态校正夹钳角度、基于校正的夹钳角度确定对切割操作的约束以及基于该约束执行或防止切割操作。

附图说明

图1是根据一些实施例的计算机辅助系统的简化图。

图2是示出根据一些实施例的微创外科手术器械的简化图。

图3是根据一些实施例的图2的外科手术器械的远端的简化透视图。

图4a至图4c是根据一些实施例的图2和图3的末端执行器的简化剖视图。

图5是根据一些实施例的驱动单元的针对自由度的简化透视图。

图6a至图6e是根据一些实施例的末端执行器和切割刀片配置的各种侧剖视图和前剖视图的简化图。

图7a和图7b是根据一些实施例的刀片暴露概率的模型的简化图。

图8是根据一些实施例的实际夹钳角度和测量夹钳角度之间的示例性关系的简化图。

图9是根据一些实施例的用于执行切割操作的方法的简化图。

在附图中,具有相同名称的元件具有相同或相似的功能。

具体实施方式

在下面的描述中,阐述了描述与本公开一致的一些实施例的具体细节。然而,对于本领域技术人员而言,显而易见的是可以在没有这些具体细节中的一些或全部的情况下实践一些实施例。本文所公开的具体实施例意味着是说明性的而不是限制性的。本领域技术人员可以实现尽管这里没有具体描述但是在本公开的范围和精神内的其他元件。此外,为了避免不必要的重复,除非另有具体描述,或者如果一个或多个特征使得实施例不起作用,否则可以将与一个实施例相关联示出和描述的一个或多个特征并入其他实施例。

图1是根据一些实施例的计算机辅助系统100的简化图。如图1所示,计算机辅助系统100包括具有一个或多个可移动臂或铰接臂120的计算机辅助设备110。一个或多个铰接臂120中的每一个可以支撑一个或多个器械130。在一些示例中,计算机辅助设备110可以与计算机辅助外科手术设备一致。一个或多个铰接臂120可以各自为医疗器械130(诸如外科手术器械、成像设备和/或类似设备)提供支撑。在一些示例中,器械130可以包括末端执行器,所述末端执行器能够但不限于执行夹持、回缩、烧灼、消融、缝合、切割、吻合、融合、封闭等和/或它们的组合。

计算机辅助设备110还可以耦合到操作者工作站(未示出),操作者工作站可以包括用于操作计算机辅助设备110、一个或多个铰接臂120和/或器械130的一个或多个主控制装置。在一些示例中,一个或多个主控制装置可以包括主操纵器、杠杆、踏板、开关、按键、旋钮、触发器和/或类似装置。在一些实施例中,计算机辅助设备110和操作者工作站可以对应于由加利福尼亚州桑尼维尔市(sunnyvale,california)的直观外科手术公司(intuitivesurgical,inc.)出售的da外科手术系统。在一些实施例中,具有其他配置、更少或更多铰接臂和/或类似部件的计算机辅助外科手术设备可以与计算机辅助系统100一起使用。

计算机辅助设备110经由接口耦合到控制单元140。接口可以包括一个或多个缆线、光纤、连接器和/或总线,并且还可以包括具有一个或多个网络交换和/或路由设备的一个或多个网络。控制单元140包括耦合到存储器160的处理器150。控制单元140的操作由处理器150控制。另外,尽管示出控制单元140仅具有一个处理器150,但是应当理解,处理器150可以表示控制单元140中的一个或多个中央处理单元、多核处理器、微处理器、微控制器、数字信号处理器、现场可编程门阵列(fpga)、专用集成电路(asic)和/或类似装置。控制单元140可以被实施为添加到计算设备的独立子系统和/或板,或者被实施为虚拟机。在一些实施例中,控制单元140可被包括作为操作者工作站的一部分,并且/或者独立于操作者工作站但与操作者工作站协同操作。

存储器160可以用于存储由控制单元140执行的软件和/或在控制单元140的操作期间使用的一个或多个数据结构。存储器160可以包括一种或多种类型的机器可读介质。一些常见形式的机器可读介质可以包括软盘(floppydisck)、软磁盘(flexibledisk)、硬盘、磁带、任何其他磁性介质、cd-rom、任何其他光学介质、穿孔卡、纸带、任何其他带有孔图案的物理介质、ram、prom、eprom、flash-eprom、任何其他存储器芯片或存储盒和/或处理器或计算机适于从其中进行读取的任何其他介质。

如图1所示,存储器160包括控制应用170,控制应用170可用于支持计算机辅助设备110的自主、半自主和/或远程操作控制。控制应用170可以包括一个或多个应用编程接口(api),其用于从计算机辅助设备110、铰接臂120和/或器械130接收位置、运动、力、扭矩和/或其他传感器信息;与和其他设备有关的其他控制单元交换位置、运动、力、扭矩和/或防碰撞信息;和/或计划和/或协助计划计算机辅助设备110、铰接臂120和/或器械130的运动。在一些示例中,控制应用170还可在外科手术规程期间支持器械130的自主、半自主和/或远程操作的控制。另外,尽管控制应用170被描绘为软件应用,但可以使用硬件、软件和/或硬件和软件的组合来实施控制应用170。

在一些实施例中,计算机辅助系统100可存在于手术室和/或介入病房中。另外,尽管计算机辅助系统100仅包括具有两个铰接臂120和相应的器械130的一个计算机辅助设备110,但是普通技术人员将理解,计算机辅助系统100可以包括任何数量的计算机辅助设备,其具有在设计上与计算机辅助设备110类似和/或不同的铰接臂和/或器械。在一些示例中,计算机辅助设备中的每一个可以包括更少或更多的铰接臂和/或器械。

图2是示出根据一些实施例的微创外科手术器械200的简化图。在一些实施例中,外科手术器械200可以与图1的器械130中的任何一个一致。如图2所描绘和本文所使用的方向“近侧/近端”和“远侧/远端”有助于描述外科手术器械200的部件的相对取向和位置。远侧/远端通常是指在元件在沿运动链的方向上远离计算机辅助设备(诸如计算机辅助设备110)的基座和/或在外科手术器械200的预期操作使用中最接近外科手术工作部位。近侧/近端通常是指元件在沿运动链的方向上更接近计算机辅助设备的基座和/或计算机辅助设备的铰接臂中的一个。

如图2所示,外科手术器械200包括长轴210,该长轴210用于将位于轴210的远端处的末端执行器220耦合到在轴210的近端处将外科手术器械200安装到铰接臂和/或计算机辅助设备的位置。根据外科手术器械200所用于的特定规程,轴210可以被插入穿过开口(例如,体壁切口、自然孔口和/或类似开口),以便将末端执行器220放置在位于患者的解剖结构内的远程外科手术部位附近。如图2进一步所示,末端执行器220通常与双夹钳夹持器型末端执行器一致,所述末端执行器在一些实施例中还可包括切割和/或融合或封闭机构,如下面关于图3和图4a至图4c进一步详细描述的。然而,普通技术人员将理解,具有不同末端执行器220的不同外科手术器械200是可能的,并且可以与本文别处所描述的外科手术器械200的实施例一致。

外科手术器械(诸如具有末端执行器220的外科手术器械200)在其操作期间通常依赖于多个自由度(dof)。根据外科手术器械200和安装有该外科手术器械200的铰接臂和/或计算机辅助设备的配置,可用于定位、定向和/或操作末端执行器220的各种dof是可能的。在一些示例中,轴210可以沿远侧方向插入和/或沿近侧方向取回以提供插入dof,其可用于控制末端执行器220被放置在患者的解剖结构内有多深。在一些示例中,轴210可能够围绕其纵向轴线旋转,以提供可用于旋转末端执行器220的滚动dof。在一些示例中,末端执行器220的位置和/或取向的额外灵活性可以由用于将末端执行器220耦合到轴210的远端的铰接腕230提供。在一些示例中,铰接腕230可以包括一个或多个旋转接头,诸如一个或多个滚动接头、俯仰接头或偏转接头,其可以分别提供可用于控制末端执行器220相对于轴210的纵向轴线的取向的一个或多个“滚动”dof、“俯仰”dof和“偏转”dof。在一些示例中,一个或多个旋转接头可以包括俯仰和偏转接头;滚动、俯仰和偏转接头;滚动、俯仰和滚动接头;和/或类似接头。在一些示例中,末端执行器220还可以包括用于控制末端执行器220的夹钳的打开和关闭的夹持dof和/或用于控制切割机构的延伸、回缩和/或操作的激活dof,如在下面进一步描述的。

外科手术器械200还包括位于轴210的近端处的驱动系统240。驱动系统240包括用于将力和/或扭矩引导到外科手术器械200的一个或多个部件,所述力和/或扭矩可以用于操纵由外科手术器械200支持的各种dof。在一些示例中,驱动系统240可以包括基于从控制单元(诸如图1的控制单元140)接收的信号进行操作的一个或多个马达、螺线管、伺服机构、主动致动器、液压装置、气动装置和/或类似装置。在一些示例中,信号可以包括一个或多个电流、电压、脉冲宽度调制波形和/或类似信号。在一些示例中,驱动系统240可以包括一个或多个轴、齿轮、滑轮、杆、带和/或类似机构,其可以耦合到作为铰接臂(诸如安装有外科手术器械200的铰接臂120中的任何一个)的一部分的相应的马达、螺线管、伺服机构、主动致动器、液压装置、气动装置和/或类似装置。在一些示例中,一个或多个驱动输入装置(诸如轴、齿轮、滑轮、杆、带和/或类似机构)可用于从马达、螺线管、伺服机构、主动致动器、液压装置、气动装置和/或类似装置接收力和/或扭矩,并且施加这些力和/或扭矩以调节外科手术器械200的各种dof。

在一些实施例中,可以使用一个或多个驱动机构250将由驱动系统240产生和/或由驱动系统240接收的力和/或扭矩从驱动系统240并沿轴210传递到位于驱动系统240远侧的外科手术器械200的各种接头和/或元件。在一些示例中,一个或多个驱动机构250可以包括一个或多个齿轮、杠杆、滑轮、缆线、杆、带和/或类似机构。在一些示例中,轴210是中空的,并且驱动机构250从驱动系统240穿过轴210的内部到达末端执行器220和/或铰接腕230的对应dof。在一些示例中,驱动机构250中的每一个可以是设置在类似鲍登缆线(bowdencable)配置中的中空护套或管腔内的缆线。在一些示例中,缆线和/或管腔的内部可以涂覆有低摩擦涂层,诸如聚四氟乙烯(ptfe)和/或类似材料。在一些示例中,当缆线中的每一个的近端在驱动系统240内被拉动和/或推动时,例如通过围绕绞盘或轴卷绕和/或展开缆线,缆线的远端相应地移动并施加合适的力和/或扭矩来调节末端执行器220、铰接腕230和/或外科手术器械200的dof中的一个。

图3是根据一些实施例的外科手术器械200的远端的简化透视图。如图3所示,外科手术器械200的远端被描绘为使得示出末端执行器220、铰接腕230和驱动机构250的额外细节。更详细地,末端执行器220包括示出为处于打开位置的对立的(opposing)夹钳310。夹钳310被配置为在打开位置和关闭位置之间移动,使得末端执行器220可以在规程期间被用于夹持和释放位于手术部位的组织和/或其他结构(诸如缝合线)。在一些示例中,夹钳310可以作为单个单元一起操作,其中两个夹钳310同时打开和/或关闭。在一些示例中,夹钳310可以独立地打开和/或闭合,使得例如一个夹钳310可以保持稳定,而另一个夹钳310可以被打开和/或关闭。

图3示出了夹钳310中的每一个的内侧上的夹持表面包括对应的凹槽320,其可以用作切割刀片330的引导件,但凹槽320可以从夹钳310中的一个或多个中省略。当切割刀片330朝向末端执行器220的远端延伸和/或朝向末端执行器220的近端回缩时,凹槽320中的每一个可有助于切割刀片330在切割操作期间的对准和/或定位。切割刀片330的抽出和/或回缩是使用切割刀片330所附接到的驱动部件340完成的。在一些示例中,驱动部件340推动切割刀片330以使切割刀片330延伸并拉动切割刀片330以使切割刀片330回缩。图4a至图4c中示出了切割刀片330的使用和定位,图4a至图4c是根据一些实施例的末端执行器220的简化剖视图。图4a示出了切割刀片330与驱动部件340之间的关系。

末端执行器220还包括位于夹钳310的近端处的停放特征件350。停放特征件350包括驱动部件340和切割刀片330两者都可以通过的开口。停放特征件350被配置为当切割刀片330不使用时为切割刀片330提供安全的储存区域。因此,当切割刀片330未被主动地用作切割操作的一部分时,末端执行器220被配置为使得切割刀片330可以回缩到处于“停放(garaged)”或储存位置的停放特征件350中,在该位置中切割刀片330朝近侧后退到夹钳310的后方,如图4b所示。切割刀片330另外可以延伸到切割刀片330定位在凹槽320之一的远端处或远端附近的位置,如图4c所示。在一些示例中,如图4c所示的切割刀片330的定位可对应于切割刀片330在切割操作期间的位置。

在一些示例中,末端执行器220和外科手术器械200被设计成使得切割刀片330的默认位置或原始位置(homeposition)在停放特征件350内。停放特征件350的这种布置可以向末端执行器220提供几个特征。在一些示例中,当切割刀片330回缩到停放特征件350中时,切割刀片330的锋利的切割边缘被有效地封套,使得切割刀片330在规程期间不可能意外地切割组织,并且/或者在规程之前和/或规程之后不可能意外地切到操控外科手术器械200和/或末端执行器220的医务人员。在一些示例中,当切割刀片330回缩到停放特征件350中时,也可以在切割刀片330未被主动地用于切割时保护切割刀片330免受损坏,例如意外的钝化。

返回参考图3,在一些实施例中,夹钳310中的每一个的内侧上的夹持表面还可以包括一个或多个任选的电极360。在一些示例中,电极360可用于递送电外科能量以融合保持在夹钳310之间的组织。在一些示例中,电极360可以向末端执行器220提供电烧灼、融合和/或封闭特征,使得可以使用相同的外科手术工具200切割和/或融合/封闭组织。

在一些实施例中,夹钳310、切割刀片330和/或铰接腕230的接头的操作可以使用驱动机构250中的相应驱动机构来实现。在一些示例中,当夹钳310独立地操作时,驱动机构250中的两个驱动机构(每个夹钳310对应一个驱动机构)的远端可以耦合到相应的夹钳310,使得当对应的驱动机构250施加拉力和/或推力(例如,使用缆线、导螺杆和/或类似机构),相应的夹钳310可以被打开和/或关闭。在一些示例中,当夹钳310一起操作时,两个夹钳310可以耦合到相同的驱动机构250的远端。在一些示例中,驱动部件340可以耦合到对应的驱动机构250的远端,使得施加到对应的驱动机构250的力和/或扭矩可以被传递到驱动部件340的推动运动和/或拉动运动。在一些示例中,额外的驱动机构350可用于操作铰接腕230的滚动dof、俯仰dof和/或偏转dof。

图5是根据一些实施例的驱动单元500针对自由度的简化透视图。根据一些实施例,驱动单元500可以表示图2的驱动系统240中的部件的一部分。如图5所示,驱动单元500基于旋转绞盘510以致动dof的旋转致动方法。绞盘510耦合到驱动轴520,驱动轴520可以是马达、伺服机构、主动致动器、液压致动器、气动致动器和/或类似装置(未示出)的驱动轴。当将扭矩施加到驱动轴520并且驱动轴520和绞盘510旋转时,附接到绞盘510和/或驱动轴520的缆线530可以进一步围绕绞盘510和/或驱动轴520卷绕和/或展开。当缆线530附接到相应的驱动机构(诸如驱动机构250中的任何一个)的近端时,缆线的卷绕和展开可转化为相应的拉力和推力和/或扭矩,其可被施加到位于驱动机构的远端处的末端执行器的dof。在一些示例中,绞盘510和驱动轴520的旋转以及缆线530的相应卷绕和/或展开可导致夹持器夹钳(诸如夹钳310)的打开和/或关闭、切割刀片(诸如切割刀片330)的延伸和/或回缩、铰接腕接头的弯曲和/或解弯曲和/或类似动作。在一些示例中,监测绞盘510和/或驱动轴520的旋转角度和/或旋转速度还可以提供通过相应的驱动机构耦合到缆线530的相应dof的当前位置和/或速度的指示。因此,当驱动单元500与外科手术器械200的dof一起使用时,绞盘510和/或驱动轴520的旋转角度和/或旋转速度可以提供关于夹钳310打开的角度、切割刀片330的位置和/或铰接腕230的俯仰角度和/或偏转角度的有用反馈,这取决于驱动机构250和缆线530中的哪一个被耦合。

因为当dof未被致动时,通常期望末端执行器中的dof被配置有默认位置、静止位置和/或原始位置,所以在一些实施例中,驱动单元(诸如驱动单元500)可以包括某种类型的阻力机构和/或限制机构,以将驱动单元500返回到相应的原始位置。在一些示例中,使用dof的原始位置可以支持外科手术器械(诸如外科手术器械200)的配置,其中夹持夹钳自动关闭和/或大部分关闭,切割刀片回缩到停放特征件中,铰接腕接头被拉直和/或类似动作。如图5所示,驱动单元500包括扭转弹簧540形式的限制机构。扭转弹簧540被示出为在一端550附接到绞盘510并围绕绞盘510卷绕。当绞盘510旋转时,扭转弹簧540的第二端560可以自由旋转,直到其旋转到抵靠可以作为驱动单元500的主体的一部分的止动件570。当在扭转弹簧540的第二端560抵靠止动件570之后绞盘510继续旋转时,扭转弹簧540将开始向绞盘510提供限制和/或回位力和/或扭矩,如由绞盘510的旋转量和扭转弹簧540的弹簧常数所决定。因此,当将较大的旋转量施加到绞盘510时,扭转弹簧540向绞盘510施加增加的回位力和/或扭矩。例如,可以使用绞盘510上的该回位力和/或扭矩来关闭夹持夹钳、回缩切割刀片和/或拉直铰接臂接头。

尽管图5示出了作为围绕绞盘510卷绕的扭转弹簧的限制机构,但是普通技术人员将认识到其他可能的限制机构和/或用于限制机构的配置以实现类似的限制/回位功能。在一些示例中,驱动单元500的主体还可以包括第二止动件,以在与由止动件570产生的回位力和/或扭矩相反的方向上向绞盘510提供回位力和/或扭矩。在一些示例中,扭转弹簧540的第二端560可以安装到驱动单元500的主体,使得在扭转弹簧540开始向绞盘510施加回位力和/或扭矩之前和/或在即使绞盘510没有旋转的情况下扭转弹簧540向绞盘510施加至少一些回位力和/或扭矩之前,不允许扭转弹簧540的任何自由移动。

根据一些实施例,使用切割工具(诸如具有图3和图4a至图4c的切割刀片330的外科手术器械200)的切割操作通常涉及多阶段操作。例如,切割操作可以通过远程操作铰接臂以将末端执行器220放置在感兴趣的组织附近来实现。铰接腕230和夹钳310然后可用于抓持感兴趣的组织。一旦保持住感兴趣的组织,就可以使用驱动单元(诸如驱动单元500)来发起切割动作,该切割动作涉及:切割刀片330在远侧方向上快速延伸;将切割刀片330保持在延伸位置;以及然后在近侧方向上回缩切割刀片330,直到切割刀片330返回到停放特征件350内。在延伸和回缩期间,切割刀片330可以由夹钳310中的凹槽320引导,使得最终的切割发生在沿夹钳310的长度的大体直线上。

在一些情况下,切割操作可能不按计划进行。在一些示例中,在切割刀片330不能够返回到停放特征件350内的原始位置的情况下,可能发生刀片暴露。在一些示例中,当组织和/或其他碎片干扰切割刀片330朝向停放特征件的路径并在切割操作的回缩阶段期间防止切割刀片330回缩到停放特征件350中时,可能发生刀片暴露。在一些示例中,当切割刀片330扭曲和/或从凹槽320出来时,可能发生刀片暴露。这可能由于由组织、其他碎片、来自驱动部件340和/或驱动机构250的扭转力和/或类似因素引起的切割刀片330上的扭曲力或扭力而发生。在一些示例中,防止和/或减少刀片暴露通常是好的想法,因为并不总是能够在不首先从患者体内抽出外科手术器械200和末端执行器220的情况下校正刀片暴露并使切割刀片回缩到停放处中。

可以使用末端执行器和/或切割刀片的精心设计和/或操作来减少刀片暴露的可能性。图6a至图6e是根据一些实施例的末端执行器和切割刀片配置的各种侧剖视图和前剖视图的简化图。图6a和图6b是根据一些实施例的具有可用于减少刀片暴露的带式切割刀片630的末端执行器600的简化侧剖视图和前剖视图。如图6a和图6b所示,末端执行器600包括可以打开和关闭以抓持组织和其他结构的夹钳610。图6a和图6b示出了夹钳610中的每一个的夹持面可以包括凹槽或狭槽620,该凹槽或狭槽可以用于在带式切割刀片630的延伸和回缩期间引导带式切割刀片630,然而,凹槽620可以从一个或多个夹持面中省略。用于延伸和回缩带式切割刀片630的力和/或扭矩经由大体类似于驱动部件340的驱动部件640传输到带式切割刀片630。

如图6b的前剖视图所示,带式切割刀片630可以沿凹槽620的长度滑动,并且还可以在凹槽620内上下滑动。带式切割刀片630包括充分延伸到末端执行器600的近端的长刀片。长刀片的长度被选择为使得在切割操作的延伸和回缩期间,带式切割刀片的至少一部分被设计成在凹槽620和夹钳610的近端处保持在凹槽620内。

根据一些实施例,末端执行器600的带式切割刀片630可能遭受限制其作为切割工具的有效性的若干缺点的影响。在一些示例中,长刀片的长度可能干扰夹钳610的操作。在一些示例中,长刀片的长度还可能妨碍使用铰接腕(诸如铰接腕230),因为长刀片可能防止铰接腕的弯曲,直到铰接腕的位置距夹钳610的距离比所期望的距离长。在一些示例中,当使用带式切割刀片630确实发生刀片暴露时,带式切割刀片630的较大尺寸和较长长度可能显著地干扰在不首先从患者体内移除末端执行器600的情况下关闭夹钳610和/或清除刀片暴露的能力。

图6c是根据一些实施例的使用工字梁式(i-beamstyle)切割刀片680的末端执行器650的简化前剖视图。如图6c所示,夹钳660各自包括大狭槽670,该大狭槽670包括通向相应夹钳660的夹持表面的开口,但是也包括在相应夹钳660内的加宽的狭槽区域。工字梁式切割刀片680的上端和下端各自包括加宽的端盖690,端盖690的尺寸大于通向夹持表面的开口的尺寸。这些加宽的端盖690防止工字梁式切割刀片680的上端和下端从狭槽670中出来。

根据一些实施例,末端执行器650的工字梁式切割刀片680可能遭受限制其作为切割工具的有效性的若干缺点的影响。在一些示例中,狭槽670的高度可能不合理地增加末端执行器650的横截面,使得其不如微创外科手术器械的一部分那样有用。在一些示例中,工字梁式切割刀片680可能不可用作组合的切割和融合或密封末端执行器的一部分,因为不可能从狭槽670完全回缩工字梁式切割刀片680,这是因为这样做之后可能难以将端盖690重新插入到狭槽670中。在一些示例中,当使用工字梁式切割刀片680确实发生刀片暴露时(诸如由于组织和/或其他碎片),端盖690起作用以将夹钳660锁定在关闭和/或部分关闭位置中。在一些示例中,当夹钳660在它们仍然夹持组织的同时被锁定时,可能无法在不进行外科手术的情况下从患者身上移除末端执行器650。

图6d和图6e是根据一些实施例的来自图2、图3和图4a至图4c的末端执行器220的简化侧剖视图和前剖视图。如先前关于图3和图4a至图4c所述,末端执行器220包括可以被打开和关闭以抓持组织和其他结构的夹钳310。每一个夹钳310的抓持面包括凹槽或狭槽320,该凹槽或狭槽可用于在切割刀片330的延伸和回缩期间引导切割刀片330。用于延伸和回缩切割刀片330的力和/或扭矩经由驱动部件340传输到切割刀片330。

如图6e的前剖视图所示,切割刀片330可以沿凹槽320的长度滑动,并且还可以在凹槽320内上下滑动。如图所示,切割刀片330包括比带式切割刀片630短得多的刀片,使得末端执行器220可以维持小的横截面并且还可以与铰接腕230一起使用。另外,即使切割刀片330的较短刀片可能相对于带式刀片630或工字梁式刀片680增加刀片暴露的可能性,较短刀片也可以提高在不从患者体内移除末端执行器220的情况下可清除刀片暴露的可能性。在一些示例中,这是可能的,因为即使切割刀片330不与凹槽320对准,较短的刀片也可以更容易地回缩在停放特征件350内。

根据一些实施例,当通过切割刀片330和末端执行器220的适当操作来使用切割刀片330时,可减少刀片暴露的可能性。在一些示例中,可以通过基于夹钳310的夹钳角度防止和/或限制切割刀片330的操作来减少刀片暴露。图7a和图7b是根据一些实施例的刀片暴露概率的模型的简化图。图7a描绘了针对两个可能的切割刀片延伸长度的刀片暴露概率对(versus)夹钳角度的示例模型700。曲线710和720两者均示出了针对窄夹钳角度的相对低的刀片暴露概率、刀片暴露概率随着夹钳角度变宽而快速增加的区域以及刀片暴露的概率达到最大概率的饱和区域。曲线710对应于与曲线720相比切割刀片延伸更长距离的情况。

图7b描绘了针对两种可能的刀片暴露概率的切割刀片延伸长度对夹钳角度的示例模型750。曲线760和770两者均示出了在低夹钳角度处全长切割刀片延伸是可能的区域,当夹钳角度增加时切割刀片延伸的长度必须快速减小以维持恒定的刀片暴露概率的区域,以及在不发生不可接受的刀片暴露概率的情况下由于夹钳角度的宽度而很少或没有切割刀片延伸可行的区域。曲线760对应于相对于曲线770允许刀片暴露的更高公差(即更高概率)的情况。

轶事证据表明,外科医生愿意忍受可发生刀片暴露的一定可能性,以便能够切割保持在切割工具的夹持夹钳内的较厚的组织。与该观察结果一致并且根据一些实施例,图7a和/或图7b的模型和曲线可以以两种方式之一来使用,以管理切割操作期间刀片暴露的可能性。

在一些示例中,图7a的模型700可以用于确定允许预定距离的切割长度的最大夹钳角度。在切割工具的操作期间,当夹钳角度超过最大夹钳角度时,可以禁止预定距离的切割。在一些示例中,当切割长度为18mm,切割刀片330高2.54mm,并且刀片暴露的公差为10%时,最大夹钳角度可以为大约7度。

在一些示例中,图7b的模型750可以用于基于当前夹钳角度来限制最大切割长度。在切割工具的操作期间,可以测量夹钳角度,并且基于刀片暴露的公差,所测量的夹钳角度可以被限制到最大切割长度。

无论是使用模型700来防止切割操作还是使用模型750来限制切割操作的切割长度,监控和/或实施切割操作的控制应用(诸如控制应用170)使用当前夹钳角度的测量值来进行切割/不切割判定和/或切割长度确定。根据一些实施例,夹钳角度的测量值可能不总是如所期望的那样准确以支持这些切割确定。如先前关于图5所述,可以像末端执行器的其他dof那样间接地测量末端执行器(诸如末端执行器220)的夹钳角度。在图5的示例中,可以基于来自用于末端执行器的夹持器夹钳的一个(联合夹钳控制)或两个(独立夹钳控制)相应驱动单元500的相应绞盘510和/或驱动轴520的旋转角度来测量夹钳角度。在一些示例中,当铰接腕弯曲时,用于操作夹持器夹钳的(多个)驱动机构可能在外科手术器械的中空轴(例如,轴210)内遭受弯折和/或移动。当(多个)驱动机构弯折和/或移动时,如通过驱动机构可见的有效距离可以在切割刀片处的远端与驱动单元处的近端之间变化。因此,为了在确定夹钳角度时获得足够的精度,可能必须基于铰接腕的(多个)弯曲角度和/或输入轴的滚动来校正夹钳角度。

图8是根据一些实施例的实际夹钳角度和测量夹钳角度之间的示例性关系的简化图。图8包括来自使用与外科手术器械200一致的外科手术器械收集的数据的散点图800。与末端执行器220一致的末端执行器被用于抓持材料,而与铰接腕230一致的铰接腕弯曲到俯仰角度和偏转角度的各种组合。在俯仰角度和偏转角度的组合中的每个组合处,测量夹持夹钳之间的实际夹钳角度,如散点图800中较浅的上部点所表示。在俯仰角度和偏转角度的组合中的每个组合处,记录在用于夹持夹钳的驱动单元处测量的夹钳角度,如散点图800中较暗的下部点所表示。如散点图800所示,由于铰接腕的俯仰角和偏转角度两者都偏离零角度(零角度对应于铰接腕不弯曲并且末端执行器与外科手术器械的轴对准),实际夹钳角度与测量夹钳角度之间发生较大偏差。

然后将散点图800的数据与各种模型相匹配,以确定当俯仰角度和偏转角度变化时用于实际夹钳角度与测量夹钳角度之间的关系和/或函数的合适模型。实验表明,与等式1一致的线性校正模型可用于对实际夹钳角度与测量夹钳角度之间的关系进行建模,其中确定系数或r2值超过0.95。

实际夹钳角度=测量夹钳角度+c0+c1*∣滚动∣+c2*∣俯仰∣+c3*∣俯仰∣

等式1

在一些示例中,c0、c1、c2和c3系数可以在外科手术器械的集合上建模或针对每个外科手术器械单独地建模,其中系数值被记录,使得它们能够在运行时间基于相应的外科手术器械的标识符(诸如序列号)被访问。对于与外科手术器械200一致的外科手术器械的一个示例,发现c0为0.000,发现c1为0.000,发现c2为0.062,并且发现c3为0.069。c2和c3之间的差异是由于俯仰接头和偏转接头的设计的差异以及偏转接头更远离俯仰接头的位置。

图9是根据一些实施例的用于执行切割操作的方法900的简化图。方法900的过程910-970中的一个或多个可以至少部分地以存储在非瞬态有形的机器可读介质上的可执行代码的形式实施,所述代码在由一个或多个处理器(例如,控制单元140中的处理器150)运行时可以使得一个或多个处理器执行过程910-970中的一个或多个。在一些实施例中,方法900可以由应用(诸如控制应用170)来执行。在一些实施例中,方法900可以用于基于夹持器夹钳(诸如夹钳310)之间的角度以及外科手术器械(诸如外科手术器械200)的铰接腕(诸如铰接腕230)的弯曲来约束和/或限制切割刀片(诸如切割刀片330)的移动。在一些实施例中,方法900的切割操作可以根据图7a、图7b和图8的模型执行。在一些实施例中,可以在执行方法900期间使用驱动部件(诸如在图2、图3、图4a至图4c、图5、图6d和/或6e中描述的驱动部件)来确定夹持器夹钳之间的角度,以便约束和/或限制切割刀片的移动。

在过程910处,操作外科手术器械的夹钳。在一些示例中,外科医生和/或其他医务人员可以使用操作者控制台的一个或多个控制装置来定位和/或操作外科手术器械的夹钳(诸如夹钳310)。在一些示例中,外科医生和/或其他医务人员可以操纵一个或多个主控制装置(诸如一个或多个主操纵器、杠杆、踏板、开关、按键、旋钮、触发器和/或类似装置)来远程操作夹钳,以围绕适当的组织和/或其他结构定位夹钳来为切割操作做准备。在一些示例中,夹钳可以被操作以控制它们的位置和/或取向并且调节夹钳之间的角度。在一些示例中,该操作可以包括调节铰接腕(诸如铰接腕230)的弯曲水平,以根据需要定向夹钳。

在过程920处,接收切割命令。在一些示例中,外科医生和/或其他人员可请求进行切割操作。在一些示例中,可以使用位于操作者控制台上的一个或多个主控制装置(诸如一个或多个主操纵器、杠杆、踏板、开关、按键、旋钮、触发器和/或类似装置)来请求切割操作。在一些示例中,所请求的切割操作可以通过控制应用(诸如控制应用170)经由中断、输入轮询操作、api调用和/或类似操作来接收。

在过程930处,测量夹钳角度。在一些示例中,可以使用一个或多个位置传感器和/或旋转传感器来测量夹钳角度。在一些示例中,传感器可以位于夹钳的近侧,并且可被配置为间接地测量夹钳角度。在一些示例中,传感器可以与可用于操纵夹钳的(多个)dof的一个或多个驱动单元(诸如驱动单元500)相关联。在一些示例中,传感器可以测量绞盘(例如绞盘510)的旋转角度和/或驱动轴(例如驱动轴520)的旋转角度。在一些示例中,当夹钳被一起控制时,可以使用用于夹钳的单个驱动单元来测量夹钳角度。在一些示例中,当夹钳被独立地控制时,可以分别测量夹钳中的每一个的夹钳角度,然后组合所述夹钳角度以确定复合的测量夹钳角度。

在过程940处,测量腕铰接状态(wristarticulation)。在一些示例中,可以使用一个或多个位置传感器和/或旋转传感器来测量腕铰接状态。在一些示例中,传感器可以位于铰接腕的近侧,并且可以被配置为间接地测量铰接腕的铰接角度(诸如俯仰和/或偏转)中的每一个。在一些示例中,传感器可以与一个或多个驱动单元(诸如驱动单元500)相关联,驱动单元可以用于操纵铰接腕的接头中的每一个的相应dof。在一些示例中,传感器可以测量绞盘(诸如绞盘510)的旋转角度和/或驱动轴(诸如驱动轴520)的旋转角度。

在过程950处,基于腕铰接状态来校正夹钳角度。使用在过程930期间测量的夹钳角度和在过程940期间测量的腕铰接状态,可以通过控制应用来确定夹钳角度的校正值。在一些示例中,可以使用夹钳角度校正模型(诸如图8和/或等式1的夹钳角度校正模型)来校正夹钳角度。在一些示例中,夹钳角度校正模型可以基于外科手术器械的类型来确定,和/或可以基于与外科手术器械相关联的标识符(诸如序列号)来确定。

在过程960处,基于校正的夹钳角度来约束切割操作。在一些示例中,在过程950期间确定的校正的夹钳角度可以与刀片暴露的可配置公差组合,以确定切割操作是否被约束。根据是否允许部分长度切割,可以防止发生切割操作和/或将切割操作约束到最大切割长度。在一些示例中,当不允许部分长度切割时,校正的夹钳角度、刀片暴露的公差和期望的切割长度被应用于模型(诸如图7a的模型700),以确定校正的夹钳角度是否大于最大允许的夹钳角度。当校正的夹钳角度大于最大允许的夹钳角度或夹钳角度阈值时,约束切割操作以防止其发生,并且/或者将最大可允许的切割长度设定为零。当校正的夹钳角度等于或小于最大允许的夹钳角度时,不约束切割操作,并且/或者将最大可允许的切割长度设定为全长切割。在一些示例中,当允许部分长度切割时,校正的夹钳角度和刀片暴露的公差被应用于模型(诸如图7b的模型750),以确定最大可允许的切割长度。然后约束切割操作,使得切割刀片不延伸超过最大可允许的切割长度。

在一些示例中,当切割长度被约束时,可以向外科医生和/或其他医务人员提供声音、视觉和/或文本警报,以便在不允许部分切割和/或当切割长度减小到小于全切割时指示已经超过切割操作的最大允许的夹钳角度。

在过程970处,基于切割约束执行切割操作。在一些示例中,可以通过延伸切割刀片并且然后将切割刀片回缩回到停放区来执行切割操作。在一些示例中,切割操作可以包括根据位置分布图驱动切割刀片,该位置分布图可以被调节以包括基于在过程960期间确定的最大切割长度(如果有的话)的最大延伸。在一些示例中,可以基于通过驱动部件、驱动机构、驱动单元和/或致动器(诸如马达、螺线管、伺服机构、主动致动器、液压致动器、气动致动器和/或类似装置)施加到切割刀片的力和/或扭矩来延伸和/或回缩切割刀片。在一些示例中,当最大可允许的切割长度为零或不允许切割操作时,可以跳过过程970。

在一些示例中,可以在过程970期间监测切割操作。在一些示例中,切割刀片和/或用于切割刀片的驱动单元的实际位置可以使用一个或多个传感器来监测,以确定切割刀片和/或驱动单元是否能够在切割操作期间根据需要延伸和/或回缩切割刀片。在一些示例中,当切割刀片和/或驱动单元不能够在位置分布图的预定公差内遵循延伸和/或回缩时,可以向外科医生和/或其他医务人员提供声音、视觉和/或文本警报,以指示切割操作可能尚未成功。在一些示例中,当切割刀片不能够延伸到最大可允许的切割长度时,切割操作可能不成功。在一些示例中,当切割刀片暴露并且不能返回到停放区时,切割操作可能不成功。在一些示例中,当抽出操作和/或回缩操作中的任何一个达到相应的力和/或扭矩极限时,还可以使用一个或多个声音、视觉和/或文本警报发出警告和/或警报。

在过程970期间完成切割操作之后,可以通过返回到过程920来执行另一个切割,并且/或者可以在通过返回到过程910进行另一个切割操作之前重新定位夹钳。

控制单元(诸如控制单元140)的一些示例可以包括非暂时有形的机器可读介质,其包括可执行代码,当可执行代码由一个或多个处理器(例如,处理器150)运行时可使得一个或多个处理器执行方法900的过程。可以包括方法900的过程的机器可读介质的一些常见形式为例如软盘、软磁盘、硬盘、磁带、任何其他磁性介质、cd-rom、任何其他光学介质、穿孔卡片、纸带、任何其他带有孔图案的物理介质、ram、prom、eprom、flash-eprom、任何其他存储芯片或存储盒和/或适用于由处理器或计算机读取的任何其他介质。

虽然已经示出和描述了说明性实施例,但是在前述公开内容中设想了范围广泛的修改、改变和替换,并且在一些情况下,可以采用实施例的一些特征而无需相应使用其他特征。本领域普通技术人员将认识到许多变化、替代和修改。因此,本发明的范围应仅由所附权利要求限制,并且权利要求被广义地并且以与本文公开的实施例的范围一致的方式解释是适当的。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1