一种镁/聚乳酸复合骨支架及其制备方法与流程

文档序号:19663558发布日期:2020-01-10 21:18阅读:216来源:国知局

本发明属于生物医学组织工程技术领域,特别是提供了一种利用镁促进聚乳酸骨支架降解的方法。



背景技术:

创伤、感染、骨肿瘤及先天性骨病等原因造成的骨缺损,特别是大段骨缺损的修复和功能重建一直是国内外研究的难点。聚乳酸(pla)是一种具有良好生物相容性、可降解性和加工性能的高分子材料,已被美国食品和药物管理局批准应用于人体。pla可在人体内完全降解,降解产物能被人体吸收,无刺激和毒副作用,对人体高度安全,无需二次手术取出;其弹性模量与传统的不锈钢、钛合金等医用金属相比更接近于人体骨组织,降低了应力遮挡效应。但pla在人体生理环境中的降解速率过慢,完全降解需要2-3年的时间,难以与骨组织再生速率相匹配(新骨的生长速度是12-18周)而阻碍新骨组织的生长,此外pla的降解中间产物呈酸性,易造成组织局部炎症反应。

行业内急需一种易于降解且性能优异的骨支架材料。



技术实现要素:

基于现有复合骨支架存在的技术不足,本发明提供了一种镁/聚乳酸复合骨支架(本发明也称为mg/pla复合骨支架),旨在改善骨支架的生物可降解性。

本发明还提供了一种所述的mg/pla复合骨支架的制备方法。

为了满足骨缺损的修复要求,一方面人工骨必须具有可控的内部多孔结构如合适的孔尺寸、高的孔隙率及互连的孔形态;另一方面人工骨的外部形状取决于患者骨缺损部位的解剖结构,由于不同患者的骨缺损部位不同,相同部位的大小、形状等也不尽相同,故骨支架的制作必须因人而异,因残而异。这就要求人工骨的制备技术不仅能制备内部互连的孔结构,而且能实现骨支架个体化外形的精确制备,而目前常规制备技术很难同时满足这些要求。选择性激光烧结技术一方面特别适合于制备具有复杂内部结构的零件,可准确地制备人工骨的内部孔结构,实现孔径、孔分布和连通性等的精确控制;另一方面有望便捷、快速地为患者量体裁衣,制造出与缺损部位相匹配的骨支架,使患者告别过去“削足适履”的传统治疗方式。为了获得一种具有优异降解性能的骨支架,本发明人尝试采用含有镁/pla的作为打印材料,通过3d打印方法得到的骨支架,但mg的化学性能非常活泼,在激光烧结过程中很容易发生氧化反应甚至会发生爆炸,且打印得到的骨支架材料的性能并不理想,降解性和强度均难于满足要求。通过进一步研究发现,在保护气氛下,并控制在所要求的镁含量、激光烧结密度下,方可获得具有优异降解性能,并兼具优异机械强度的骨支架,故提供以下技术方案:

一种镁/聚乳酸复合骨支架,由镁和聚乳酸的复合粉末在保护气氛下选择性激光烧结得到;

复合粉末中,镁的含量为5~20wt.%;

选择性烧结过程中,扫描速度为150~300mm/min,激光功率为2~4w。

本发明中,通过所述的含量的组分配合创新的所述参数范围下的选择性激光烧结工艺,可以克服因镁活性高,选择性烧结过程中被破坏的问题,可以获得孔隙合理,强度优、且兼具良好降解性能的骨支架。

本发明研究发现,对于选择性烧结工艺而言,控制镁的含量对制得的骨支架的性能具有重大影响。研究发现,若镁的含量低于5wt.%时,镁在骨支架中的含量过低,对骨支架降解速率以及强度均具有较大影响,若镁的含量高于20wt.%时,镁在骨支架中的含量过高,易出现镁在基体中形成连续相,使骨支架的力学性能大幅降低,并且骨支架不能均匀地降解,局部降解速率过快。

作为优选,复合粉末中,镁的含量为10~15wt.%。研究发现,在该优选的镁含量下,经本发明创新条件下的选择性烧结,可以意外提升得到的骨支架的降解性能,利于材料的均匀降解。

研究还发现,扫描速度、激光功率决定了激光输出的能量密度,直接影响骨支架的成型质量,控制在所述的参数范围下,可以出人意料的放大组分之间的协同性能,可以进一步提升得到的骨支架的可降解性能,还可提升强度。研究还发现,若能量密度过低,pla还没有融化,骨支架很难成形,若能量密度过高,会出现pla碳化、烧损或分解等现象,严重降低成型质量。

作为优选,扫描速度为200~300mm/min,激光功率为2~3w。

进一步,在控制选择性激光烧结的扫描速度、激光功率的前提下,进一步控制光斑直接和扫描间距,可进一步提升得到的骨支架的性能。

作为优选,选择性激光烧结过程中,光斑直径为0.6~1.0mm,扫描间距为0.1~0.3mm。光斑直径和扫描间距未控制在所述的范围下,骨支架的多孔结构(包括孔的大小、孔隙率等)等效果较差。

作为优选,聚乳酸平均分子量为10~15kda、熔点为175~185℃。采用该优选的聚乳酸和镁的性能更优,可以协同配合选择性烧结方法,进一步提升骨支架的强度以及可降解性能。

作为优选,聚乳酸的颗粒尺寸为0.2~5μm。

作为优选,镁的松散密度为0.1~0.75g/cucm、颗粒尺寸为1~10μm。采用该优选的镁和所述的pla的性能更优,可以协同配合选择性烧结方法,进一步提升骨支架的强度以及可降解性能。

本发明公开了一种所述的镁/聚乳酸复合骨支架的制备方法,将聚乳酸和镁加在溶剂中经磁力搅拌和超声分散混合得混合溶液;混合溶液经过滤、干燥后制备所述的复合粉末;复合粉末置入激光3d打印系统中经选择性激光烧结,制得所述的骨支架;

选择性激光烧结过程中,扫描速度为150~300mm/min,激光功率为2~4w,光斑直径为0.6~1.0mm,扫描间距为0.1~0.3mm。

本发明意外发现,磁力搅拌和超声联合使用,可以提升得到的骨支架的降解效果。

作为优选,磁力搅拌速度为500~800r/min。

作为优选,所述的磁力搅拌时间为30~60min。

作为优选,超声分散温度为40~60℃。

作为优选,超声分散时间为30~60min。

作为优选,干燥温度为40~60℃,时间为12~24h。

一种优选的镁/聚乳酸复合骨支架,包括以下步骤:

(1)将一定量的pla粉末加到酒精中经磁力搅拌和超声分散混合均匀,随后将一定量的mg粉末添加到上述溶液中,经磁力搅拌和超声分散混合均匀后将溶液倒入漏斗中过滤,收集复合粉末并干燥,得到mg/pla复合粉末;

(2)将所得mg/pla复合粉末置入激光3d打印系统中制备骨支架,其中工艺参数为:扫描速度为150~300mm/min,激光功率为2~4w,光斑直径为0.6~1.0mm,扫描间距为0.1~0.3mm。

所述的pla粉末纯度为99%。

所述的mg粉末纯度为99.99%。

mg具有较低的标准电极电位(-2.37v),在生理环境中易降解。基于mg的这种特性,将其与pla复合有望加快pla降解,具体的机制是:在生理环境中,基体中裸露的mg极易降解(mg+h2o→mg(oh)2+h2↑)产生mg(oh)2,而pla有一定的吸水性,通过酯键断裂发生水解反应(pla→r1-cooh+r2-oh)生成羧酸(r1-cooh),碱性mg(oh)2与酸性r1-cooh发生中和反应(mg(oh)2+r1-cooh→(r3-coo)2mg),该反应可有效中和pla降解产生的酸性环境,更重要的是消耗了mg(oh)2和r-cooh,使平衡向正反应方向进行,从而会加快pla的水解及mg的降解。同时mg是人体必需的矿物质元素之一,在降解过程中可释放出mg离子,促进骨细胞的粘附、增殖和分化。

综上所述,本发明拟针对pla降解速率过慢且降解中间产物呈酸性的缺点,利用mg加速pla骨支架的降解,同时利用mg降解产生的碱性产物中和pla降解产生的酸性环境,并利用激光3d打印技术制备mg/pla复合骨支架。

发明的优点及积极效果

①利用可降解金属mg加速pla骨支架的降解;

②利用mg降解碱性产物中和pla降解产生的酸性环境;

③利用mg降解释放的mg离子促进成骨细胞的粘附、增殖和分化。

具体实施例

下面结合具体实施例对本发明的具体实施方式作进一步描述,但本发明之内容并不局限于此。

实施例1

利用电子天平分别称取颗粒尺寸为4μm,熔点为180℃,平均分子量为10kda的pla粉末90g;颗粒尺寸为5μm,松散密度为0.6g/cucm的mg粉末10g。将两种粉末置入装有20ml酒精的烧杯中,经磁力搅拌和超声分散混合均匀,其中,磁力搅拌时间为30min,磁力搅拌速度为500r/min,超声分散时间为30min,超声分散温度为40℃,干燥温度为40℃,保温时间为12h;

将所得复合粉末置于充有氩气气氛保护的激光3d打印系统中制备骨支架,主要工艺参数为:扫描速度为200mm/min,激光功率为3w,光斑直径为1.0mm,扫描间距为0.3mm。

力学性能测试发现骨支架的压缩强度为51.26mpa,在模拟体液中浸泡一个月后的质量损失达到20.13%。

对比例1

和实施例1相比,区别主要在于,未添加mg,具体操作如下:

利用电子天平分别称取颗粒尺寸为4μm,熔点为180℃,平均分子量为10kda的pla粉末100g;

将所得复合粉末置于充有氩气气氛保护的激光3d打印系统中制备骨支架,主要工艺参数为:扫描速度为200mm/min,激光功率为3w,光斑直径为1.0mm,扫描间距为0.3mm。

力学性能测试发现骨支架的压缩强度为20.78mpa,在模拟体液中浸泡一个月后的质量损失达到2.46%。

实施例2

和实施例1相比,区别主要在于,提高镁的含量,具体如下:

利用电子天平分别称取颗粒尺寸为4μm,熔点为180℃,平均分子量为10kda的pla粉末80g;颗粒尺寸为5μm,松散密度为0.6g/cucm的mg粉末20g。将两种粉末置入装有20ml酒精的烧杯中,经磁力搅拌和超声分散混合均匀,其中,磁力搅拌时间为30min,磁力搅拌速度为500r/min,超声分散时间为30min,超声分散温度为40℃,干燥温度为40℃,保温时间为12h;

将所得复合粉末置于充有氩气气氛保护的激光3d打印系统中制备骨支架,主要工艺参数为:扫描速度为200mm/min,激光功率为3w,光斑直径为1.0mm,扫描间距为0.3mm。

力学性能测试发现骨支架的压缩强度为42.05mpa,在模拟体液中浸泡一个月后的质量损失达到29.76%,虽然降解速率相比于mg含量为10%的支架降解速率加快,但未呈线性增加,且力学性能却由于mg含量过多产生团聚反而降低。

实施例3

和实施例1相比,区别主要在于,镁的含量为5wt%。力学性能测试发现骨支架的压缩强度为31.56mpa,在模拟体液中浸泡一个月后的质量损失达到18.25%。

实施例4

和实施例1相比,区别主要在于,镁的含量为15wt%。力学性能测试发现骨支架的压缩强度为38.16mpa,在模拟体液中浸泡一个月后的质量损失达到45.82%。

对比例2

和实施例1相比,区别主要在于,镁的含量为2wt%(小于5%)。力学性能测试发现骨支架的压缩强度为16.42mpa,在模拟体液中浸泡一个月后的质量损失达到8.26%。

实施例5

(mg含量最优,能量密度较低时)

利用电子天平分别称取颗粒尺寸为4μm,熔点为180℃,平均分子量为10kda的pla粉末90g;颗粒尺寸为5μm,松散密度为0.6g/cucm的mg粉末10g。将两种粉末置入装有20ml酒精的烧杯中,经磁力搅拌和超声分散混合均匀,其中,磁力搅拌时间为30min,磁力搅拌速度为500r/min,超声分散时间为30min,超声分散温度为40℃,干燥温度为40℃,保温时间为12h;

将所得复合粉末置于充有氩气气氛保护的激光3d打印系统中制备骨支架,主要工艺参数为:扫描速度为300mm/min,激光功率为2w,光斑直径为1.0mm,扫描间距为0.3mm。

力学性能测试发现骨支架的压缩强度为34.21mpa,在模拟体液中浸泡一个月后的质量损失达到31.89%。

实施例6(mg含量最优,能量密度较高时)

利用电子天平分别称取颗粒尺寸为4μm,熔点为180℃,平均分子量为10kda的pla粉末90g;颗粒尺寸为5μm,松散密度为0.6g/cucm的mg粉末10g。将两种粉末置入装有20ml酒精的烧杯中,经磁力搅拌和超声分散混合均匀,其中,磁力搅拌时间为30min,磁力搅拌速度为500r/min,超声分散时间为30min,超声分散温度为40℃,干燥温度为40℃,保温时间为12h;

将所得复合粉末置于充有氩气气氛保护的激光3d打印系统中制备骨支架,主要工艺参数为:扫描速度为150mm/min,激光功率为4w,光斑直径为1.0mm,扫描间距为0.3mm。

力学性能测试发现骨支架的压缩强度为42.51mpa,在模拟体液中浸泡一个月后的质量损失达到16.72%。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1