用于受试者监测的系统和方法与流程

文档序号:23098933发布日期:2020-11-27 13:03阅读:112来源:国知局
用于受试者监测的系统和方法与流程
交叉引用本申请要求于2018年2月21日提交的美国临时专利申请no.62/633,450和于2018年9月4日提交的美国临时专利申请no.62/726,873的权益,每一项美国临时专利申请均通过引用整体并入本文。
背景技术
:患者监测可能需要收集和分析一段时间内的生命体征信息,以检测患者发生或复发疾病或病症的临床体征。然而,在临床环境(例如,医院)之外进行患者监测可能会对无创收集生命体征信息和准确预测不良健康状况(如疾病或病症的恶化或发生或复发)的发生或复发带来挑战。技术实现要素:脓毒症(sepsis)是美国医院死亡率的主要原因之一,估计每年有170万病例,其中27万例死亡。脓毒症通常可以指“宿主对感染的反应失调”。以前,脓毒症被定义为存在感染和全身炎症性反应,其中脓毒性休克是存在脓毒症和器官功能障碍。此外,脓毒症患者的入院费用随病情的严重程度增加而增加,无器官功能障碍、严重脓毒症和脓毒性休克的脓毒症病例的入院费用分别约为16,000美元,25,000美元和38,000美元。虽然脓毒症的问题在住院病人和重症监护室中是巨大的,但脓毒症的开始通常在入院前就已经出现。例如,约80%的脓毒症病例是在入院时出现的。因此,需要在门诊患者中检测脓毒症。此外,脓毒症在某些疾病状态下是特别重要的问题。患有脓毒症的癌症患者的相对风险是非癌症患者的近4倍,而在髓系白血病患者中则高达65倍。尽管脓毒症的影响在急性环境中的死亡风险的高度增加中最为明显,但脓毒症也可以对长期结果产生显著影响。本文中认识到需要通过连续收集和分析生命体征信息来进行患者监测的系统和方法。受试者(患者)的生命体征信息(例如,心率和/或血压)的这种分析在一段时间内可以由可穿戴的监测装置(例如,在受试者的家中,而不是临床环境,如医院中)执行,以预测受试者出现不良健康状况(例如,患者状态恶化、疾病或病症的发生或复发(例如,脓毒症)或并发症发生的可能性。本公开内容提供了系统和方法,其可以有利地在一段时间内收集和分析生命体征信息,以准确且非侵入性地预测受试者出现不良健康状况(例如,患者状态恶化、疾病或病症(例如,脓毒症)的发生或复发或并发症发生)的可能性。此类系统和方法可以允许对具有不良健康状况(如恶化或疾病或病症)的高风险的患者在临床环境外准确监测恶化、发生或复发。在一些实施方式中,该系统和方法可以处理健康数据,包括收集的生命体征信息或其他临床健康数据(例如,通过血液测试、成像等获得)。在一个方面,本公开内容提供了一种用于监测受试者的系统,所述系统包括:一个或多个传感器,该一个或多个传感器包括心电图(ecg)传感器,所述一个或多个传感器被配置为在一时间段内获取包括所述受试者的多个生命体征测量值的健康数据;以及移动电子装置,该移动电子装置包括:电子显示器;无线收发器;以及可操作地耦合到所述电子显示器和所述无线收发器的一个或多个计算机处理器,其中一个或多个计算机处理器被配置为(i)通过所述无线收发器从所述一个或多个传感器接收所述健康数据,(ii)使用训练后的算法处理所述健康数据,从而以至少约80%的灵敏度生成指示所述受试者的健康状况在所述时间段内进展或消退的输出,以及(iii)在所述电子显示器上提供所述输出以向所述受试者显示。在一些实施方式中,所述ecg传感器包括一个或多个ecg电极。在一些实施方式中,所述ecg传感器包括两个或更多个ecg电极。在一些实施方式中,所述ecg传感器包括不超过三个ecg电极。在一些实施方式中,所述多个生命体征测量值包括选自心率、心率变异性、血压(例如,收缩压和舒张压)、呼吸频率、血氧浓度(spo2)、呼吸气体中的二氧化碳浓度、激素水平、汗液分析、血糖、体温、阻抗(例如,生物阻抗)、电导率、电容、电阻率、肌电图、皮肤电反应、神经信号(例如,脑电图)、免疫学标记以及其他生理测量值中的一个或多个测量值。在一些实施方式中,所述多个生命体征测量值包括心率或心率变异性。在一些实施方式中,所述多个生命体征测量值包括血压(例如,收缩压和舒张压)。在一些实施方式中,所述无线收发器包括蓝牙收发器。在一些实施方式中,所述无线收发器包括蜂窝无线电收发器(例如,3g、4g、lte或5g)。在一些实施方式中,所述一个或多个计算机处理器进一步被配置为将所述获取的健康数据存储在数据库中。在一些实施方式中,所述健康状况是脓毒症。在一些实施方式中,所述一个或多个计算机处理器进一步被配置为至少基于所述输出在电子显示器上呈现警报。在一些实施方式中,所述一个或多个计算机处理器进一步被配置为至少基于所述输出,通过网络向所述受试者的卫生保健提供者传输警报。在一些实施方式中,所述训练后的算法包括基于机器学习的分类器,其被配置为处理所述健康数据,以生成指示所述受试者中所述健康状况的所述进展或消退的所述输出。在一些实施方式中,所述基于机器学习的分类器选自支持向量机(svm)、朴素贝叶斯分类、随机森林、神经网络、深度神经网络(dnn)、递归神经网络(rnn)、深度rnn、长短期记忆(lstm)递归神经网络(rnn)和门控递归单元(gru)递归神经网络(rnn)。在一些实施方式中,所述训练后的算法包括递归神经网络(rnn)。在一些实施方式中,所述受试者进行了手术。在一些实施方式中,所述手术是外科手术,并且监测所述受试者的外科手术后并发症。在一些实施方式中,所述受试者接受了包括骨髓移植或主动化疗的治疗。在一些实施方式中,监测所述受试者的治疗后并发症。在一些实施方式中,所述一个或多个计算机处理器被配置为使用所述训练后的算法来处理所述健康数据,从而以少约75%的灵敏度产生指示所述受试者的所述健康状况在所述时间段内的所述进展或消退的所述输出,其中所述时间段包括在所述健康状况的所述出现前约2小时、约4小时、约6小时、约8小时或约10小时开始,并在所述健康状况的所述出现(onset)时结束的窗口。在一些实施方式中,所述时间段包括在所述健康状况的所述出现前约4小时开始,并在所述健康状况的所述出现前约2小时结束的窗口。在一些实施方式中,所述时间段包括在所述健康状况的所述出现前约6小时开始,并在所述健康状况的所述出现前约4小时结束的窗口。在一些实施方式中,所述时间段包括在所述健康状况的所述出现前约8小时开始,并在所述健康状况的所述出现前约6小时结束的窗口。在一些实施方式中,所述时间段包括在所述健康状况的所述出现前约1小时、约2小时、约3小时、约4小时、约5小时、约6小时、约7小时、约8小时、约10小时、约12小时、约14小时、约16小时、约18小时、约20小时、约22小时或约24小时的窗口。例如,对于约5小时的窗口,所述时间段可以是从所述健康状况的所述出现前约5小时到所述健康状况的所述出现时,从所述健康状况的所述出现前约7小时到所述健康状况的所述出现前约2小时,从所述健康状况的所述出现前约9小时到所述健康状况的所述出现前约4小时,从所述健康状况的所述出现前约11小时到所述健康状况的所述出现前约6小时等。在一些实施方式中,所述一个或多个计算机处理器被配置为使用所述训练后的算法来处理所述健康数据,从而以至少约75%的灵敏度产生指示所述受试者的所述健康状况在所述时间段内的所述进展或消退的所述输出为,其中所述时间段包括在所述健康状况的所述出现前约10小时开始,并在所述健康状况的所述出现前约8小时结束的窗口。在一些实施方式中,所述一个或多个计算机处理器被配置为使用所述训练后的算法来处理所述健康数据,从而以至少约40%的特异性产生指示所述受试者的所述健康状况在所述时间段内的所述进展或消退的所述输出为。在一些实施方式中,所述特异性为至少约50%。在另一方面,本公开内容提供了一种用于监测受试者的方法,包括:(a)使用所述受试者的移动电子装置的无线收发器从一个或多个传感器接收健康数据,其中一个或多个传感器包括心电图(ecg)传感器,所述健康数据包括在一时间段内所述受试者的多个生命体征测量值;(b)使用所述移动电子装置的一个或多个编程的计算机处理器来使用训练过的算法处理所述健康数据,从而以至少约80%的灵敏度生成指示所述受试者的健康状况在所述时间段内进展或消退的输出;以及(c)在所述移动电子装置的电子显示器上呈现所述输出以用于显示。在一些实施方式中,所述ecg传感器包括一个或多个ecg电极。在一些实施方式中,所述ecg传感器包括两个或更多个ecg电极。在一些实施方式中,所述ecg传感器包括不超过三个ecg电极。在一些实施方式中,所述多个生命体征测量值包括选自心率、心率变异性、血压(例如,收缩压和舒张压)、呼吸频率、血氧浓度(spo2)、呼吸气体中的二氧化碳浓度、激素水平、汗液分析、血糖、体温、阻抗(例如,生物阻抗)、电导率、电容、电阻率、肌电图、皮肤电反应、神经信号(例如,脑电图)、免疫学标记以及其他生理测量值中的一个或多个测量值。在一些实施方式中,所述多个生命体征测量值包括心率或心率变异性。在一些实施方式中,所述多个生命体征测量值包括血压(例如,收缩压和舒张压)。在一些实施方式中,所述无线收发器包括蓝牙收发器。在一些实施方式中,所述无线收发器包括蜂窝无线电收发器(例如,3g、4g、lte或5g)。在一些实施方式中,所述处理器进一步被配置为将所述获取的健康数据存储在数据库中。在一些实施方式中,所述健康状况是脓毒症。在一些实施方式中,所述方法还包括至少基于所述输出在所述电子显示器上呈现警报。在一些实施方式中,所述方法还包括至少基于所述输出,通过网络向所述受试者的卫生保健提供者传输警报。在一些实施方式中,处理所述健康数据包括使用基于机器学习的分类器来生成指示所述受试者中所述健康状况的所述进展或消退的所述输出。在一些实施方式中,所述基于机器学习的分类器选自支持向量机(svm)、朴素贝叶斯分类、随机森林、神经网络、深度神经网络(dnn)、递归神经网络(rnn)、深度rnn、长短期记忆(lstm)递归神经网络(rnn)和门控递归单元(gru)递归神经网络(rnn)。在一些实施方式中,所述训练后的算法包括递归神经网络(rnn)。在一些实施方式中,所述受试者进行了手术。在一些实施方式中,所述手术是外科手术,并且监测所述受试者的外科手术后并发症。在一些实施方式中,所述受试者接受了包括骨髓移植或主动化疗的治疗。在一些实施方式中,监测所述受试者的治疗后并发症。在一些实施方式中,(b)包括使用所述训练后的算法来处理所述健康数据,从而以至少约75%的灵敏度产生指示所述受试者的所述健康状况在所述时间段内的所述进展或消退的所述输出,其中所述时间段包括在所述健康状况的所述出现前约2小时、约4小时、约6小时、约8小时或约10小时开始,并在所述健康状况的所述出现时结束的窗口。在一些实施方式中,所述时间段包括在所述健康状况的所述出现前约4小时开始,并在所述健康状况的所述出现前约2小时结束的窗口。在一些实施方式中,所述时间段包括在所述健康状况的所述出现前约6小时开始,并在所述健康状况的所述出现前约4小时结束的窗口。在一些实施方式中,所述时间段包括在所述健康状况的所述出现前约8小时开始,并在所述健康状况的所述出现前约6小时结束的窗口。在一些实施方式中,所述时间段包括在所述健康状况的所述出现前约1小时、约2小时、约3小时、约4小时、约5小时、约6小时、约7小时、约8小时、约10小时、约12小时、约14小时、约16小时、约18小时、约20小时、约22小时或约24小时的窗口。例如,对于约5小时的窗口,所述时间段可以是从所述健康状况的所述出现前约5小时到所述健康状况的所述出现时,从所述健康状况的所述出现前约7小时到所述健康状况的所述出现前约2小时,从所述健康状况的所述出现前约9小时到所述健康状况的所述出现前约4小时,从所述健康状况的所述出现前约11小时到所述健康状况的所述出现前约6小时等。在一些实施方式中,(b)包括使用所述训练后的算法来处理所述健康数据,从而以至少约75%的灵敏度产生指示所述受试者的所述健康状况在所述时间段内的所述进展或消退的所述输出,其中所述时间段包括在所述健康状况的所述出现前约10小时开始,并在所述健康状况的所述出现时结束的窗口。在一些实施方式中,(b)包括使用所述训练后的算法来处理所述健康数据,从而以至少约40%的特异性产生指示所述受试者的所述健康状况在所述时间段内的所述进展或消退的所述输出。在一些实施方式中,所述特异性为至少约50%。在一些实施方式中,提供了一种用于监测受试者的系统,包括:所述系统;数字处理装置,该数字处理装置包括:处理器,被配置为执行可执行指令的操作系统,存储器以及包括可由所述数字处理装置执行以创建应用程序的指令的计算机程序,所述应用程序分析所获取的健康数据,从而以至少约80%的灵敏度产生指示所述受试者的健康状况在一时间段内的进展或消退的输出,所述应用程序包括:软件模块,其将训练过的算法应用于所获取的健康数据,从而以至少约75%的灵敏度产生指示所述受试者的所述健康状况在一时间段内的进展或消退的输出为。在一些实施方式中,所述训练后的算法包括基于机器学习的分类器,其被配置为处理所述健康数据,以生成指示所述受试者中所述健康状况的所述进展或消退的所述输出。在一些实施方式中,所述健康状况是脓毒症。在另一方面,本公开内容提供了一种用于监测受试者的系统,包括:与用户的移动电子装置进行网络通信的通信接口,其中,所述通信接口从所述移动电子装置接收使用一个或多个传感器从受试者收集的健康数据,其中一个或多个传感器包括心电图(ecg)传感器,其中所述健康数据包括在一时间段内所述受试者的多个生命体征测量值;可操作地耦合到所述通信接口的一个或多个计算机处理器,其中所述一个或多个计算机处理器被单独或共同编程为(i)从所述通信接口接收所述健康数据,(ii)使用训练过的算法分析所述健康数据,从而以至少约75%的灵敏度产生指示所述受试者的健康状况在所述时间段内的进展或消退的输出,以及(iii)通过所述网络将所述输出导送到所述移动电子装置。在一些实施方式中,所述训练后的算法包括基于机器学习的分类器,其被配置为处理所述健康数据,以生成指示所述受试者中所述健康状况的所述进展或消退的所述输出。在一些实施方式中,所述健康状况是脓毒症。在另一方面,本公开内容提供了一种用于监测受试者脓毒症的出现或进展的系统,包括:一个或多个传感器,所述一个或多个传感器被配置为获取包括在一时间段内所述受试者的多个生命体征测量值的健康数据;无线收发器;以及一个或多个计算机处理器,该一个或多个计算机处理器被配置为(i)通过所述无线收发器从所述一个或多个传感器接收所述健康数据,以及(ii)使用训练后的算法处理所述健康数据,从而以至少约75%的灵敏度生成指示所述受试者中脓毒症的所述出现或进展的输出。在一些实施方式中,所述一个或多个计算机处理器是与所述一个或多个传感器分离的电子装置的一部分。在一些实施方式中,所述电子装置是移动电子装置。在另一方面,本公开内容提供了一种用于监测受试者脓毒症的出现或进展的方法,包括(a)使用一个或多个传感器来获取包括在一时间段内所述受试者的多个生命体征测量值的健康数据;(b)使用与所述一个或多个传感器进行无线通信的电子装置从所述一个或多个传感器接收所述健康数据;以及(c)使用训练后的算法处理所述健康数据,从而以至少约75%的灵敏度生成指示所述受试者中脓毒症的所述出现或进展的输出。在一些实施方式中,所述一个或多个传感器与所述电子装置分离。在一些实施方式中,所述电子装置是移动电子装置。在一些实施方式中,所述健康数据由所述电子装置处理。在一些实施方式中,所述健康数据由与所述电子装置分离的计算机系统处理。在一些实施方式中,所述计算机系统是与所述电子装置进行网络通信的分布式计算机系统。本公开内容的另一方面提供了一种包括机器可执行代码的非暂时性计算机可读介质,所述可执行代码在由一个或多个计算机处理器执行时,实现上述或本文其他地方的任何所述方法。本公开内容的另一方面提供了一种包括一个或多个计算机处理器和与其耦合的计算机存储器的系统。所述计算机存储器包括机器可执行代码,所述可执行代码在由所述一个或多个计算机处理器执行时,实现上述或本文其他地方的任何所述方法。通过以下详细描述,本公开内容的其他方面和优点对于本领域技术人员将变得显而易见,其中仅示出和描述了本公开内容的说明性实施方式。如将认识到,本公开内容能够具有其他和不同的实施方式,并且其若干细节能够在各种明显的方面进行修改,所有这些都不脱离本公开内容。因此,附图和描述本质上应被认为是说明性的,而非限制性的。援引并入本说明书中所提到的所有出版物、专利和专利申请均通过引用并入本文,其程度如同特别地且单独地指出每个单独的出版物、专利或专利申请通过引用而并入。在通过引用并入的出版物和专利或专利申请与说明书中包含的公开内容相抵触的程度上,本说明书旨在取代和/或优先于任何此类矛盾的材料。附图说明在所附权利要求书中具体阐述了本公开内容的新颖性特征。通过参考对在其中利用到本公开内容的原理的说明性实施方式加以阐述的以下详细描述和附图(本文中也称为“图”),将会获得对本公开内容的特征和优点的更好的理解,在附图中:图1示出了系统架构的概述。图2示出了系统架构中的数据流示例。图3是装置外壳外部的技术图示。图4是装置外壳内部组件的技术图示。图5示出了装置的电子系统图的示例。图6示出了三根ecg电极电缆,其可以对应于到差分放大器和提供噪声消除的参考右腿驱动电极中的两个输入。图7示出了应用图形用户界面(gui)的示例模型。图8示出了被编程或以其他方式配置,以实现本文提供的方法的计算机系统。图9示出了包括长短期记忆(lstm)递归神经网络(rnn)的算法架构的示例。图10示出了定义脓毒症出现的示例,从而当在规定的时间段内进行抗生素施用和细菌培养时,认为疑似存在脓毒症感染。图11示出了所选群组的年龄分布直方图。图12示出了用于从归一化的生命体征预测脓毒症的机器学习算法,包括时间提取引擎、预测引擎和预测层。图13a示出了相对于时间的精确率召回率(pr)曲线下面积。图13b示出了相对于时间的接受者操作特性(roc)曲线下面积。图13c-图13d分别示出了对于脓毒症预测算法在不同时间绘制的精确率召回率(pr)曲线和接受者操作特性(roc)曲线与脓毒症出现时由sofa评分做出的预测的对比。请注意,脓毒症预测算法生成的roc与现有测量的sofa和mews评分相当。具体实施方式尽管本发明的各种实施方式在本文中已经示出和描述,但对于本领域技术人员显而易见的是,这些实施方式仅以示例的方式提供。在不脱离本发明的情况下,本领域技术人员可以想到许多变化、改变和替换。应理解,可以采用本文所述的本发明的实施方式的各种替代方案。本说明书全文使用的各种术语可以按以下方式阅读和理解,除非上下文另有指示:全文使用的“或”是包括性的,像写为“和/或”;全文使用的单数冠词和代词包括其复数形式,反之亦然;类似地,性别代词包括其对应代词,因此代词不应被理解为将本文所述的任何内容限制为单一性别的使用、实现、表现等;与其他实施方式相比,“示例性”应被理解为“说明性”或“示范性”,并且不一定被理解为“优选的”。术语的进一步定义可以在本文中阐述;如从阅读本说明书将理解,这些可以适用于那些术语的先前和后续示例。每当术语“至少”、“大于”或“大于或等于”在一系列两个或更多个数值中的第一个数值之前时,术语“至少”、“大于”或“大于或等于”适用于该系列数值中的每个数值。例如,大于或等于1、2或3与大于或等于1,大于或等于2或大于或等于3等同。每当术语“不大于”、“小于”或“小于或等于”在一系列两个或更多个数值中的第一数值之前时,术语“不大于”、“小于”或“小于或等于”适用于该系列数值中的每个数值。例如,小于或等于3、2或1与小于或等于3,小于或等于2或小于或等于1等同。如本文所用,术语“受试者”通常是指人,如患者。受试者可以是患有疾病或病症的人(例如,患者),或者对疾病或病症进行治疗的人,或者正在被监测疾病或病症复发的人,或者是疑似患有该疾病或病症的人,或者未患有或未疑似患有该疾病或病症的人。该疾病或病症可以是传染病、免疫病症或疾病、癌症、遗传疾病、退行性疾病、生活方式疾病、损伤、罕见疾病或与年龄有关的疾病。该传染病可能是由细菌、病毒、真菌和/或寄生虫引起的。例如,该疾病或病症可以包括脓毒症、房颤、中风、心脏病和其他可预防的门诊疾病。例如,该疾病或病症可以包括受试者先前治疗过的疾病或病症的恶化或复发。患者监测可能需要在一段时间内收集和分析生命体征信息,这些信息可以足以检测患者发生或复发疾病或病症的临床相关体征。例如,在医院或其他临床环境接受过疾病或病症治疗的患者可能需要监测该疾病或病症的发生或复发(或与该疾病或病症的所施用的治疗相关的并发症的发生)。例如,对接受手术(例如,外科手术,如器官移植)的患者可能需要监测脓毒症或与该手术有关的其他术后并发症(例如,外科手术后并发症)的发生。患者监测可以包括检测引起脓毒症的状况(例如,细菌或病毒)。患者监测可以检测并发症,如中风、肺炎、心力衰竭、心肌梗塞(心脏病)、慢性阻塞性肺疾病(copd)、全身恶化、流感、房颤以及惊恐或焦虑发病。这种患者监测可以在医院或其他临床环境中使用专用设备如医疗监测器(例如,心脏监测、呼吸监测、神经监测、血糖监测、血流动力学监测和体温监测))测量和/或收集生命体征信息(例如,心率、血压、呼吸频率和脉搏氧饱和度)而进行。然而,在临床环境(例如,医院)之外的患者监测可能对无创收集生命体征信息和准确预测疾病或病症的发生或复发带来挑战。本文中认识到需要通过连续收集和分析生命体征信息来进行患者监测的系统和方法。受试者(患者)的生命体征信息(例如,心率和/或血压)的这种分析可以在一段时间内由可穿戴的监测装置(例如,在受试者的家中,而不是临床环境,如医院中)执行,以预测受试者患有疾病或病症(例如,脓毒症)或与疾病或病症的所施用治疗有关的并发症的可能性。本公开内容提供了系统和方法,其可以有利地在一段时间内收集和分析来自受试者的生命体征信息,以准确且非侵入性地预测受试者患有疾病或病症(例如,脓毒症)或与疾病或病症的所施用治疗有关的并发症的可能性。这些系统和方法可以允许对具有患疾病或病症的高风险的患者在临床环境之外准确监测复发,从而提高检测疾病或并发症的发生或复发的准确性;减少临床保健费用;并改善患者的生活质量。例如,这些系统和方法可以产生对疾病、病症或并发症的发生或复发的可能性的准确检测或预测,该准确检测或预测使得医生(或其他卫生保健工作者)可以在临床上采取行动来决定是否将患者从医院出院以在家庭环境中进行监测,从而降低临床卫生保健成本。作为另一个示例,这些系统和方法可以实现对家庭患者的监测,从而与保持入院或经常拜访临床护理站点相比,提高了患者的生活质量。患者监测(例如,在家中)的目标可以包括防止出院患者再次入院。收集和传输的生命体征信息可以通过如下被汇总:例如,通过分批并上传到计算机服务器(例如,安全的云数据库),在计算机服务器中人工智能算法可以连续或实时分析数据。如果检测到或预测到不良健康状况(例如,患者状态恶化、疾病或病症的发生或复发,或并发症的发生),则计算机服务器可以将实时警报发送给卫生保健提供者(例如,全科医生和/或主治医生)。卫生保健提供者随后可以进行后续护理,如联系患者并要求患者返回医院进行进一步治疗或临床检查(例如,监测、诊断或预后)。替代地或组合地,卫生保健提供者可以基于实时警报规定要施用于患者的治疗或临床过程。监测系统概述监测系统可以用于在一段时间内收集和分析来自受试者的生命体征信息,以预测受试者患有疾病、病症或与疾病或病症的所施用治疗相关的并发症的可能性。监测系统可以包括可穿戴监测装置。例如,可穿戴监测装置可以附接到受试者的胸部,收集生命体征信息并将其传输到受试者的智能电话或其他移动装置。监测系统可以在医院或其他临床环境或受试者的家庭环境中使用。监测系统可以包括可穿戴监测装置(例如,电子装置或监测贴片)、移动电话应用程序、数据库以及基于人工智能的分析引擎,以通过检测或预测用户的不良健康状况(例如,患者状态的恶化、疾病或病症的发生或复发,或并发症的发生)来防止用户(例如,慢性病患者)入院和再次入院。可穿戴监测装置(例如,电子装置或监测贴片)可以被配置为测量、收集和/或记录健康数据,如包括来自用户身体(例如,躯干)的生理信号(例如,心率、呼吸频率,以及心率变异性)的生命体征数据。可穿戴监测装置可以进一步被配置为将这些生命体征数据(例如,无线地)传输到用户的移动装置(例如,智能电话、平板计算机、笔记本计算机、智能手表或智能眼镜)。生命体征数据的示例可以包括心率、心率变异性、血压、呼吸频率、血氧浓度(例如,通过脉搏血氧测定法)、呼吸气体中的二氧化碳浓度、激素水平、汗液分析、血糖、体温、阻抗(例如,生物阻抗)、电导率、电容、电阻率、肌电图、皮肤电反应、神经信号(例如,脑电图)和免疫学标记。数据可以被实时测量、收集和/或记录(例如,通过使用合适的生物传感器和/或机械传感器),并且可以连续传输到移动装置(例如,通过无线收发器,如蓝牙收发器或蜂窝无线电收发器(例如,3g、4g、lte或5g))。在一些实施方式中,可穿戴监测装置可以使用蜂窝无线电收发器(例如,3g、4g、lte或5g)直接传输数据(例如,到计算机、服务器或分布式网络)。装置可以用于基于例如,通过在一段时间内检测或预测受试者的不良健康状况(例如,患者状态的恶化、疾病或病症的发生或复发,或并发症的发生)所获取的健康数据在一段时间内监测受试者(例如,患者)。移动应用程序可以被配置为允许用户与可穿戴监测装置配对、控制可穿戴监测装置和查看来自可穿戴监测装置的数据。例如,移动应用程序可以被配置为允许用户使用移动装置(例如,智能电话、平板计算机、笔记本计算机、智能手表或智能眼镜)与可穿戴监测装置(例如,通过无线收发器,如蓝牙收发器或蜂窝无线电收发器(例如,3g、4g、lte或5g))配对,用于传输数据和/或控制信号。在一些实施方式中,可穿戴监测装置可以使用蜂窝无线电收发器(例如,3g、4g、lte或5g)直接传输数据(例如,到计算机、服务器或分布式网络)。移动应用程序可以包括图形用户界面(gui),以允许用户查看基于其测量、收集或记录的生命体征数据(例如,当前测量的数据,先前收集或记录的数据或其组合)所生成的趋势、统计数据和/或警报。例如,gui可以允许用户在一段时间内(例如,基于每小时、基于每天、基于每周或基于每月)查看一组生命体征数据的历史或平均趋势。移动应用程序可以进一步与基于web的软件应用程序通信,该基于web的软件应用程序可以被配置为存储和分析记录的生命体征数据。例如,记录的生命体征数据可以存储在数据库(例如,计算机服务器或云网络)中,以进行实时或将来的处理和分析。卫生保健提供者,如患者(例如,用户)的医生和治疗团队,可以访问患者警报、数据(例如,生命体征数据)和/或从这些数据生成的预测或评估。这种访问可以通过基于web的控制面板(例如,gui)提供。基于web的控制面板可以被配置为显示,例如,患者指标、最近的警报和/或健康结果的预测(例如,恶化和/或脓毒症的比率或可能性)。使用基于web的控制面板,卫生保健提供者可以至少部分地基于这些显示的警报、数据和/或从这些数据生成的预测或评估来确定临床决策或结果。例如,医生可以至少部分基于患者指标或在一段时间内检测或预测受试者体内不良健康状况(例如,患者状态的恶化、疾病或病症的发生或复发,或并发症的发生)的警报,指示患者在医院或其他临床站点进行一项或多项临床测试。当满足某个预定标准(例如,患者状态恶化、疾病或病症的发生或复发或诸如脓毒症等并发症发生的可能性的最小阈值)时,监测系统可以生成此类警报并向卫生保健提供者发送此类警报。这种最小阈值可以是,例如,至少约5%的可能性,至少约10%的可能性,至少约20%的可能性,至少约25%的可能性,至少约30的可能性,至少约35%的可能性,至少约40%的可能性,至少约45%的可能性,至少约50%的可能性,至少约55%的可能性,至少约60%的可能性,至少约65%的可能性,至少约70%的可能性,至少约75%的可能性,至少约80%的可能性,至少约85%的可能性,至少约90%的可能性,至少约95%的可能性,至少约96%的可能性,至少约97%的可能性,至少约98%的可能性或至少约99%的可能性。作为另一个示例,医生可以至少部分地基于患者指标或在一段时间内检测或预测受试者体内不良健康状况(例如,脓毒症,患者状态的恶化、疾病或病症的发生或复发,或并发症的发生)的警报,开出治疗有效剂量的治疗物(例如,药物)、制定临床过程或进一步的临床测试。例如,医生可以响应于患者炎症的指示开出抗炎治疗剂,或者响应于患者疼痛的指示开出镇痛治疗剂。可以确定治疗有效剂量的治疗剂(例如,药物)、临床过程或进一步的临床测试的处方,而无需亲自与开处方医生进行临床预约。医生可以开出抗微生物治疗(例如,以治疗患者的脓毒症),如口服广谱抗生素(例如,环丙沙星、阿莫西林、诺氟沙星、氨基糖苷、碳青霉烯、阿莫西林克拉维酸钾、其他头孢菌素等)。口服广谱抗生素可以靶向革兰氏阴性细菌,因为它们响应于治疗有更高的死亡率。在一些情况下,口服抗菌药物治疗可能无效或效果不佳,并且患者可以在医院或其他临床环境中接受静脉注射(iv)抗生素。在图1中示出了系统架构的概述。该系统可以包括可穿戴监测装置、移动装置应用程序和网络数据库。该系统可以包括生命体征装置(例如,用于测量患者健康数据的可穿戴监测装置)、移动装置应用程序的移动界面(例如,图形用户界面,或gui)(例如,以使得用户能够控制健康数据的收集、测量、记录、存储和/或分析,以预测健康结果),以及计算机硬件和/或软件,用于存储和/或分析收集到的健康数据(例如,生命体征信息)。监测系统的移动装置应用程序可以利用或访问人工智能技术的外部能力来开发用于患者恶化和疾病状态的特征。基于web的软件可以进一步使用这些特征来准确预测恶化(例如,比传统的临床护理早几小时到几天)。使用这种预测能力,卫生保健提供者(例如,医生)可能能够做出明智的、准确的基于风险的决策,从而使更多的风险患者可以从家中接受治疗。移动装置应用程序可以分析从受试者(患者)获取的健康数据,以产生受试者存在不良健康状况(例如,患者状态的恶化、疾病或病症的发生或复发,或并发症的发生)的可能性。例如,移动装置应用程序可以将训练后的(例如,预测)算法应用于所获取的健康数据,以生成受试者存在不良健康状况(例如,患者状态的恶化、疾病或病症的发生或复发,或并发症的发生)的可能性。训练后的算法可以包括基于人工智能的分类器,如基于机器学习的分类器,其被配置为处理所获取的健康数据,以生成受试者患有疾病或病症的可能性。机器学习分类器可以使用来自一个或多个患者群组的临床数据集来训练,例如,使用患者的临床健康数据(例如,生命体征数据)作为输入,并使用患者的已知临床健康结果(例如,疾病或病症的发生或复发)作为机器学习分类器的输出。机器学习分类器可以包括一种或多种机器学习算法。机器学习算法的示例可以包括支持向量机(svm)、朴素贝叶斯分类、随机森林、神经网络(如深度神经网络(dnn)、递归神经网络(rnn)、深度rnn、长短期记忆(lstm)递归神经网络(rnn)或门控递归单元(gru)递归神经网络(rnn))、深度学习或其他用于分类和回归的监督学习算法或无监督学习算法。机器学习分类器可以使用对应于患者数据的一个或多个训练数据集进行训练。训练数据集可以从,例如,具有共同临床特点(特征)和临床结果(标签)的一个或多个患者群组中产生。训练数据集可以包括一组特征和与这些特征相对应的标签。特征可以与算法输入相对应,该算法输入包括从电子病历(emr)和医学观察得出的患者人口统计信息。特征可以包括临床特点,例如,生命体征测量值的某些范围或类别,如心率、心率变异性、血压(例如,收缩压和舒张压)、呼吸频率、血氧浓度(spo2)、呼吸气体中的二氧化碳浓度、激素水平、汗液分析、血糖、体温、阻抗(例如,生物阻抗)、电导率、电容、电阻率、肌电图、皮肤电反应、神经信号(例如,脑电图)、免疫学标记以及其他生理测量值。特征可以包括患者信息,如患者年龄、患者病史、其他医疗状况、当前或过去的药物,以及自上次观察以来的时间。例如,在给定时间点从给定患者收集的一组特征可以集体用作生命体征特征,其可以指示在给定时间点患者的健康状态或状况。例如,生命体征测量值的范围可以表示为连续测量值的多个不相交的连续范围,并且生命体征测量值的类别可以表示为多个不相交的测量值集(例如,{“高”,“低”}、{“高”,“正常”}、{“低”,“正常”}、{“高”,“边界高”,“正常”,“低”}等)。临床特点还可以包括指示患者健康史的临床标签,如疾病或病症的诊断、临床治疗的先前施用(例如,药物、外科手术治疗、化疗、放疗、免疫治疗等)、行为因素或其他健康状况(例如,高血压病或高血压、高血糖症或高血糖、高胆固醇血症或高胆固醇、过敏反应或其他不良反应史等)。标签可以包括临床结果,例如,患者不良健康状况(例如,患者状态的恶化、疾病或病症的发生或复发,或并发症的发生)的存在、不存在、诊断或预后。临床结果可以包括与患者不良健康状况的存在、不存在、诊断或预后相关的时间特点。例如,时间特点可以指示患者在先前的临床结果(例如,从医院出院,进行器官移植或其他外科手术,进行临床过程等)后的一定时间段内出现了不良健康状况(例如,脓毒症)。此时间段可以是,例如,约1小时、约2小时、约3小时、约4小时、约6小时、约8小时、约10小时、约12小时、约14小时、约16小时、约18小时、约20小时、约22小时、约24小时、约2天、约3天、约4天、约5天、约6天、约7天、约10天、约2周、约3周、约4周、约1个月、约2个月、约3个月、约4个月、约6个月、约8个月、约10个月、约1年或超过约1年。输入特征可以通过将数据聚集到仓中来构建,或者也可以使用所包含的自从上次观察以来的时间的独热编码来构建。输入还可以包括从先前提到的输入中得出的特征值或矢量,如在固定时间段内的单独生命体征测量之间计算出的交叉相关性,以及连续测量值之间的离散导数或有限差分。此时间段可以是,例如,约1小时、约2小时、约3小时、约4小时、约6小时、约8小时、约10小时、约12小时、约14小时、约16小时、约18小时、约20小时、约22小时、约24小时、约2天、约3天、约4天、约5天、约6天、约7天、约10天、约2周、约3周、约4周、约1个月、约2个月、约3个月、约4个月、约6个月、约8个月、约10个月、约1年或超过约1年。训练记录可以根据观察序列来构建。这种序列可以包括固定长度,以便于数据处理。例如,序列可以补零或选择为单个患者记录的独立子集。机器学习分类器算法可以处理输入特征,以生成包括一个或多个分类、一个或多个预测或其组合的输出值。例如,这种分类或预测可以包括疾病或非疾病状态的二进制分类、一组分类标签(例如,“无脓毒症”、“明显脓毒症”和“可能出现脓毒症”)之间的分类、发生特定疾病或病症(例如,脓毒症)的可能性(例如,相对可能性或可能性)、指示“感染的存在”的评分、指示患者经历的全身炎症水平的评分、患者死亡可能性的“危险因素”、对患者预期已患疾病或病症的时间的预测、以及任何数值预测的置信区间。各种机器学习技术可以被级联,使得机器学习技术的输出也可以用作机器学习分类器的后续层或子部分的输入特征。为了训练机器学习分类器模型(例如,通过确定模型的权重和相关性)以生成实时分类或预测,可以使用数据集来训练模型。这些数据集可以足够大,以生成具有统计意义的分类或预测。例如,数据集可以包括:包括生命体征观察(例如,标有icd9或icd10诊断代码的外观)的去识别数据的重症监护室(icu)数据库、、、通过远程医疗程序收集的动态生命体征观察的数据库、从农村社区收集的生命体征观察的数据库、从健身追踪器收集的生命体征观察、来自医院或其他临床环境的生命体征观察、使用fda批准的可穿戴监测装置收集的生命体征测量值、以及使用本公开内容的可穿戴监测装置收集的生命体征测量值。数据库的示例包括开源数据库,如mimic-iii(重症监护医学信息中心iii)和eicu合作研究数据库(飞利浦)。mimiciii数据库可以包括2001年至2012年期间在贝丝以色列女执事医疗中心的去识别的患者记录、生命体征测量值、实验室测试结果、程序以及处方药物。飞利浦eicu项目是重症监护远程保健项目,向重症监护室的远程护理人员提供补充信息。来自eicu合作研究数据库的数据集可以包括从生命体征测量值、患者人口统计资料以及系统内获取的药物和治疗中获得的去识别信息。与mimiciii数据库相反,eicu数据库可以含有从多个不同医院而不是单个医院收集的数据。在一些情况下,对数据集进行注释或标记。例如,为了在训练记录中识别和标记脓毒症的发病,可以使用涉及脓毒症-2或脓毒症-3定义的方法。数据集可以被划分成子集(例如,离散的或重叠的),如训练数据集、开发数据集和测试数据集。例如,数据集可以被划分为包括数据集的80%的训练数据集,包括数据集的10%的开发数据集以及包括数据集的10%的测试数据集。训练数据集可以包括数据集的约10%、约20%、约30%、约40%、约50%、约60%、约70%、约80%或约90%。开发数据集可以包括数据集的约10%、约20%、约30%、约40%、约50%、约60%、约70%、约80%或约90%。测试数据集可以包括数据集的约10%、约20%、约30%、约40%、约50%、约60%、约70%、约80%或约90%。训练集(例如,训练数据集)可以通过对与一个或多个患者群组相对应的一组数据进行随机采样来选择,以确保采样的独立性。或者,训练集(例如,训练数据集)可以通过对与一个或多个患者群组相对应的一组数据进行成比例的采样来选择,以确保采样的独立性。为了提高模型预测的准确性并减少模型的过拟合,可以对数据集进行扩充,以增加训练集中的样本数量。例如,数据扩充可以包括在训练记录中重新排列观察的顺序。为了适应具有缺失观测值的数据集,可以使用估算缺失数据的方法,如前向填充、后向填充、线性插值和多任务高斯过程。数据集可以被过滤以消除混杂因素。例如,在icu数据库中,反复发生脓毒性感染的患者可以被排除在外。机器学习分类器可以包括一个或多个神经网络,如深度神经网络(dnn)、递归神经网络(rnn)或深度rnn。递归神经网络可以包括可以是长短期记忆(lstm)单元或门控递归单元(gru)的单元。例如,如图9所示,机器学习分类器可以包括算法架构,该算法架构包括长短期记忆(lstm)递归神经网络(rnn),具有一组输入特征,如生命体征观察、患者病史和患者人口统计资料。在训练机器学习分类器期间,可以使用神经网络技术,如中途退出或正则化来防止过度拟合。当机器学习分类器生成疾病、病症或并发症的分类或预测时,可以生成警报或警告,并将其传输给卫生保健提供者,如医生、护士或医院内的患者治疗团队的其他成员。警报可以通过自动电话呼叫、短消息服务(sms)或彩信服务(mms)消息、电子邮件或控制面板内的警报传输。警报可以包括输出信息,如疾病、病症或并发症的预测,预测的疾病、病症或并发症的可能性,直到疾病、病症或病况的预期发病时的时间,可能性或时间的置信区间,或针对疾病、病症或并发症所推荐的治疗方案。如图9所示,lstm递归神经网络可以包括多个子网络,每个子网络被配置为生成不同类型的输出信息的分类或预测(例如,脓毒症/非脓毒症分类以及直到脓毒症发病时的时间)。为了验证机器学习分类器模型的性能,可以生成不同的性能指标。例如,接受者操作特性曲线(auroc)下的面积可以用于确定机器学习分类器的诊断能力。例如,机器学习分类器可以使用可调节的分类阈值,以使特异性和灵敏度是可调的,并且可以使用接受者操作特性曲线(roc)来识别对应于特异性和灵敏度的不同值的不同操作点。在一些情况下,如当数据集不够大时,可以执行交叉验证,以评估在不同训练和测试数据集上的机器学习分类器模型的鲁棒性。在一些情况下,虽然可以使用作为单个患者的观察的子集的记录数据集来训练机器学习分类器模型,但分类器模型的辨别能力的性能(例如,如使用auroc所评估的)是使用患者的整个记录来计算的。为了计算性能指标,如灵敏度、特异性、准确性、阳性预测值(ppv)、阴性预测值(npv)、auprc、auroc或类似指标,可以使用以下定义。“假阳性”可以是指其中如果被错误或过早激活的警报或警告(例如,在诸如脓毒症的疾病状态或病况的实际发病之前或没有任何发病)过早触发的结果。“真阳性”可以是指其中在正确的时间(在预定的缓冲或容差范围内)激活了警报或警告,并且患者的记录表明疾病或病况(例如,脓毒症)的结果。“假阴性”可以是其中指未激活任何警报或警告,但患者的记录表明疾病或病况(例如,脓毒症)的结果。“真阴性”可以是指其中未激活任何警报或警告,并且患者的病历未表明疾病或病况(例如,脓毒症)的结果。可以训练机器学习分类器,直到满足某些预定的准确性或性能条件为止,如具有与诊断准确性测量相对应的最小期望值。例如,诊断准确性测量可以对应于对受试者不良健康状况,如恶化或疾病或病症(例如,脓毒症)的发生可能性的预测。作为另一个示例,诊断准确性测量可以对应于对不良健康状况(如受试者先前已治疗过的疾病或病症)的恶化或复发的可能性的预测。例如,诊断准确性测量可以对应于对先前已经对感染治疗过的受试者中感染复发的可能性预测。诊断准确性测量的示例可以包括与检测或预测不良健康状况的诊断准确性相对应的灵敏度、特异性、阳性预测值(ppv)、阴性预测值(npv)、准确性、精确率召回率曲线下面积(auprc)和接受者操作特性(roc)的曲线下面积(auc)(auroc)。例如,这种预定条件可以是预测不良健康状况,如恶化或疾病或病症(例如,脓毒症的出现)的发生或复发的灵敏度,其包括,例如,至少约50%、至少约55%、至少约60%、至少约65%、至少约70%、至少约75%、至少约80%、至少约85%、至少约90%、至少约95%、至少约96%、至少约97%、至少约98%或至少约99%的值。作为另一个示例,这种预定条件可以是预测不良健康状况,如恶化或疾病或病症(例如,脓毒症的出现)的发生或复发的特异性,其包括,例如,至少约50%、至少约55%、至少约60%、至少约65%、至少约70%、至少约75%、至少约80%、至少约85%、至少约90%、至少约95%、至少约96%、至少约97%、至少约98%或至少约99%的值。作为另一个示例,这种预定条件可以是预测不良健康状况,如恶化或疾病或病症的发生或复发的阳性预测值(ppv),其包括,例如,至少约50%、至少约55%、至少约60%、至少约65%、至少约70%、至少约75%、至少约80%、至少约85%、至少约90%、至少约95%、至少约96%、至少约97%、至少约98%或至少约99%的值。作为另一个示例,这种预定条件可以是预测不良健康状况,如恶化或疾病或病症(例如,脓毒症的出现)的发生或复发的阴性预测值(npv),其包括,例如,至少约50%、至少约55%、至少约60%、至少约65%、至少约70%、至少约75%、至少约80%、至少约85%、至少约90%、至少约95%、至少约96%、至少约97%、至少约98%或至少约99%的值。作为另一示例,这种预定条件可以是预测不良健康状况,如恶化或疾病或病症(例如,脓毒症的出现)的发生或复发的接受者操作特性(roc)曲线的曲线下面积(auc)(auroc),其包括,至少约0.50、至少约0.55、至少约0.60、至少约0.65、至少约0.70、至少约0.75、至少约0.80、至少约0.85、至少约0.90、至少约0.95、至少约0.96、至少约0.97、至少约0.98或至少约0.99的值。作为另一个示例,这种预定条件可以是预测不良健康状况,如恶化或疾病或病症(例如,脓毒症的出现)的发生或复发的精确率召回率曲线下面积(auprc),其包括,至少约0.10、至少约0.15、至少约0.20、至少约0.25、至少约0.30、至少约0.35、至少约0.40、至少约0.45、至少约0.50、至少约0.55、至少约0.60、至少约0.65、至少约0.70、至少约0.75、至少约0.80、至少约0.85、至少约0.90、至少约0.95、至少约0.96、至少约0.97、至少约0.98或至少约0.99的值。在一些实施方式中,可以训练或配置训练后的分类器,从而以至少约50%、至少约55%、至少约60%、至少约65%、至少约70%、至少约75%、至少约80%、至少约85%、至少约90%、至少约95%、至少约96%、至少约97%、至少约98%或至少约99%的灵敏度预测不良健康状况,如恶化或疾病或病症(例如,脓毒症的出现))的发生或复发。在一些实施方式中,可以训练或配置训练后的分类器,从而以至少约50%、至少约55%、至少约60%、至少约65%、至少约70%、至少约75%、至少约80%、至少约85%、至少约90%、至少约95%、至少约96%、至少约97%、至少约98%或至少约99%的特异性预测不良健康状况,如恶化或疾病或病症(例如,脓毒症的出现)的发生或复发。在一些实施方式中,可以训练或配置训练后的分类器,从而以至少约50%、至少约55%、至少约60%、至少约65%、至少约70%、至少约75%、至少约80%、至少约85%、至少约90%、至少约95%、至少约96%、至少约97%,至少约98%或至少约99%的阳性预测值(ppv)预测不良健康状况,如恶化或疾病或病症(例如,脓毒症的出现)的发生或复发。在一些实施方式中,可以训练或配置训练后的分类器,从而以至少约50%、至少约55%、至少约60%、至少约65%、至少约70%、至少约75%、至少约80%、至少约85%、至少约90%、至少约95%、至少约96%、至少约97%、至少约98%或至少约99%的阴性预测值(npv)预测不良健康状况,如恶化或疾病或病症(例如,脓毒症的出现)的发生或复发。在一些实施方式中,可以训练或配置训练后的分类器,从而以至少约0.50、至少约0.55、至少约0.60、至少约0.65、至少约0.70、至少约0.75、至少约0.80、至少约0.85、至少约0.90、至少约0.95、至少约0.96、至少约0.97、至少约0.98或至少约0.99的接受者操作特性(roc)曲线的曲线下面积(auc)(auroc)预测不良健康状况,如恶化或疾病或病症(例如,脓毒症的出现)的发生或复发。在一些实施方式中,可以训练或配置训练后的分类器,从而以至少约0.10、至少约0.15、至少约0.20、至少约0.25、至少约0.30、至少约0.35、至少约0.40、至少约0.45、至少约0.50、至少约0.55、至少约0.60、至少约0.65、至少约0.70、至少约0.75、至少约0.80、至少约0.85、至少约0.90、至少约0.95、至少约0.96、至少约0.97、至少约0.98或至少约0.99的精确率召回率曲线下面积(auprc)预测不良健康状况,如恶化或疾病或病症(例如,脓毒症的出现)的发生或复发。在一些实施方式中,可以训练或配置训练后的分类器,以在不良健康状况的实际发生或复发之前的时间段内(例如,时间段包括窗口,该窗口在健康状况出现前约1小时、约2小时、约3小时、约4小时、约5小时、约6小时、约7小时、约8小时、约9小时、约10小时、约12小时、约14小时、约16小时、约18小时、约20小时、约22小时、约24小时、约36小时、约48小时、约72小时、约96小时、约120小时、约6天或约7天开始,并在健康状况出现时结束)预测不良健康状况,如恶化或疾病或病症(例如,脓毒症的出现)的发生或复发。系统架构中的数据流的示例图示在图2中示出。本文提供的系统和方法可以使用基于人工智能的方法通过收集和分析输入数据(例如,心血管特征、呼吸数据和行为因素)来进行预测分析,以产生输出数据(例如,对生命体征测量的趋势和洞察,以及对不良健康状况的预测)。对不良健康状况的预测可以包括,例如,被监测受试者患有疾病或病症(例如,脓毒症)的可能性,或者被监测受试者具有先前治疗过的疾病或病症的恶化或复发的可能性。可穿戴监测装置的设计可穿戴监测装置可以是轻质且离散的,并且可以包括电子传感器、可充电锂离子电池、电极夹和物理外壳。电极夹可以包括插入其中的粘性心电图(ecg)电极,从而使该装置可逆地附接到患者的胸部并测量来自患者皮肤的ecg信号。可穿戴监测装置可以被配置为穿戴在衣服内,并且可以被配置为可逆地附接到患者的身体,并进行操作(例如,执行ecg信号测量),而无需刺穿或破坏患者的皮肤。例如,可穿戴监测装置可以使用粘性ecg电极被可逆地附接到患者的身体(例如,躯干或胸部)。外壳的技术图示在图3和图4中示出。可穿戴监测装置可以包括物理外壳。物理外壳可以包括一个或多个刚性外壳。例如,物理外壳可以包括通过两个铰链接头连接的两个刚性外壳,使得装置与患者的胸部相吻合。两个外壳可以容纳电子器件和装置的电源(例如,可充电锂离子电池)。外壳中的一个可以包括带有电极夹的引线,该引线被配置为在附接到胸部时提供参考信号,并允许降低ecg信号的噪声。如图4所示,该装置可以包括电源按钮401、ecg夹405、传感器板410、充电电路415、电池420和充电端口425。可穿戴监测装置的物理外壳可以使用任何适合于外壳的材料,如刚性材料制造。可以针对一种或多种特征选择外壳材料,所述一种或多种特征如生物相容性(例如,非反应性、非刺激性、低变应原性以及与高压灭菌的相容性)、易于制造或加工(例如,无需使用工具或其他专用设备)、耐化学性(例如,对于碱、碳酸氢盐、燃料和溶剂)、低吸湿性、机械刚度和刚性、冲击强度和拉伸强度、耐久性和低成本。刚性材料可以是,例如,塑料聚合物、金属、纤维或其组合。或者,可穿戴监测装置的物理外壳可以使用柔性材料或刚性材料和柔性材料的组合制造。塑料聚合物材料的示例包括丙烯腈丁二烯苯乙烯(abs)、聚碳酸酯(pc)、聚苯醚(ppe)、聚苯醚和聚苯乙烯的混合物(ppe+ps)、聚对苯二甲酸丁二醇酯(pbt)、尼龙、乙酰、丙烯酸、lexantm、聚氯乙烯(pvc)、聚碳酸酯、聚醚和聚氨酯。金属材料的示例包括不锈钢、碳钢、铝、黄铜、inconeltm、镍、钛及其组合(例如,合金或层状结构)。外壳可以通过,例如,注射成型或增材制造(例如,三维印刷)来制造或形成。例如,刚性材料可以是刚性的、基于尼龙的材料(例如,duraformpa),其可以通过选择性激光烧结(sls)进行3d打印。可以使用duraformpa,因为其具有许多使其适合于医疗装置原型制作的特性。特别地,duraformpa材料的优点是易于制造而无需工具,具有良好的机械性能以及适用于生物学目的。sls3d打印是一种增材制造工艺,其可以使用激光烧结基于三维(3d)结构的粉末塑料材料。使用sls3d打印,可以一次性生产可穿戴监测装置物理外壳的定制设计,而无需生产工具。这种方法可以允许使用duraformpa以相对较低的成本生产可穿戴监测系统的装置外壳。duraformpa的机械性能可以包括有利的冲击强度和拉伸强度,这使得材料耐用。它可以有足够的刚性以保护装置的电子组件,但又有足够柔韧性以防止在粗暴操作时破裂。duraformpa也可以表现出良好的耐化学性,从而可以防止外壳的意外降解,如由于暴露于消毒剂或其他医院化学品引起的意外降解。此外,可以对duraformpa进行测试,以对于用于人类安全(例如,生物相容性)和且无刺激性(例如,对于附接电极的皮肤)。例如,根据美国药典(usp)vi标准进行的测试可以证明该材料在体内的生物相容性。可穿戴监测装置的物理外壳可以包括的最大尺寸不超过约5mm、不超过约1cm、不超过约2cm、不超过约3cm、不超过约4cmcm、不超过约5cm、不超过约6cm、不超过约7cm、不超过约8cm、不超过约9cm、不超过约10cm、不超过约15cm、不超过约20cm、不超过约25cm或不超过约30cm。例如,可穿戴监测装置的物理外壳可以包括的长度不超过约5mm、不超过约1cm、不超过约2cm、不超过约3cm、不超过约4cm、不超过约5cm、不超过约6cm、不超过约7cm、不超过约8cm、不超过约9cm、不超过约10cm、不超过约15cm、不超过约20cm、不超过约25cm或不超过约30cm。例如,可穿戴监测装置的物理外壳可以包括的宽度不超过约5mm、不超过约1cm、不超过约2cm、不超过约3cm、不超过约4cm、不超过约5cm、不超过约6cm、不超过约7cm、不超过约8cm、不超过约9cm、不超过约10cm、不超过约15cm、不超过约20cm、不超过约25cm或不超过约30cm。例如,可穿戴监测装置的物理外壳可以包括的高度不超过约5mm、不超过约1cm、不超过约2cm、不超过约3cm、不超过约4cm、不超过约5cm、不超过约6cm、不超过约7cm、不超过约8cm、不超过约9cm、不超过约10cm、不超过约15cm、不超过约20cm、不超过约25cm或不超过约30cm。可穿戴监测装置的物理外壳的最大重量可以不超过约300克(g)、不超过约250g、不超过约200g、不超过约150g、不超过约100g、不超过约90g、不超过约80g、不超过约70g、不超过约60g、不超过约50g、不超过约40g、不超过约30g、不超过约20g、不超过约10g或不超过约5g。粘合剂可以用于组装可穿戴监测装置,如由乐泰(loctite)(杜塞尔多夫,德国)提供的粘合剂。可以针对以下特点选择这些粘合剂:诸如粘合塑料的适合性、在室温下固化的能力、以及对于人类使用的生物相容性和安全性证明。这些粘合剂可以符合国际标准化组织(iso)10993-1(生物相容性测试)。电极可以用于组装可穿戴监测装置,如3m公司(梅普尔伍德,明尼苏达州)提供的带有泡沫胶带和粘性凝胶的reddot监测电极,或由供应商提供的类似电极:如bioprotech(chino,加利福尼亚州)、burdick(mortarainstrument,密尔沃基,威斯康星州)、covidien(美敦力公司,明尼阿波利斯市,明尼苏达州)、mortara(密尔沃基,威斯康星州)、schiller(多拉,佛罗里达州)、vectracor(托托瓦、新泽西州)、vermed(布法罗,纽约州)和welchallyn(skaneatelesfalls,纽约州)。可以针对以下特点选择这些电极:如对成年患者的适应性、无需事先准备皮肤、以及对于使用数天(例如,多达5天)进行临床测试的能力。此外,对于在可穿戴监测装置上进行的模数信号转换(adc),可以选择具有理想电气性质的低阻抗电极。图5示出了可穿戴监测装置的电子系统图的示例。可穿戴监测装置可以包括电子组件(电子器件),如健康传感器开发板;充电电路415(例如,电池充电控制电路);以及电源或电池420(例如,可充电锂离子电池)。健康传感器开发板可以包括组件(例如,传感器和控制器),其包括电源管理集成电路(ic)、加速度计、机载ecg传感器、微控制器和蓝牙无线电电路。机载ecg传感器可以通过灵敏的放大器连接到与ecg电极相连的三根ecg电缆(例如,通过ecg夹405)。机载ecg传感器可以包括一个或多个、两个或更多个、三个或更多个、四个或更多个、五个或更多个、六个或更多个、七个或更多个、八个或更多个、九个或更多个或者十个或更多个ecg电极。机载ecg传感器可以包括不超过两个、不超过三个、不超过四个、不超过五个、不超过六个、不超过七个、不超过八个、不超过九个或不超过十个ecg电极。电源管理集成电路可以通过外部电线连接到充电电路415(例如,充电控制器)。然后,外部电线可以连接到锂离子电池420和充电端口425(例如,microusb充电端口)。微控制器可以连接到电源管理集成电路、加速度计、ecg传感器和蓝牙无线电集成电路并与其接口(例如,通过向其发送控制信号和/或数据,或从其接收信号和/或数据)。监测系统可以提供端对端系统,用于执行(i)使用ecg电极捕获或记录患者皮肤的电势测量值,(ii)在ecg传感器内将模拟电信号转换为数字信号,(iii)通过蓝牙无线电(例如,蓝牙4.1)和/或天线传输包括数字信号的数据。可穿戴监测装置的健康传感器开发板可以包括现成的组件(例如,由加利福尼亚州圣何塞的美信集成公司提供),其含有微控制器单元、包括ecg传感器和加速度计的多个传感器、蓝牙无线电、天线和电源管理电路。可穿戴监测装置的机载ecg传感器可以包括现成的组件(例如,由加利福尼亚州圣何塞的美信集成公司提供的max30003)。机载ecg传感器可以是具有hr检测算法(r-r)的超低功耗、单信道集成生物电势模拟前端(afe)。机载ecg传感器可以包括三个模拟输入,它们对应于三个输入ecg电极。机载ecg传感器可以被配置为具有合适的afe特性,如合适的临床等级信号质量;r-至-r间隔和导引检测的增加;以及低功率要求。如图6所示,可穿戴监测装置的三根ecg电极电缆可以对应于差分放大器和被配置为提供噪声消除的参考右腿驱动电极的两个输入。差分放大器可以感测到电势的微小差异。为了在可穿戴电子装置暴露于静电放电(esd)时确保其可靠性,机载ecg传感器可以具有静电放电(esd)保护。此外,机载ecg传感器可以包括低关机电流,以延长电池寿命。可穿戴监测装置的机载ecg传感器可以利用具有15.5位有效分辨率的高分辨率增量总和(σδ)模数转换器(adc)、电磁干扰滤波(emi)和高输入阻抗(例如,大于约500mω),以最大化信噪比,并确保干净的ecg信号。高分辨率σδadc可以包括约10位、约12位、约14位、约16位、约18位、约20位、约22位、约24位、约26位、约28位、约30位、约32位或超过约32位的有效分辨率。输入阻抗可以大于约50mω、约100mω、约200mω、约300mω、约400mω、约500mω、约600mω、约700mω、约800mω、约900mω或约1000mω。可穿戴监测装置的ecg电极可以是与患者身体的唯一电子接触点。患者与可穿戴监测装置之间的接触点可以包括ecg电极和温度传感器。温度传感器可以可逆地附接到患者皮肤表面,以最大化在皮肤和传感器之间的热传递。温度传感器可以安装在可伸缩的、弹簧加载的机构上,该机构从贴片伸出并将传感器压向皮肤,从而在运动时确保温度传感器与皮肤之间的连续接触。温度传感器也可以安装在由刚性但可弯曲的材料构成的杆件上,以达到类似的效果。温度传感器可以涂覆有导热材料,如硅基粘合剂,以改善传感器与皮肤之间的热传递。机载ecg传感器的典型泄漏电流为约0.1纳安(na),低于正常条件下iec(国际电工委员会)60601-1标准规定的0.1毫安(ma)的患者泄漏电流。机载ecg传感器的典型泄漏电流可以为约0.01na、约0.05na、约0.1na、约0.5na、约1na、约5na、约10na、约50na、约0.1微安(μa)、约0.5μa、约1μa、约5μa、约10μa、约50μa或约0.1ma。可穿戴监测装置的加速度计可以包括现成的组件(例如,由瑞士日内瓦的意法半导体(stmicroelectronics)提供的lis2dh加速度计)。加速度计可以是提供超低功率(例如,不超过1μa、不超过2μa或不超过4μa或不超过6μa)和高性能加速度测量术数据测量的微机电系统(mems)装置。加速度计可以是三轴线性加速度计。加速度计可以允许检测患者的活动和运动,向应用于被机载ecg传感器捕获的ecg信号的减少运动算法提供信息。装置的无线通信可以由可穿戴监测装置的无线收发器处理,该无线收发器可以使用现成的组件(例如,由科罗拉多州斯普林斯市的emmicroelectronic提供的em9301集成电路)。蓝牙集成电路可以包括为低功率应用而设计的完全集成的单芯片蓝牙低能耗控制器(例如,输出(drawing)电流不超过约5ma、不超过约10ma或不超过约15ma)。蓝牙集成电路可以在蓝牙低能耗协议的版本4.1下运行,并且可以由微控制器使用标准蓝牙主机控制器接口(hci)控制。可穿戴监测装置可以由电源供电,如储能装置。储能装置可以是或包括固态电池或电容器。储能装置可以包括一个或多个碱性类型、镍氢(nimh)如镍镉(ni-cd)类型、锂离子(li-ion)类型或锂聚合物(lipo)类型的电池。例如,储能装置可以包括一个或多个aa、aaa、c、d、9v类型的电池或纽扣电池。电池可以包括一个或多个可充电电池或不可充电电池。例如,电池可以是可充电锂聚合物(lipo)电池。lipo电池可以是许多移动消费装置(包括蜂窝电话)的优选化学电池选择。lipo电池可以相对于其各自的质量提供高能量密度;然而,如果不采用适当的充电方法,则可能存在过热的风险。例如,电池可以是3.7vlipo电池,其具有110毫安时(mah)容量和内置保护电路(例如,过充电保护、过放电保护、过电流保护、短路保护和超温保护)。电池可以是,例如,具有约100mah、约200mah、约300mah、约400mah、约500mah、约1000mah、约2000mah或约3000mah容量的lipo电池。电池可以包括不超过约10瓦(w)、不超过约5w、不超过约4w、不超过约3w、不超过约2w、不超过约1w、不超过约500毫瓦(mw)、不超过约100mw、不超过约50mw、不超过约10mw、不超过约5mw或不超过约1mw的瓦数。电池可以包括不超过约9伏(v)、不超过约6v、不超过约4.5v、不超过约3.7v、不超过约3v、不超过约1.5v、不超过约1.2v或不超过约1v的电压。电池可以包括不超过约50毫安时(mah)、不超过约100mah、不超过约150mah、不超过约200mah、不超过约250mah、不超过约300mah、不超过约400mah、不超过约500mah、不超过约1,000mah、不超过约2,000mah、不超过约3,000mah、不超过约4,000mah、不超过约5,000mah、不超过约6,000mah、不超过约7,000mah、不超过约8,000mah、不超过约9,000mah或不超过约10,000mah的容量。电池可以被配置为可充电的,其充电时间为约10分钟、约20分钟、约30分钟、约60分钟、约90分钟、约2小时、约3小时、约4小时、约5小时、约6小时、约8小时、约10小时、约12小时、约14小时、约16小时、约18小时、约20小时、约22小时或约24小时。电子装置可以被配置为允许电池是可更换的。或者,电子装置可以被配置具有不能由用户更换的电池。此外,电池的充电电流可以通过充电电路控制,该充电电路可以被配置为监测电池电压并适当调节充电电流。监测系统的移动应用程序可以为监测系统的用户提供控制监测系统的功能和和供用户查看其测量、收集或记录的临床健康数据(例如,生命体征数据)的图形用户界面(gui)。该应用程序可以被配置为在普及的移动平台,如ios和android上运行。该应用程序可以在如下各种移动设备上运行:如移动电话(例如appleiphone或android电话)、平板计算机(例如,appleipad、android平板计算机或windows10平板计算机)、智能手表(例如,applewatch或android智能手表)和便携式媒体播放器(例如,appleipodtouch)。监测系统的应用程序图形用户界面(gui)的示例模型如图7所示。应用程序gui可以包括一个或多个屏幕,向用户呈现与他们的可穿戴监测装置配对、查看(例如,实时)他们的实时临床健康数据(例如,生命体征数据)以及查看他们自身的试验配置文件的方法。监测系统的移动应用程序可以以定期间隔接收可穿戴监测装置发送的数据,对发送的信息进行解码,然后将临床健康数据(例如,生命体征数据)存储在移动装置自身的本地数据库中。例如,定期间隔可以是约1秒、约5秒、约10秒、约15秒、约20秒、约30秒、约1分钟、约2分钟、约5分钟、约10分钟、约20分钟、约30分钟、约60分钟、约90分钟、约2小时、约3小时、约4小时、约5小时、约6小时、约8小时、约10小时、约12小时、约14小时、约16小时、约18小时、约20小时、约22小时或约24小时,从而提供临床健康数据的实时或近实时更新。定期间隔可以由用户调节,也可以响应于电池消耗要求调节。例如,间隔可以延长以减少电池消耗。可以在不离开用户装置的情况下对数据进行本地化。可以对本地数据库进行加密,以防止泄露敏感数据(例如,在用户的电话丢失的情况下)。本地数据库可以要求用户进行身份验证(例如,通过密码或生物特征识别),以授予对临床健康数据和配置文件的访问权限。可穿戴监测装置的组装可以包括多个操作,如:1.焊接充电电子组件2.将电极夹插入并附接到底盘的基座中3.在中心铰链处连接两个duraformpa外壳4.将连接线焊接到充电电子组件、健康传感器开发板和电极夹5.将充电电路电子组件、健康传感器开发板和锂电池插入外壳中6.使用生物相容性粘合剂密封外壳7.将固件加载到微控制器上8.系统测试可穿戴监测装置可以被设计为在考虑以下特征的情况下提供功能性但安全的硬件:安全性、可靠性、准确性和可用性。最终的设计可以是轻质、刚性的贴片,几乎没有物理危害。该装置的总重量可以不超过约1000克(g)、不超过约900g、不超过约800g、不超过约700g、不超过约600g、不超过约500g、不超过约400g、不超过约300g、不超过约250g、不超过约200g、不超过约150g、不超过约100g、不超过约90g、不超过约80g、不超过约70g、不超过约60g、不超过约50g、不超过约40g、不超过约30g、不超过约20g、不超过约10g或不超过约5g。该装置可以没有锋利的边缘或拐角,因此几乎没有造成意外伤害或危害的风险(例如,如果掉落或处理不当)。外壳可以使用刚性材料,如duraformpa构建,该材料是生物相容性材料,其毒性和刺激性水平极低。该装置可以包括低变应原性电极,其对用户造成皮肤刺激的风险较小。该装置可以被密封在用生物相容性粘合剂紧固的外壳中。这种粘合剂可以被配置为限制触及被封闭在内部的电子器件。外壳可以作为针对电路损坏的屏障,并最小化由可能被加热的电子组件造成电击或电灼伤的风险。该装置可以包括可充电锂离子电池,这可以不需要用户进行电池更换。贴片的离散形状因素可以允许患者(用户)在最小的不适感或干扰的情况下进行日常活动,并且由ecg电极和牢固的ecg夹提供的强粘性可以防止装置与用户断开连接。该装置对于儿童可以是安全的,因为其大小虽然离散,但可能太大而无法吞咽。该装置的电子设计和组件选择可以类似地由安全性和准确性的目标驱动。可穿戴监测装置可以使用现成的开发板(例如,由加利福尼亚州圣何塞的美信集成公司提供),其包括ecg传感器。或者,可穿戴监测装置可以使用包括多个组件(例如,由美信集成公司、德州仪器公司、飞利浦等提供)的定制印刷电路板(pcb)。由于健康传感器开发板中可以包括许多安全特征,并且由于心电图是一项成熟的技术,因此该装置可能会造成轻微的触电危险。ecg传感器通过电极在用户的身体与装置之间形成电连接。包括如除颤保护等安全功能,在患者在佩戴贴片进行除颤的情况下,其可以保护电路免受损坏,并防止过多的电荷积聚在装置上并且释放到患者内。此外,由于可穿戴监测装置是在低压(3.7v)下进行电池供电,因此可以进一步降低电击风险。为了减轻佩戴装置的患者在给装置充电时面临的风险,可以为充电器提供使这种行为不可行的短电缆。从辐射角度来看,由于可穿戴监测装置使用低能耗蓝牙进行无线通信,因此其辐射风险可以非常低。使用这种协议的装置通常产生的辐射(通过特定吸收率(sar)测量)比蜂窝电话的辐射弱约一千倍。计算机系统本公开内容提供了被编程以实现本公开内容的方法的计算机系统。图8示出了计算机系统801,该计算机系统801被编程或以其他方式配置,以实现本文提供的方法。计算机系统801可以调节本公开内容的各个方面,例如,在一时间段内获取包括受试者的多个生命体征测量值的健康数据,将获取的健康数据存储在数据库中,通过无线收发器从一个或多个传感器(例如ecg传感器)接收健康数据,以及使用训练后的算法处理健康数据以生成指示健康状况的进展或消退的输出。计算机系统801可以是用户的电子装置,或者与电子装置相关的远程计算机系统。该电子装置可以是移动电子装置。计算机系统801包括中央处理单元(cpu,在本文中也称为“处理器”和“计算机处理器”)805,其可以是单核或多核处理器,或用于并行处理的多个处理器。计算机系统801还包括存储器或存储器单元810(例如,随机存取存储器、只读存储器、闪存),电子存储单元815(例如,硬盘)、用于与一个或多个其他系统通信的通信接口820(例如,网络适配器),以及外围装置825,如缓存、其他存储器、数据存储和/或电子显示适配器。存储器810、存储单元815、接口820和外围装置825通过诸如主板的通信总线(实线)与cpu805通信。存储单元815可以是用于存储数据的数据存储单元(或数据存储库)。计算机系统801可以借助于通信接口820可操作地耦合到计算机网络(“网络”)830。网络830可以是因特网、互联网和/或外部网,或与因特网通信的内部网和/或外部网。在一些情况下,网络830是电信和/或数据网络。网络830可以包括一个或多个计算机服务器,其可以启用分布式计算,如云计算。例如,一个或多个计算机服务器可以通过网络830使云计算(“云”)能够执行本公开内容的分析、计算和生成的各个方面,例如,在一时间段内获取包括受试者的多个生命体征测量值的健康数据,将获取的健康数据存储在数据库中,通过无线收发器从一个或多个传感器(例如ecg传感器)接收健康数据,以及使用训练后的算法处理健康数据以生成指示健康状况的进展或消退的输出。这种云计算可以由云计算平台,如亚马逊网络服务(aws)、微软azure,谷歌云平台和ibm云提供。在一些情况下,网络830可以借助于计算机系统801实现对等网络,该对等网络可以使耦合到计算机系统801的装置能够充当客户端或服务器。cpu805可以执行一系列机器可读指令,其可以体现在程序或软件中。指令可以被存储在存储器单元,如存储器810中。指令可以被导送到cpu805,cpu805可以随后编程或以其他方式配置cpu805,以实现本公开内容的方法。由cpu805执行的操作的示例可以包括获取、解码、执行和回写。cpu805可以是电路,如集成电路的一部分。电路中可以包括系统801的一个或多个其他组件。在一些情况下,该电路是专用集成电路(asic)。存储单元815可以存储文件,如驱动程序、库和保存的程序。存储单元815可以存储用户数据,例如,用户偏好和用户程序。在一些情况下,计算机系统801可以包括在计算机系统801外部,如位于通过内部网或因特网与计算机系统801通信的远程服务器上的一个或多个附加数据存储单元。计算机系统801可以通过网络830与一个或多个远程计算机系统通信。例如,计算机系统801可以与用户的远程计算机系统通信。远程计算机系统的示例包括个人计算机(例如,便携式pc)、平板计算机或平板计算机(例如,ipad、galaxytab)、电话、智能电话(例如,iphone、android使能性装置、)或个人数字助理。用户可以通过网络830访问计算机系统801。如本文所述的方法可以通过存储在计算机系统801的电子存储单元上,例如,存储在存储器810或电子存储单元815上的机器(例如,计算机处理器)可执行代码来实现。机器可执行或机器可读代码可以以软件的形式提供。在使用期间,代码可以由处理器805执行。在一些情况下,代码可以从存储单元815检索并存储在存储器810中,以供处理器805随时访问。在一些情况下,可以排除电子存储单元815,并且将机器可执行指令存储在存储器810上。代码可以被预编译并配置为用于具有适于执行该代码的处理器的机器,或者可以在运行时期间被编译。可以用可以选择的编程语言提供代码,以使代码能够以预编译或现编译的方式执行。本文提供的系统和方法的方面,如计算机系统801,可以体现为编程。该技术的各个方面可以被认为是被承载在机器可读介质上或以机器可读介质的类型体现的通常以机器(或处理器)可执行代码和/或相关数据的形式的“产品”或“制品”。机器可执行代码可以存储在电子存储单元,如存储器(例如,只读存储器、随机存取存储器、闪存)或硬盘上。“存储”类型的介质可以包括计算机、处理器等的任何或所有的有形存储器,或其相关模块,如各种半导体存储器、磁带驱动器、磁盘驱动器等,其可以随时为软件编程提供非暂时性存储。软件的全部或部分有时可以通过因特网或各种其他电信网络进行通信。例如,这种通信可以使软件能够从一台计算机或处理器加载到另一台计算机或处理器,例如,从管理服务器或主机加载到应用服务器的计算机平台。因此,可以承载软件元素的另一种类型的介质包括光波、电波和电磁波,其例如通过有线和光纤陆线网络以及经各种空中链路在本地装置之间的物理接口上使用。载送这种波的物理元素,如有线或无线链路、光链路等也可以被视为承载软件的介质。如本文所用,除非限于非暂时性的有形“存储”介质,否则诸如计算机或机器“可读介质”等术语是指参与向处理器提供指令以供执行的任何介质。因此,机器可读介质,如计算机可执行代码,可以采取许多形式,包括但不限于有形存储介质、载波介质或物理传输介质。非易失性存储介质包括,例如,光盘或磁盘,如任何计算机或类似装置中的任何存储装置等,如可用于实现附图中所示的数据库等。易失性存储介质包括动态存储器,如这种计算机平台的主存储器。有形传输介质包括同轴电缆;铜线和光纤,包括有包括计算机系统内总线的电线。载波传输介质可以采用电信号或电磁信号或声波或光波的形式,如在射频(rf)和红外(ir)数据通信期间生成的那些。因此,计算机可读介质的常见形式包括,例如:软磁盘、软盘、硬盘、磁带、任何其他磁介质、cd-rom、dvd或dvd-rom,任何其他光学介质、打孔卡纸磁带、带孔图案的任何其他物理存储介质、ram、rom、prom和eprom、flash-eprom、任何其他存储芯片或盒带、用于传输数据或指令的载波、用于传输这种载波的电缆或链路或计算机可以从中读取编程代码和/或数据的任何其他介质。许多这些形式的计算机可读介质可以涉及将一个或多个指令的一个或多个序列载送到处理器以供执行。计算机系统801可以包括电子显示器835或与之通信,该电子显示器835包括用户界面(ui)840。用户界面(ui)的示例包括,但不限于,图形用户界面(gui)和基于web的用户界面。例如,计算机系统可以包括基于web的控制面板(例如,gui),该控制面板被配置为显示,例如,患者指标、最近的警报和/或健康结果的预测,从而允许卫生保健提供者,如医生和患者的治疗团队,获取患者警报、数据(例如,生命体征数据)和/或从这些数据生成的预测或评估。本公开内容的方法和系统可以通过一种或多种算法来实现。算法可以由中央处理单元805在执行时通过软件来实现。该算法可以,例如,在一时间段内获取包括受试者的多个生命体征测量值的健康数据,将获取的健康数据存储在数据库中,通过无线收发器从一个或多个传感器(例如,ecg传感器)接收健康数据,并使用训练后的算法处理健康数据,以生成指示健康状况的进展或消退的输出。实施例实施例1-早期脓毒症检测的深度学习方法机器学习算法被验证用于脓毒症的早期预测。该算法能够以最少的一组易于获得的生命体征观察进行操作,并利用深度学习技术对患者进行分类。数据集对合并数据集进行回顾性分析,该合并数据集具有来自两个常用研究数据库的记录:重症监护多参数智能监测(mimiciii)数据库和eicu合作研究数据库。mimiciii数据库是2001年至2012年之间的、从贝丝以色列女执事医疗中心免费获得的去识别的患者记录的集合。eicu合作研究数据库是来自美国各地许多重症监护设施的200,000多个患者记录的集合。两个数据库都是通过physionet可获得,physionet是供研究人员免费可用的生理数据门户。根据用一组选定的标准识别脓毒症的出现并最小化类别失衡问题的能力,从两个数据库中选择患者的子集。定义脓毒症出现(sepsisonset)通常,脓毒症是指一种缺乏精确的鉴定方法的急性非特异性医学病况。尽管将其定义为宿主对感染的反应失调,但在实践中,这可能很难测量和确定该综合征的确切出现。根据当前的脓毒症3定义使用一种定义脓毒症出现的方法(例如,如desautels等人,“predictionofsepsisintheintensivecareunitwithminimalelectronichealthrecorddata:amachinelearningapproach,”jmirmed.informatics,第4卷,第3期,第e28页,2016所述,其通过引用整体并入本文)。如果患者满足确定脓毒症出现的标准,则认为他们是脓毒症阳性。脓毒症的出现被确定为既确定疑似感染,又伴随sofa评分出现急性变化(表明宿主反应失调)时的时间。如果在指定时间段内进行实验室培养和抗生素施用相结合,则认为存在疑似感染。如果首先使用抗生素,则必须在24小时内进行培养。如果首先进行培养,则必须在72小时内给予抗生素。疑似时间被视为两个事件中第一个事件的发生时间。图10示出了定义脓毒症出现的示例,从而当在限定的时间段内发生抗生素施用和细菌培养时,认为存在疑似脓毒症感染。为了识别sofa评分的急性变化,定义了在疑似感染前长达48小时和此时间后24小时的窗口(在任何一方都受到生命体征观察或入院时间结束的限制)。然后将每小时的sofa评分与该窗口开始时的sofa评分值进行比较。如果两个分数的差值为至少约2,则将该小时定义为脓毒症出现时间,并将患者视为脓毒症阳性。排除标准在eicu和mimic数据库中,新生儿和儿童的代表性不足;因此,不包括低于18岁的患者。接下来,根据给定入院期间生命体征的可用性,排除入院时间。如果入院时间不符合以下条件,则不包括在内:(i)至少一项心率观察,(ii)至少一项呼吸频率观察,(iii)至少一项温度观察,以及(iv)至少一项各自来自收缩压、舒张压、血氧浓度(spo2)中的两项的观察。对于标记有严重脓毒症的icd-9代码的患者,试图识别疑似感染和脓毒症的出现时间。如根据上述方法计算的,带有icd-9代码标记但无疑似感染或脓毒症出现时间的患者除外。由于两个数据库的格式和趋势不同,因此还应用了特定于数据库的过滤标准。在mimic数据库中,由于培养报道不足,carevue排除了2001-2008年收集的数据。与desautels等人类似,仅选择由metavision系统收集的数据,该数据从2008年开始在贝丝以色列女执事医疗中心使用。当对eicu患者入院时间检查时,总数中仅有4758名患者符合发病标准。为了避免重大的类别失衡,选择了不符合发病标准的18,760名患者。最后的群组包括共47,847名患者。在这些患者中,有13,703名患者(28.6%)被标记了脓毒症和出现时间。此外,这些入院患者中的24,329(50.8%)来自mimiciii数据库,并且23,518(49.2%)来自eicu数据库(如表1所示)。图11示出了所选群组的年龄分布直方图。表1-来自miciciii和eicu数据库的脓毒症患者和非脓毒症患者人数使用递归神经网络的机器学习开发了一种包括基于机器学习的分类引擎的机器学习算法,其能够预测脓毒症的早期出现。该算法架构基于人工神经网络(ann)。如图12所示,用于根据归一化的生命体征预测脓毒症的机器学习算法包括时间提取引擎、预测引擎和预测层。时间提取引擎利用递归神经网络(rnn)从包括一个或多个生命体征(例如,归一化的生命体征)的一组输入中获取基于时间的洞见(insight)。rnn包括多个堆叠层长短期记忆(lstm)单元,这些单元在任意时间间隔内保留信息。算法输入包括生命体征观察和人口统计学协变量。通常测量的生命体征,包括心率、体温、舒张压、收缩压、呼吸频率和血氧浓度(spo2),用于产生预测。协变量的示例包括年龄和性别。为了进一步最小化类别失衡问题,增加了脓毒症阳性病例,以使脓毒症阳性病例相对于脓毒症阴性病例的比例更大。在脓毒症阳性入院期间,同时发生的生命体征观察顺序重新排列,并且脓毒症出现时间在-2小时至+2小时之间以随机选择的间隔增加或减少。为了执行机器学习架构的训练,将患者入院时间的集合分为两组,从中选择训练样本:脓毒症阳性和脓毒症阴性。从脓毒症阳性的入院时间来看,将脓毒症出现后发生的生命体征观察丢弃。根据入院时间长度选择多个训练样本。使用tensorflow深度学习软件库在亚马逊web服务提供的基于云计算gpu的基础架构上进行培训和测试。验证数据集被分为单独的训练集、开发集和测试集,分别包括34,408、6,611和6,828个患者入院时间。从群组中随机选择每个集的数据,如表2中列的集分配所示。集入院数比例训练34,40871.9%开发6,61113.8%测试6,82814.3%总计47,847100%表2-入院分布由于脓毒症经常在入院或入院(例如,重症监护室,icu)后不久被诊断出来,因此考虑对脓毒症出现前数据的可变长度使用病例对照匹配的形式。脓毒症阴性患者序列的长度变化,以匹配脓毒症阳性患者的序列。按入院时间将脓毒症阳性患者的从第一次生命体征观察到脓毒症的时间以升序排列,并与脓毒症阴性患者的入院时间以1比4的比率配对。然后从脓毒症阴性入院时间中取样脓毒症阴性序列,其长度等于其匹配的脓毒症阳性入院时间的长度。训练后,在开发集上测试训练算法的性能,以确定算法性能。将脓毒症出现前最后五个小时内的精确率召回率曲线下的平均面积(auprc)和接受者操作特性曲线下的平均面积(auroc)视为双变量指标,针对该双变量指标对算法进行优化。在得出多个性能指标的测试集上进行最终验证,所述多个性能指标包括灵敏度(召回率)、特异性、精度(阳性预测值、ppv)、真阳性率、假阳性率、真阴性率和假阴性率。然后将算法性能与其他脓毒症诊断工具,sofa和mews评分进行比较。算法性能将机器学习算法在从mimiciii和eicu重症监护数据库生成的组合数据集上训练。然后为测试集患者生成预测。在检查算法的性能时,首要考虑因素可以包括算法如何在所有阈值上执行。auprc和auroc的测量提供了在机器学习算法的许多不同操作点上总结的算法性能指标。auprc关注于算法识别真阳性的能力,并在存在类别不平衡问题时提供洞见。提供auroc来证明算法在真阴性情况下的功效。两种方法都旨在提供总体算法性能的测量。在脓毒症出现时以及在脓毒症出现前的2小时、4小时、6小时、小时8和10小时生成接受者操作特性。在脓毒症出现时,机器学习算法的auroc为0.684,并且在脓毒症出现前四小时,机器学习算法的auroc为0.663。对于sofa评分(分别为0.642和0.516)和mews评分(分别为0.653和0.590),这些值超过了相应的auroc(在脓毒症出现时和脓毒症出现前四小时)。在脓毒症出现前的每次时间,计算曲线下面积(auprc)(如表3所示)。对于接受者操作特性(auroc)下面积,得出了类似的结果(如表4所示)。表3-在脓毒症前的不同小时的机器学习算法的精确率召回率曲线下面积(areaundertheprecisionrecallcurve,auprc)表4-在脓毒症前的不同小时的机器学习算法的接受者操作特性下面积(areaunderreceiveroperatingcharacteristic,auroc)图13a示出了相对于时间的精确率召回率(pr)曲线下面积。图13b示出了相对于时间的接受者操作特性(roc)曲线下面积。图13c-图13d分别示出了对于脓毒症预测算法在不同时间绘制的精确率召回率(pr)曲线和接受者操作特性(roc)曲线与脓毒症出现时由sofa评分和mews评分做出的预测的对比。请注意,脓毒症预测算法生成的roc与现有测量的sofa和mews评分相当。阈值选择和“真实世界”性能尽管auprc和auroc的测量提供了总体算法性能的指标,但它们可能不能反映在真实世界应用中可以做出的预测。为了确定算法的真实世界性能,选择使精度和灵敏度最大化的阈值。然后在每个时间段导出特定的性能指标(如表5所示)。表5-在脓毒症前的不同小时的机器学习算法的性能指标尽管对所述说明书关于其特定实施方式进行了描述,但这些特定实施方式仅是说明性的,而不是限制性的。示例中说明的概念可以应用于其他示例和实现方式。虽然本文已经示出和描述了本发明的优选实施方式,但是对于本领域技术人员显而易见的是,这些实施方式仅以示例的方式提供。说明书中提供的具体示例并不旨在限制本发明。尽管已经参考上述说明书描述了本发明,但是本文实施方式的描述和说明并非意在以限制的意义来解释。在不脱离本发明的情况下,本领域技术人员现将想到许多变化、改变和替换。此外,应当理解的是,本发明的所有方面不限于本文所述的具体描述、配置或相对比例,而是取决于各种条件和变量。应该理解的是,本文所述的本发明实施方式的各种替代方案均可用于实施本发明。因此,考虑到本发明还应涵盖任何这样的替代、修改、变化或等同方案。所附权利要求书旨在限定本发明的范围,并且由此覆盖这些权利要求范围内的方法和结构及其等同方案。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1