血液循环辅助装置及控制系统的制作方法

文档序号:29466356发布日期:2022-04-02 03:29阅读:283来源:国知局
血液循环辅助装置及控制系统的制作方法

1.本技术实施例属于心脏辅助循环技术领域,尤其涉及一种血液循环辅助装置及控制系统。


背景技术:

2.心血管疾病为心脏和血管失调疾病的统称,包括冠心病、脑血管病、风湿性心脏病和先天性心脏病等。冠心病和中风通常为急性病,主要病因为血管堵塞使血液无法流向心肌或大脑,导致器官组织缺氧坏死。血管堵塞可能由多种原因造成,其中最常见病因为由血管内壁脂肪堆积导致的血管狭窄。
3.现有对多种心血管疾病的治疗最常用的是左心辅助装置,左心辅助装置的血泵组件可通过pci手术引入心脏,血泵组件的血泵运转即可将血液从心脏的左心室泵入主动脉,或者将血液从下腔静脉泵入肺动脉,血泵可由位于患者体外的电机或位于患者体内的电机供电驱动。左心辅助装置可在高危pci手术中向患者提供更稳定的血液循环支持,改善冠脉和远端器官灌注的同时减轻左心室负担,有利于术中患者体征稳定和术后康复,促进患者心脏恢复。
4.为了满足微创化和大流量的需求,现有的左心辅助装置的血泵需要同时满足小型化和较高泵血流量的要求。电机需要提供高达五万转每分的高转速驱动血泵进行泵血,而为了模拟与心脏跳动频率同步的搏动性血流输送,需要依靠动力电机频繁的转动与制动使得血泵反复的转动与停转,使血泵产生搏动性血流输送,这在技术上很难实现。另外,左心辅助装置在运行时,由于左心室和主动脉之间形成了泵血通道,血泵反复的转动与停转会带来血流从主动脉回流至左心室的风险,这不利于患者心脏功能的恢复。
5.一些研究发现,由于现有的左心辅助装置为患者提供的是连续性血液循环支持,而不是与心脏跳动频率同步的搏动性或脉动性血液循环,这会增加胃肠道动静脉畸形以及引起获得性血管性血友病因子缺陷等潜在并发症风险。因此,亟需一种能够产生搏动性血流,以为患者心脏提供有效血液循环支持的血液循环辅助系统。


技术实现要素:

6.本技术旨在至少解决现有技术中存在的技术问题之一。为此,本技术实施例提供了一种血液循环辅助装置及控制系统,结构巧妙,在应用时能够产生搏动性血流,为患者心脏提供有效、可靠的血液循环支持,消除了传统心室辅助装置产生的连续性血流而带来的不利影响。
7.第一方面,本技术提供了一种血液循环辅助装置,包括:
8.鞘管,用于安装于血管内,所述鞘管具有近端和远端;
9.第一球囊,设于所述鞘管并处于所述血管内;
10.泵体,设于所述鞘管的远端,具有血流通道以及与所述血流通道连通的血液入口和血液出口,所述泵体用于将心室内的血液泵送至所述血管内;
11.控制器,设于所述鞘管的近端,其被配置为控制所述泵体的运行,以及被配置为间歇地驱动所述第一球囊充气和放气,以使所述第一球囊至少部分地封堵所述血管,以配合所述泵体产生搏动性血流。
12.根据本技术第一方面实施例的血液循环辅助装置,至少具有如下有益效果:
13.本技术的血液循环辅助装置在应用时,鞘管以及设于鞘管的第一球囊、泵体可同步的通过经皮手术介入患者体内,使得鞘管以及设于鞘管的第一球囊介入患者血管内,泵体至少部分介入人体中为上述血管供血的心室内,并使泵体的血液入口与心室连通,血液出口与血管连通,进而使泵体实现将心室内的血液泵送至上述血管内的功能。本技术的血液循环辅助装置运行时,控制器控制泵体运行工作,泵体将心室内的血液依次沿泵体的血液入口、血液通道和血液出口流入血管内,以此将心室内的血液泵送至血管内。血液在泵体的动力作用从心室流入血管的过程中,控制器间歇地驱动第一球囊充气和放气,使得第一球囊的充气和放气呈周期性进行,进而使得第一球囊周期性地封堵和导通血管,使得血液在血管的流动过程中被周期性地堵塞和导通,从而产生与心脏周期性地舒张和收缩特性相适配的搏动性血流,消除传统心室辅助装置产生的连续性血流而带来的不利影响,同时,也改善了患者冠脉和远端器官的血液灌注量,减轻了心室负担,有利于术中患者体征稳定和术后康复,促进患者心脏恢复。
14.根据本技术的一些实施例,所述第一球囊密封套设于所述鞘管的外壁,所述第一球囊通过充放气管路与体外的充气泵连接,所述控制器可控制所述充气泵的充放气频率,以使所述充气泵对所述第一球囊间歇性地充气和放气。
15.根据本技术的一些实施例,还包括具有弹性的第二球囊,所述第二球囊套设在部分所述泵体以及所述鞘管靠近所述泵体的部位上,所述第二球囊的腔体形成与所述血液出口连通的血液流通腔,所述第二球囊开设有至少一个用于连通所述血液流通腔和所述血管的开窗。
16.根据本技术的一些实施例,还包括保护套,所述泵体为具有压缩状态和扩张状态的弹性结构体,所述泵体可弹性收纳于所述保护套内并与所述保护套的内壁相抵,以保持所述压缩状态,当所述泵体脱离所述保护套时,所述泵体沿自身径向向外膨胀,以保持扩张状态。
17.根据本技术的一些实施例,所述泵体包括壳体以及设于所述壳体内的旋转叶轮,所述血流通道、所述血液入口和血液出口均设于所述壳体,所述旋转叶轮为具有展开状态和收纳状态的弹性结构体,当所述泵体保持压缩状态时,所述旋转叶轮弹性收纳于所述壳体内,当所述泵体切换为扩张状态时,所述旋转叶轮随所述壳体同步向外展开,以保持展开状态。
18.根据本技术的一些实施例,所述保护套还用于套设所述鞘管、所述第一球囊以及所述第二球囊。
19.根据本技术的一些实施例,所述保护套呈两端开口的管状。
20.根据本技术的一些实施例,还包括设于体内或体外的驱动件,所述驱动件的输出端直接或间接地与所述泵体连接,以驱动所述泵体运行,所述控制器与所述驱动件电连接,以控制所述驱动件的驱动速率。
21.第二方面,本技术提供了一种控制系统,包括:
22.上述的血液循环辅助装置;
23.信号电极,可耦合至所述泵体伸入所述心室的部位,以获取所述心室的心电图信号;
24.所述控制器包括第一处理器和第二处理器,所述第一处理器与所述信号电极电连接,以接收所述心电图信号,并基于所述心电图信号来控制所述第一球囊的充气频率和放气频率,所述第二处理器与所述泵体电连接,以控制所述泵体的运行速率。
25.根据本技术第二方面实施例的控制系统,至少具有如下有益效果:
26.本技术的控制系统,由于具备上述的血液循环辅助装置,因此也具备该血液循环辅助装置同样的技术效果。此外,本技术的控制系统,通过在泵体伸入所述心室的部位上耦合信号电极,使得泵体介入患者的心室后能够获取到心室的心电图信号,第一处理器即可根据该心电图信号的来调节第一球囊的充气频率和放气频率,以使得第一球囊周期性地封堵和导通降主动脉,从而产生与患者心脏或心室搏动频率同步的博动性循环血流,为患者心脏提供了更为有效和可靠的血液循环支持,进一步促进了患者心脏及其他组织器官功能的恢复。
27.根据本技术的一些实施例,所述第一球囊内设有第一压力传感器,所述第一压力传感器用于监测所述第一球囊内的压力,所述第一处理器与所述第一压力传感器电连接,并基于所述第一压力传感器的压力信号来控制所述第一球囊的充气量。
附图说明
28.为了更清楚地说明本技术实施例的技术方案,下面将对本技术实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本技术的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
29.图1是本技术一些实施例的血液循环辅助装置的结构示意图一;
30.图2是本技术一些实施例的血液循环辅助装置的部分结构示意图一;
31.图3是本技术一些实施例的血液循环辅助装置的部分结构示意图二;
32.图4是本技术一些实施例的血液循环辅助装置的结构示意图二;
33.图5是本技术一些实施例的血液循环辅助装置与心脏的配合示意图一;
34.图6是本技术一些实施例的血液循环辅助装置与心脏的配合示意图二;
35.图7是本技术一些实施例的鞘管与第一球囊的配合结构示意图;
36.图8是本技术一些实施例的控制系统的结构示意图一;
37.图9是本技术一些实施例的血液循环辅助装置的结构示意图三;
38.图10是本技术一些实施例的血液循环辅助装置与心脏的配合示意图三;
39.图11是本技术一些实施例的血液循环辅助装置与心脏的配合示意图四;
40.图12是本技术一些实施例的血液循环辅助装置与心脏的配合示意图五;
41.图13是本技术一些实施例的血液循环辅助装置的结构示意图四;
42.图14是本技术一些实施例的血液循环辅助装置的结构示意图五;
43.图15是本技术一些实施例的血液循环辅助装置与心脏的配合示意图六;
44.图16是本技术一些实施例的控制系统的结构示意图二。
45.附图中:泵体100;血液入口110;血液出口120;壳体130;信号电极200;第一球囊300;控制器400;第一处理器410;第二处理器420;鞘管500;充放气管路510;充气泵600;第二球囊700;血液流通腔710;开窗720;保护套800;左心室10;主动脉瓣20;主动脉30;降主动脉40。
具体实施方式
46.下面将详细描述本技术的各个方面的特征和示例性实施例。在下面的详细描述中,提出了许多具体细节,以便提供对本技术的全面理解。但是,对于本领域技术人员来说很明显的是,本技术实施例可以在不需要这些具体细节中的一些细节的情况下实施。下面对实施例的描述仅仅是为了通过示出本技术的示例来提供对本技术的更好的理解。
47.在本技术的描述中,需要理解的是,涉及到方位描述,例如上、下、前、后、左、右等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本技术实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本技术实施例的限制。
48.在本技术实施例的描述中,若干的含义是一个或者多个,多个的含义是两个及两个以上,大于、小于、超过等理解为不包括本数,以上、以下、以内等理解为包括本数。如果有描述到第一、第二只是用于区分技术特征为目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量或者隐含指明所指示的技术特征的先后关系。
49.本技术实施例的描述中,除非另有明确的限定,设置、安装、连接等词语应做广义理解,所属技术领域技术人员可以结合技术方案的具体内容合理确定上述词语在本技术中的具体含义。
50.需要说明的是,在不冲突的情况下,本技术中的实施例及实施例中的特征可以相互组合。下面将结合附图对实施例进行详细描述。
51.另外,需要说明的是,在本技术实施例的描述中,除非另有明确的限定,“体内”表示患者的组织器官内,“体外”表示患者的组织器官外。
52.应该说明的是,正常人体的心脏在一个搏动周期里,心脏收缩时,位于左心室和主动脉之间的主动脉瓣打开,左心室内的血液在收缩压力下流入主动脉内,以使主动脉向人体的组织器官内输血;同时,右心室与肺动脉之间的肺动脉瓣打开,右心室内的血液流入肺动脉内,以使肺动脉向人体的肺静脉以及分支器官输血。当心脏舒张时,主动脉瓣关闭,防止主动脉内的的血液回流至左心室;同时,肺动脉瓣关闭,防止肺动脉内的血液回流至右心室。人体的主动脉沿血液流动方向依次分为升主动脉、主动脉弓和降主动脉,升主动脉、主动脉弓和降主动脉依次连通。
53.而患有心血管疾病的病因主要体现血液无法及时流向心肌或大脑,导致器官组织缺氧坏死。本技术的血液循环辅助装置即可为患者的心脏提供稳定的搏动性血液循环支持,改善患者的心血管疾病,促进患者心脏的恢复。
54.请参见图1、图2、图3、图4,本技术公开了一种血液循环辅助装置,包括:鞘管500、第一球囊300、泵体100以及控制器400。
55.其中,鞘管500用于安装于血管内,鞘管500具有近端和远端,需要说明的是,鞘管500的“远端”是指远离医生的方向,鞘管500的“近端”指靠近医生的方向。第一球囊300设于
鞘管500并处于血管内。泵体100设于鞘管500的远端,泵体100具有血流通道以及与血流通道连通的血液入口110和血液出口120,泵体100用于将心室内的血液泵送至血管内,控制器400设于鞘管500的近端,控制器400被配置为控制泵体100的运行,以及被配置为间歇地驱动第一球囊300充气和放气,以使第一球囊300至少部分地封堵血管,以配合泵体100产生搏动性血流。
56.需要说明的是,在本技术中,鞘管500均为柔性可弯曲结构体,泵体100、鞘管500以及设于鞘管500的第一球囊300通过经皮手术介入患者相应的血管或输血器官时,不会对相应的血管或输血器官造成结构损伤,并能够很好地适配相应血液管路的弯曲或盘旋形状。
57.在本技术中,泵体100优选为微型的叶轮泵,叶轮泵中的旋转叶轮的持续旋转即可将心室内的血液输送至血管内。当然,泵体100也可为其他的轴流离心泵,其能够具备输送血流的作用即可,具体结构不作限制。泵体100的启停以及运转速度可由控制器400操控。
58.在本技术中,第一球囊300的形状不作限制,其可为柱状、球体或椭圆体状。优选的,第一球囊300为可充气扩张和放气收缩的椭球体囊。控制器400可通过设置于第一球囊300的电子气阀或设置于鞘管500上的气动管路来驱动第一球囊300充气和放气。
59.本技术的血液循环辅助装置在应用时,鞘管500以及设于鞘管500的第一球囊300、泵体100可同步的通过经皮手术介入患者体内,使得鞘管500以及设于鞘管500的第一球囊300介入患者血管内,泵体100至少部分介入人体中为上述血管供血的心室内,并使泵体100的血液入口110与心室连通,血液出口120与血管连通,进而使泵体100实现将心室内的血液泵送至上述血管内的功能。
60.本技术的血液循环辅助装置运行时,控制器400控制泵体100运行工作,泵体100将心室内的血液依次沿泵体100的血液入口110、血液通道和血液出口120流入血管内,以此将心室内的血液泵送至血管内。
61.血液在泵体100的动力作用从心室流入血管的过程中,控制器400间歇地驱动第一球囊300充气和放气,使得第一球囊300的充气和放气呈周期性进行,进而使得第一球囊300周期性地封堵和导通血管,使得血液在血管的流动过程中被周期性地堵塞和导通,从而产生与心脏周期性地舒张和收缩特性相适配的搏动性血流,消除传统心室辅助装置产生的连续性血流而带来的不利影响,同时,也改善了患者冠脉和远端器官的血液灌注量,减轻了心室负担,有利于术中患者体征稳定和术后康复,促进患者心脏恢复。
62.参见图5和图6,本技术的血液循环辅助装置以患者左心室10以及与左心室10连通的主动脉30为应用场景为例(即在本实施例中,心室具体为左心室10,血管具体为主动脉30)说明本血液循环辅助装置的具体应用、工作原理以及带来的效果。
63.本技术的血液循环辅助装置具体应用时,鞘管500以及设于鞘管500的第一球囊300、泵体100同步的通过经皮手术介入患者体内,并使得泵体100至少部分跨过患者的主动脉瓣20以伸入患者的左心室10,以使泵体100的血液入口110与左心室10连通、血液出口120直接或间接地连通主动脉30,鞘管500穿设在主动脉30内并向主动脉30延伸,设于鞘管500的第一球囊300处于降主动脉40的部位。
64.再参见图5和图6,整个血液循环辅助装置运行时,控制器400控制泵体100运行工作,泵体100将心室内的血液依次沿泵体100的血液入口110、血液通道和血液出口120流入血管内,以此将心室内的血液泵送至血管内。
65.血液在泵体100的动力作用从左心室10流入主动脉30的过程中,控制器400先驱动第一球囊300充气膨胀,当第一球囊300的外壁与降主动脉40的内壁接触时,第一球囊300完全充气,此时,第一球囊300全部封堵降主动脉40,血液被第一球囊300阻滞在降主动脉40的上游位置处,使得升主动脉以及主动脉弓的血流量增加,升主动脉输送至左右冠状动脉升主动脉的分支动脉的血流量也相应的增加,主动脉弓输送至头臂干、左颈总动脉以及左锁骨下动脉主动脉弓的分支动脉的血流量也相应的增加,患者头部的血流量相应增加,有助于缺血性神经系统疾病的缓解和治疗。
66.需要说明的是,第一球囊300也可具体设置在患者的腹主动脉降主动脉位于腹腔内的一段的下游位置处,同理,第一球囊300完全充气后,血液被第一球囊300阻滞在腹主动脉的上游,使得腹主动脉的上游血量增加,腹主动脉输送至肝动脉以及肾动脉腹主动脉的分支动脉的血流量相应的增加,有助于缺血性肝、肾系统疾病的缓解和治疗。
67.第一球囊300封堵降主动脉40短暂时间后,控制器400再驱动第一球囊300放气收缩,使得第一球囊300的外壁逐渐远离降主动脉40的内壁,降主动脉40的血液得到导通,血液继续沿降主动脉40流动。上述过程中即完成第一球囊300的一个充气和放气周期,产生一个周期的搏动性血流循环。
68.显然,血液在泵体100的动力作用从左心室10流入主动脉30的过程中,控制器400间歇地驱动第一球囊300充气和放气,使得第一球囊300的充气和放气呈周期性进行,进而使得第一球囊300周期性地封堵和导通降主动脉40,使得血液在降主动脉40的流动过程中被周期性地堵塞和导通,从而产生与患者心脏周期性地舒张和收缩特性相适配的搏动性血流,消除传统心室辅助装置产生的连续性血流而带来的不利影响,同时,也改善了患者冠脉和远端器官的血液灌注量,减轻了左心室10负担,有利于术中患者体征稳定和术后康复,促进患者心脏恢复。
69.另外,需要说明的是,在本实施例中,控制器400可设置于患者体外或耦合至位于患者体内的泵体100或鞘管500上。作为一个实施例,控制器400被编程以接收指示患者的左心室10和主动脉30之间的血流动力学状态的变化或波动信号,进而根据该信号来实时调节泵体100的运转速率以及第一球囊300的充气量和放气量,以使主动脉30向其他组织和器官输送的血量满足要求,并实现第一球囊300对降主动脉40的全部封堵或部分封堵,以此产生与患者心脏搏动特性相适配的搏动性血流。
70.优选的,可在泵体100的相应位置耦合压力传感器、速率传感器以及信号电极,当泵体100介入患者的相应部位后,上述的压力传感器、速率传感器以及信号电极被同步的植入,使得压力传感器可实时监测并反馈患者左心室10或主动脉30的血液充盈压力血压信号、速率传感器可实时监测并反馈左心室10与主动脉30之间的血流速率信号以及信号电极可实时监测并反馈左心室10或主动脉30的心电图信号,控制器400分别与上述的压力传感器、速率传感器以及信号电极电连接,控制器400被编程基于上述血液充盈压力信号和/或血流速率来实时调整第一球囊300的充气量和放气量以及泵体100的运转速率,同时,控制器400被编程基于上述的心电图信号并根据心电图信号反馈的心脏搏动周期或搏动频率来实时调整第一球囊300的充气频率、放气频率以及充气和放气的间隔周期,以此间歇地驱动第一球囊300充气和放气,从而产生与患者心脏搏动同步的搏动性血流。通过上述设置,使得本技术的血液循环辅助装置在控制器400的精确控制下为患者心脏提供高效、可靠的搏
动性血液循环支持。
71.参见图1、图5、图6、图7和图8,在本技术的一些实施例中,第一球囊300密封套设于鞘管500的外壁,第一球囊300通过充放气管路510与体外的充气泵600连接,控制器400可控制充气泵600的充放气频率,以使充气泵600对第一球囊300间歇性地充气和放气。
72.具体的,再参见图2、图3、图4、图5和图6,在本实施例中,泵体100伸入左心室10或处于主动脉30的部位上耦合有与控制器400电连接的信号电极200,该信号电极200即可实时监测并反馈左心室10或主动脉30的心电图信号,控制器400被编程基于上述的心电图信号并根据心电图信号反馈的心脏搏动周期和搏动频率来实时控制并调整充气泵600的充气频率、放气频率以及二者之间的间隔周期,以使充气泵600间歇地驱动第一球囊300充气和放气,从而产生与患者心脏搏动同步的搏动性血流。
73.此外,在本实施例中,第一球囊300呈椭圆体状,第一球囊300的两端与鞘管500的外壁密封连接,防止气体泄露,第一球囊300的左右两侧相对鞘管500处于第一球囊300腔体内部的部位对称,以使第一球囊300均匀地封堵或导通降主动脉40,保证血液流动的流畅性和稳定性,同时,鞘管500还起到对第一球囊300支撑和承载的作用,使得第一球囊300稳定地进行充气扩张和放气收缩,也避免了第一球囊300在充气和放气过程中移动或错位,而影响对降主动脉40的封堵或导通效果。
74.此外,在本实施例中,为了提高第一球囊300充放气的精确性,鞘管500上可设置与充放气管路510连接的电子阀门,鞘管500内可开设用于安装电线的线道,电子阀门通过穿设于线道的电线与控制器400电连接,以使得控制器400控制电子阀门的开闭,控制器400、电子阀门以及充气泵600三者的配合动作,实现了对第一球囊300充气和放气的精准控制。同时,为了精确控制第一球囊300的充其量和放气量,第一球囊300内还可以设置与控制器400电连接的压力传感器,该压力传感器用于实时监测第一球囊300内的压力,控制器400可基于该压力信号判断第一球囊300的充气量或放气量是否符合要求,以此控制第一球囊300对降主动脉40的封堵程度。
75.参见图9,在本技术的一些实施例中,本技术的血液循环辅助装置还包括具有弹性的第二球囊700,第二球囊700套设在部分泵体100以及鞘管500靠近泵体100的部位上,第二球囊700的腔体形成与血液出口120连通的血液流通腔710,第二球囊700开设有至少一个用于连通血液流通腔710和血管的开窗720。
76.需要说明的是,泵体100的部分段和鞘管500的部分段穿设于第二球囊700的腔体内并分别与第二球囊700的两端密封连接,以此为第二球囊700的膨胀和收缩提供支撑,防止第二球囊700沿泵体100或鞘管500移动。可以将泵体100、鞘管500、第一球囊300以及第二球囊700理解为一体件,即泵体100、鞘管500、第一球囊300以及第二球囊700可通过经皮手术同步的植入患者体内的相应的血管或输血器官内。第二球囊700可以理解为具有初始记忆状态的椭球体或软管,第二球囊700远离泵体100的外壁沿周向均匀且间隔地开设有多个用于连通血液流通腔710和血管的开窗720,以使血液流通腔710中的血液能够均匀地流入血管。
77.同样的,在本实施例中,本技术的血液循环辅助装置以患者左心室10以及与左心室10连通的主动脉30为应用场景为例(即在本实施例中,心室为左心室,血管为主动脉)说明本实施例的血液循环辅助装置的具体应用、工作原理以及带来的效果:
78.参见图9、图10和图11,其中,图10是患者的主动脉瓣20处于打开状态示意图,图11是患者的主动脉瓣20处于关闭状态示意图。
79.本实施例的血液循环辅助装置具体应用时,鞘管500以及设于鞘管500的第一球囊300、泵体100同步的通过经皮手术介入患者体内,并使得泵体100全部跨过患者的主动脉瓣20进而伸入患者的左心室10,以使泵体100的血液入口110与左心室10连通,同时,使得第二球囊700跨过患者的主动脉瓣20而穿设于患者的左心室10与主动脉30之间,并使患者的主动脉瓣20的三个瓣叶分别接触第二球囊700的外壁。同时,鞘管500沿主动脉30的轨迹延伸至降主动脉40,并使得设于鞘管500的第一球囊300处于降主动脉40内,此即完成对泵体100、第二球囊700、鞘管500以及第一球囊300的植入。可以理解的是,在本实施例中,泵体100的血液出口120通过第二球囊700的血液流通腔710以及开窗720间接地连通主动脉30。
80.整个血液循环辅助装置在工作运行时,泵体100工作,左心室10内的血液在泵体100的作用下依次沿泵体100的血液入口110、血流通道以及血液出口120后流入第二球囊700的血液流通腔710中,血液流通腔710的血液再通过开窗720流入主动脉30内。
81.当心脏或左心室10收缩时,主动脉瓣20呈打开状态,第二球囊700在血液冲击下呈现完全扩张状态,左心室10的血液在泵体100作用下正常输送至主动脉30内;
82.当心脏或左心室10由收缩状态切换为舒张状态过程中,主动脉瓣20关闭,即主动脉瓣20的三个瓣叶相互靠近并对合,从而主动脉瓣20的三个瓣叶分别向内挤压与第二球囊700的接触部位,将第二球囊700沿上述的接触部位的连线压缩,以使血液流通腔710处于主动脉瓣20部位的宽度减小,当主动脉瓣20完全关闭后,血液流通腔710处于主动脉瓣20部位的宽度被压缩至最小,此时,允许血液流入血液流通腔710的口径被压缩至最窄,从而使得血液流通腔710中的血液流量以及从血液流通腔710流向主动脉30的血液流量降至最低;
83.当心脏或左心室10重新收缩时,主动脉瓣20再次打开,第二球囊700与主动脉瓣20的接触部位不再被主动脉瓣20挤压或约束,第二球囊700扩张膨胀,恢复至完全扩张状态,血液流通腔710的流通口径恢复至最大,左心室10的血液在泵体作用下再次以初始的流量输送至主动脉30内。
84.上述过程即产生一个周期的搏动性血流输出。
85.显然,第二球囊700的腔体形成的血液流通腔710能够随主动脉瓣20的关闭与打开同步地被挤压与恢复,使得泵体输送至主动脉30的血液流量随主动脉瓣20的关闭与打开同步地减小与增大,以使左心室10的血液在泵体作用下输送至主动脉30内的血液流量的变化频率与患者的心脏搏动舒张与收缩频率相适配,以此产生与患者心脏搏动舒张与收缩同步的搏动性血流。
86.本技术第二球囊700的巧妙设计,配合患者主动脉瓣20的正常开闭状态,不需要配合相应的信号电极或压力传感器获取的心电图信号,就能使整个血液循环辅助装置产生与患者心脏搏动舒张与收缩同步的搏动性血流,有效消除了传统心室辅助装置产生的连续性血流而带来的并发症风险,同时,也在一定程度上防止了主动脉瓣20在闭合状态下血液流通腔710或主动脉30内的血液回流至左心室10,也改善了患者冠脉和远端器官的血液灌注量,减轻了左心室负担,有利于术中患者体征稳定和术后康复,促进患者心脏恢复。
87.需要说明的是,在上述过程中,处于降主动脉40位置处的第一球囊300可一直处于将降主动脉40导通的状态,即第一球囊300一直保持扁平的未充气状态,确保整条主动脉30
处于导通状态,保证血液在主动脉30内的正常流动。
88.需要说明的是,当心脏或左心室10由收缩状态切换为舒张状态过程中,心脏瓣膜关闭可能无法使血液流通腔710压缩至最窄状态,仍然有血液流出至主动脉30中,此时可依靠第一球囊300的充气使降主动脉40内的压力增大,进而增大主动脉30上游的压力,借助血液对第二球囊700外壁的挤压来完全关闭血液流通腔710。
89.当然,在本实施例的上述过程中,当第二球囊700的血液流通腔710在主动脉瓣20的闭合状态下被压缩时,控制器400可驱动第一球囊300充气,以使第一球囊300部分或全部封堵降主动脉40,此时,以此提高降主动脉40上游的血液压力,有助于主动脉30内的血液克服微动脉以及毛细血管主动脉30的分支血管的阻力而汇入静脉,同时将沿途器官所产生的代谢产物排出;
90.当第二球囊700在主动脉瓣20的打开状态下恢复至完全扩张状态时,控制器400再驱动第一球囊300放气,以使第一球囊300导通降主动脉40,再次保证血液在主动脉30内的正常流动。
91.不难理解的是,再参见图12,在上述过程中,当患者的心脏短暂停跳时,通过控制器400对第一球囊300间歇地充气和放气的方式,以此达到降主动脉40间歇地被第一球囊300封堵和导通的效果。而且,控制器400控制第一球囊300充气频率和放气频率可被编程为与患者手术前心脏跳动同步的频率,如60-100次/min,实现降主动脉40在短暂的时间内被第一球囊300封堵和导通,巧妙地模拟了心脏跳动心室舒张和收缩,直至患者心脏重新跳动,通过上述方式达到及时为心脏的组织器官供给搏动性血流的功能,使得整个血液循环装置短暂代理心脏,同时也为医生采用相应的治疗措施使心脏复跳争取足够的时间,有助于患者心脏及其组织器官的功能恢复。
92.参见图13、图14和图15,在本技术的一些实施例中,还包括保护套800,泵体100为具有压缩状态和扩张状态的弹性结构体,泵体100可弹性收纳于保护套800内并与保护套800的内壁相抵,以保持压缩状态,当泵体100脱离保护套800时,泵体100沿自身径向向外膨胀,以保持扩张状态。
93.不难理解的,泵体100在介入患者体内之前,泵体100弹性收纳保护套800,且泵体100的外壁与保护套800的内壁相抵,使得泵体100保持压缩状态。需要说明的是,保护套800为柔性可弯曲结构体,可通过经皮手术将弹性收纳于其内的泵体100同步地介入患者的输血器官内。具体的,当泵体100部分或全部伸入至左心室10内后,操作医生即可将保护套800抽出,以使得保护套800脱离泵体100,此时,泵体100不再被保护套800约束并在自身的弹性作用力下沿自身径向向外膨胀,完成扩张,相应的,设置于泵体100的血液入口110、血流通道以及血液出口120的内径均得到扩张增大,进而增大了泵体100将左心室10内的血液泵送至主动脉30的输送流量。
94.显然,通过保护套800和泵体100可压缩和扩张的配合设计,可有效减小泵体100介入患者相应血管或输血器官而形成的手术创口面积,提高了整个泵体100在相同的手术创口面积下的泵血流量,也相应减轻了泵体100通过经皮手术介入体内而对患者造成的组织损伤,显著改善术后出血的不良反应。
95.再参见图13、图14和图15,在本技术的一些实施例中,泵体100包括壳体130以及设于壳体130内的旋转叶轮,血流通道、血液入口110和血液出口120均设于壳体130,旋转叶轮
为具有展开状态和收纳状态的弹性结构体,当泵体100保持压缩状态时,旋转叶轮弹性收纳于壳体130内,当泵体100切换为扩张状态时,旋转叶轮随壳体130同步向外展开,以保持展开状态。此外,保护套800还用于套设鞘管500、第一球囊300以及第二球囊700。需要说明的是,为了保证整个泵体10良好的压缩和扩张状态,壳体130优选为弹性壳体。
96.不难理解的是,整个血液循环辅助装置在介入患者体内之前,泵体100、鞘管500、第一球囊300以及第二球囊700均处于保护套800内,其中,泵体100的旋转叶轮弹性收纳于壳体130内,第二球囊700收纳于保护套800内。
97.整个血液循环辅助装置需要介入患者体内时,保护套800可通过经皮手术沿预定的介入轨迹将处于其内的泵体100、第二球囊700、鞘管500以及第一球囊300同步带入相应的血管或输血器官内,而后,操作医生再将保护套800从患者体内抽出,使得壳体130以及设于壳体130内的旋转叶轮在自身的弹性作用下沿径向向外扩张,从而增大了壳体130的内径和旋转叶轮的外径,相应的,设置于壳体130的血液入口110、血流通道以及血液出口120的内径均得到扩张增大,以此达到对患者产生较小的手术创口面积的前提下,进一步提高泵体100将左心室10内的血液泵送至主动脉30的输送流量的效果。同时,确保整个泵体100能够产生足够的泵血流量的基础上,进一步使得泵体100以及整个血液循环辅助装置更加微型化,进一步减轻了血液循环辅助装置介入患者体内而造成的组织损伤。
98.此外,在本技术的一些实施例中,保护套800呈两端开口的管状,以此方便保护套800从患者体内抽出。
99.在本技术的一些实施例中,还包括设于体内或体外的驱动件,驱动件的输出端直接或间接地与泵体100连接,以驱动泵体100运行,控制器400与驱动件电连接,以控制驱动件的驱动速率。
100.具体的,驱动件可为电机或马达。当驱动件设于患者体内时,驱动件可直接设于泵体100内并使得驱动件的输出端与泵体100的旋转叶轮直接连接;当驱动件设于体外时,驱动件的输出端通过传动绞丝与泵体100的旋转叶轮间接传动连接,传动绞丝可穿设于鞘管500内。同样的,控制器400被编程以接收指示患者的左心室10和主动脉30之间的血流动力学状态的变化或波动信号,根据该信号来实时通过驱动件驱动控制泵体100的旋转叶轮的旋转速率,进而达到实时调节泵体100的泵血流量的效果。当然,为了进一步提供泵体100的泵血流量,泵体100内的旋转叶轮可以具有多个,多个旋转叶轮沿周向分布,并将旋转叶轮设计为螺旋叶,以此增大对血液的抽吸效果。
101.另外,参见图8和图16,本技术还提供了一种控制系统,该控制系统包括上述的血液循环辅助装置以及信号电极200。其中,信号电极200可耦合至泵体100伸入心室的部位,以获取心室的心电图信号,控制器400包括第一处理器410和第二处理器420,第一处理器410与信号电极200电连接,以接收心电图信号,并基于心电图信号来控制第一球囊300的充气频率和放气频率,第二处理器420与泵体100电连接,以控制泵体100的运行速率。
102.同样的,本技术的控制系统以患者左心室10以及与左心室10连通的主动脉30为应用场景为例即在本实施例中,心室具体为左心室10,血管具体为主动脉30说明本控制系统的具体应用、工作原理以及带来的效果。
103.在本实施例中,第一处理器410被编程基于信号电极200获取的心电图信号反馈的心脏搏动周期或搏动频率来实时调整第一球囊300的充气频率、放气频率以及充气和放气
的间隔周期,以此间歇地驱动第一球囊300充气和放气,从而产生与患者心脏搏动同步的搏动性血流。需要说明的是,第一处理器410可通过体外的心电图设备与信号电极200信号连接。
104.同理,第二处理器420可根据植入患者主动脉30的压力传感器所监测的压力信号,从而根据该压力信号转化成的血液流量信号来控制泵体100的运行速度,进而实时调整泵体100的泵血流量。通过上述设置,使得本技术的血液循环辅助装置在第一处理器410和第二处理器420的精确控制下为患者心脏提供更为有效和可靠的血液循环支持,进一步促进了患者心脏及其他组织器官功能的恢复。
105.另外,在本技术的一些实施例中,第一球囊300内设有第一压力传感器,第一压力传感器用于监测第一球囊300内的压力,第一处理器410与第一压力传感器电连接,并基于第一压力传感器的压力信号来控制第一球囊300的充气量。
106.应该理解的是,在本实施例中,第一压力传感器可实时监测第一球囊300内的压力,控制器400即基于该压力信号判断第一球囊300的充气量或放气量是否符合要求,以此控制第一球囊300对降主动脉40的封堵程度,以使主动脉30内的血液流量符合对分支动脉和组织器官的供血要求。
107.显然,本技术的血液循环辅助装置以及控制系统,能够产生与患者心脏搏动(舒张与收缩)特性相适配的搏动性血流,有效消除了传统心室辅助装置产生的连续性血流而带来的并发症风险,减轻了心室负担,有利于术中患者体征稳定和术后康复,促进患者心脏恢复。
108.需要说明的是,本技术的血液循环辅助装置以及控制系统不限制于仅应用于左心室以及与左心室连通的主动脉的这一段血液流路中,还可应用于右心室以及与右心室连通的肺动脉等血流流路中,产生的效果原理与上述的说明一致,在此不再赘述。
109.以上,仅为本技术实施例的具体实施方式,但本技术实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本技术实施例揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本技术实施例的保护范围之内。因此,本技术实施例的保护范围应以权利要求的保护范围为准。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1