焙烧过的耐火模制体的制作方法

文档序号:1836406阅读:242来源:国知局
专利名称:焙烧过的耐火模制体的制作方法
技术领域
本发明涉及一种焙烧过的耐火模制体。
耐火模制体作为砖块或以特殊形式(例如作为管、浇注口、喷嘴、板)特别是用于金属熔融容器装置中。
本发明的重点在于提供所谓的功能性产品,即上述的特殊形式。
例如在用于钢水流动控制的滑阀封闭系统中需要特别是需具有下列特性的优质耐火产品·必需耐受钢水或其相应渣的腐蚀性成分,·应具有优良的耐温度交变性能,以避免如在与高温钢最初接触时的裂纹形成,·板必需具有优良的滑动性,因为其要相互移动。这时必需同时确保沿板面(除出口区外)的绝对密合性。
至少对耐热冲击性和耐热性的要求同样适于所谓自由流动喷嘴或其它功能性产品。
对这类要求,现有技术是利用基于氧化锆的材料,即基于ZrO2的材料。该产品的制备是采用精细陶瓷生产法,以达到例如高密度。使用粒度级<0.5mm的原料(例如斜锆石),并将其研磨到d50约为5um或更小。经材料研磨和加入粘合剂后,通过在如120-169MPa的压力下压制进行成型。再经其后例如在1600-1700℃下的氧化性气氛中焙烧可达到表观密度约为4.7g/cm3和开口孔体积约为15%。焙烧收缩约为10%。
然后用焦油浸渍一次或多次以精加工产品,这使开口孔隙度下降到约4-5体积%。接着在约500℃下退火后逸出挥发性的焦油成分。残余碳含量按整个模制体计约为1-2重量%。
这类产品经证实基本上是适用的。其缺点在于高的焙烧收缩。高密度和大部分开口孔隙度由微孔(d50<3μm)组成的情形一方面阻止了进一步的更强烈的焦油浸透,另一方面也是耐热冲击性不足的原因。
因此本发明的目的在于提供一种经焙烧过的耐火模制体,特别是用于制备所述类型的功能性产品的模制体,其中有利地达到所述特性的互补。
在系统实验中详细研究了各种参数例如颗粒结构、孔隙度、浸渍特性等。实验证实,特别是明显的焙烧收缩是现有技术产品的缺点。如果使用已经焙烧过一次的材料(下面称为二次材料)作为制备的基本物料可明显减少焙烧收缩。该二次材料可以是上面作为现有技术描述的材料。按本发明,该二次材料经破碎到一定的粒度,用粘合剂如淀粉精加工,压制成所需模制体并接着焙烧。通过应用经焙烧过的二次原料大大降低了焙烧收缩。同时增加了焙烧后的孔隙度,因为在二次原料的颗粒之间形成附加的孔体积。这些孔明显大于(二次基本物料的)各颗粒中的孔,从而有利于其后的焦油浸渍和使明显较多的碳可渗入该模制体中。
在其最通常的实施方案中,本发明涉及一种其结构如下的经焙烧过的耐火模制体·至少75重量%由粒度达3mm的经预焙烧过的耐火二次材料组成,和·孔体积为10-30%,该模制体经焙烧后其至少部分由含C材料所充填,其中·所述碳含量按模制体计大于3重量%。
按实施方案,该耐火二次材料的含量大于80、85、90或也可大于95重量%,粒度也可选为<2mm或<1mm。按一个实施方案,使用0.4-0.6mm的粒度d50。因此其余配料成分(所述含C填充料不属此列)的含量为<5重量%、<10重量%、<15重量%、<20重量%或<25重量%,例如最小含量为3重量%、5重量%、8重量%、10重量%、15重量%或20重量%。
单个颗粒(根据现有技术)的孔隙度例如为10或15体积%,而通过第二次焙烧会由于在该二次材料的各颗粒之间的楔状区域(空隙)而产生明显更高的开口孔体积。例如至少50%的孔的直径>6μm,而在现有技术中,大部分孔的直径<3μm。本发明中的孔的直径为10um或更大。
按照一个实施方案,该开孔体积的下限(焙烧后但在浸渍前)为15%或20%,而不是10%。
该模制体可经含碳材料例如焦油、沥青等浸渍一次或多次。由于较大的孔体积和具有较大直径的孔,该经浸渍和接着经退火后的构件的残余碳含量被调节到>5重量%。
按一个实施方案,该经预焙烧的耐火二次材料的至少90重量%由ZrO2组成。该ZrO2可为纯的二氧化锆或例如通过MgO和/或CaO稳定化或部分稳定化过的氧化锆。合适的原料可参阅Schulle“Feuerfeste Werkstoffe”,第1版1990,第221-223页(ISBN 3-342-00306-5)。合适的二次材料也可是再循环材料。其可以是产品废料或经使用过的材料。也可应用经熔融、凝固和然后经焙烧过的材料作为二次材料。
按一个实施方案,在该模制体经含碳材料浸渍并接着该模制体经退火后,保留的孔隙度为4.5-7.5体积%。
除按本发明所拟定的至少75重量%的二次原料外,类似地还可在配料中加入不超过25重量%的其它耐火成分,例如类似矿物或化学组成的原始材料(例如斜锆石)。优选使用呈细粒状的原材料。它同时可用于部分填充该二次材料的较粗颗粒间的楔形区域。
下面用两个实施例详述本发明实施例1将85重量%的经预焙烧过的和粒度<1mm的颗粒状ZrO2与15重量%的粒度<1mm的斜锆石(未经预焙烧)与淀粉(作为粘合剂)相混合,并接着在130MPa下压制成模制体。
经干燥后该模制体在1640℃下于氧化性气氛中焙烧。该模制体的表现密度随即约为4.2g/cm3,孔隙度为25体积%。焙烧收缩为1.5重量%。
经焙烧后该模制体用焦油浸渍,并在500℃下退火。之后再进行一次焦油浸渍和接着的退火。残余碳含量按模制体计达5.5重量%。
该模制体的冷弯曲强度和热弯曲强度虽然小于开头提及的按现有技术的产品(其仅由初级原料制备);但大大减少的焙烧收缩(仅约1.0%)以及明显改进的渗入稳定性和优良的耐热冲击性对所述作为滑阀板或作为自由流动喷嘴的应用具有明显较大的重要性。
实施例2将斜锆石熔融,并接着冷却。随后将如此形成的“熔块”破碎成0.2-3mm的颗粒。用该粒状二次材料代替一半实施例1中的二次材料。试验值均相似。
在现有技术和本发明之间的差别也示于所附的显微照片中。

图1示出具有特细的和弥散的孔隙度的基本均匀的结构。图2涉及本发明的产品。明显可见该二次原料的粗颗粒和在颗粒界面中的由含碳材料填充的粗孔。
在现有技术和本发明之间的差别也可通过各孔大小分布看出(按压汞测孔法测定)。
该所述的二次原料本身或多或少仅含直径<3μm的孔(在各种情况下多于50%的孔具有直径<3μm),而在本发明中的经两次焙烧的产品的孔大小分布却具有明显更大的孔直径,特别是>10μm的值。
如果将孔直径(对数)相对于孔分布或相对开口孔隙度(各以%表示)绘关系图,则对本发明的产品得出第一最大值在约3μm处,第二最大值在约10μm处的孔分布。该第二最大值产生于经焙烧过的二次原料的进一步后处理和第二焙烧过程。
而通常得到孔直径低于5μm的第一最大值和孔直径高于8μm的第二最大值。
在本发明申请中所给出的特性值或测量数据均各参阅下列标准表观密度和孔隙度DIN EN 993-1弯曲强度DIN EN 993-6.7粒度分布(大于约100μm) DIN ISO 3310粒度分布(小于100μm)DIN ISO 13320热膨胀(焙烧收缩)DIN 51045残余碳含量 ASTM C 831-93孔大小分布 DIN 6613权利要求
1.一种焙烧过的耐火模制体,其结构为a)至少75重量%由粒度达3mm的经预焙烧过的耐火二次材料组成,和b)开口孔体积为10-30%,经焙烧后其至少部分由含碳材料所填充,其中c)碳含量按模制体计大于3重量%。
2.权利要求1的模制体,其二次材料呈d50小于1mm的粒级存在。
3.权利要求1的模制体,在用含碳材料填充前其开口孔体积为20-30%。
4.权利要求1的模制体,其碳含量大于5重量%。
5.权利要求1的模制体,其二次材料至少90重量%由ZrO2组成。
6.权利要求1的模制体,其二次材料由经稳定的、部分稳定的、准稳定的ZrO2或其混合物组成。
7.权利要求1的模制体,经含碳材料填充并接着退火后,其开口孔隙度为4.5-7.5体积%。
8.权利要求1的模制体,其结构含5-25重量%的耐火原材料。
9.权利要求8的模制体,其原材料在矿物学上、化学上或者矿物学和化学上相应于二次材料。
10.权利要求8或9的模制体,其原材料以小于0.3mm的粒级存在。
11.权利要求1的模制体,其二次材料是再循环材料。
12.权利要求1的模制体,在孔直径(对数)相对于相对开口孔隙度或孔分布的关系图上,其孔分布产生至少两个最大值。
13.权利要求12的模制体,其中第一最大值在小于5μm处,第二最大值在大于8μm处。
全文摘要
本发明涉及一种焙烧过的耐火模制体,其结构为a)至少75重量%由粒度达3mm的经预焙烧过的耐火二次材料组成,和b)开口孔体积为10-30%,经焙烧后其至少部分由含碳材料所填充,其中c)碳含量按模制体计大于3重量%。
文档编号C04B38/00GK1905970SQ200580001632
公开日2007年1月31日 申请日期2005年6月2日 优先权日2004年6月17日
发明者M·米勒, M·维塞 申请人:里弗雷克特里知识产权两合公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1