阶梯-深潭型泥石流排导槽的设计纵比降测算方法及应用

文档序号:8918546阅读:1473来源:国知局
阶梯-深潭型泥石流排导槽的设计纵比降测算方法及应用
【技术领域】
[0001] 本发明涉及一种适用于很大沟床纵比降泥石流沟的阶梯-深潭结构型泥石流排 导槽设计纵比降测算方法,及其在阶梯-深潭型泥石流排导槽纵断面设计中的应用。
【背景技术】
[0002] 我国地质灾害多发,泥石流作为主要的山地灾害之一,给人民生命财产安全和生 产生活带来了严重影响,对山区经济发展也产生了一定的制约作用。尤其是"5. 12"汶川 Ms8. 0级大地震之后,震区泥石流活动因物源丰富、地形地貌条件优越,具有易堵溃、低临界 雨量、高频率、高容重等特点,震后有相当数量的泥石流活动集中在流域面积< 5km2、沟道 纵比降> 20%,甚至达50%的沟道或坡面上。这类多物源、大比降泥石流沟在形成条件上 与东川蒋家沟泥石流和成昆铁路沿线众多泥石流沟有着明显差异,目前常用的泥石流防治 工程技术已经不能满足当前泥石流工程治理需求。
[0003]针对沟床比降很大的泥石流沟,目前常用的全衬砌型泥石流排导槽(俗称V型槽) 和肋槛软基消能型泥石流排导槽(俗称东川槽)均不太适用。陈晓清等人以消能的观点为 指导思想,提出了一种适用于很大沟床纵比降泥石流沟的阶梯-深潭结构型泥石流排导槽 (申请号201410001807. 7),其中描述了"梯-潭"槽的结构特征,分析了"梯-潭"槽的排 导原理,但对其具体设计参数确定及纵比降特性的计算方法并未涉及。
[0004] 现有的排导槽纵比降设计区分泥石流性质,分别按照稀性泥石流和粘性泥石流来 考虑,并以不淤纵坡为下限,以防冲的限制断面流速对应的纵坡为上限,得到经验取值:对 于稀性泥石流合理纵坡为3 %~10 %,对于粘性泥石流合理纵坡为5 %~18 %。部分震后泥 石流沟道纵比降> 20 %,甚至达50 %,上述经验取值无法应用于这类泥石流沟道。阶梯-深 潭结构型泥石流排导槽具有间接降低泥石流分段排泄纵坡的特性,但难点在于如何定义适 当的参数、建立各参数之间的关系,定量评估这一特性,并将其应用到工程设计。

【发明内容】

[0005]本发明的目的就是针对现有技术的不足,提供一种阶梯-深潭型泥石流排导槽的 设计纵比降测算方法及其应用,该方法基于严格的理论推导,并定义有物理意义的无量纲 参数,能够合理确定阶梯_深潭型泥石流排导槽的设计纵比降,为排导槽的纵断面设计提 供依据,计算简便,计算结果精度高,能适应实际工程需要。
[0006] 为实现上述目的,本发明的技术方案是:
[0007] 本发明提出一种阶梯-深潭型泥石流排导槽的设计纵比降测算方法,所述阶 梯-深潭型泥石流排导槽包括排导槽槽底及其两侧的排导槽侧墙,所述排导槽槽底包括若 干按一定间距设置的全衬砌的阶梯段和充填于上下游阶梯段之间的深潭段;所述阶梯段 包括位于上游的上端齿槛、位于下游的下端齿槛、及连接上端齿槛和下端齿槛的全衬砌底 板;所述深潭段包括钢索网箱体护底,设于钢索网箱体护底上方、紧贴下游阶梯段上端齿槛 的钢索网箱体缓冲层,以及设于侧墙、钢索网箱体护底、上游阶梯段下端齿槛和钢索网箱体 缓冲层包围空间内的块石;钢索网箱体护底和钢索网箱体缓冲层的结构均为钢索网包裹块 石;所述深潭段顶面与下游阶梯段的最高处平齐。
[0008] 本发明提出的阶梯-深潭型泥石流排导槽的设计纵比降测算方法,其理论推导如 下:如说明书附图1所示,推导以排导槽设计总长度L、阶梯段悬空高度H、深潭段数量n、深 潭段长度U和阶梯段长度L2为参数的排导槽设计纵比降i与天然沟道平均纵比降i^关系, 并建立阶梯-深潭型泥石流排导槽的设计纵比降计算方法。
[0009] 如附图1所示,排导槽起点与终点之间,沟道纵坡满足:
[0010]
[0011] 公式1中,分子nXH+(n+l)XiXL3为垂直方向上的距离,分母nXLi+Oi+l)XL# 水平方向上的距离,故二者相除为天然沟道纵比降i〇。其中,iXL3为阶梯段长度L2在垂直 方向上的投影长度。
[0012] 如附图1所示,任一阶梯段的起点与终点之间,设计纵比降满足:
[0013]
[0014] 公式1和2中,n为深潭段数量、H为阶梯段悬空高度、i为排导槽设计纵比降、L3 为阶梯段长度的水平投影长度、1^为深潭段长度、h为天然沟道平均纵比降、L2为阶梯段长 度。
[0015] 由公式2解出
,然后代入公式1中,并按照i的降幂排列得到公 式3 :
[0016]
[0017] 定义无量纲参数坡比a=H/Q、潭配置密度b= ,对公式3两侧同乘以1/L/ 得:
[0018]
[0019]根据水力学阶梯溢洪道的取值,同时考虑泥石流流体性质的修正值,无量纲参数 坡比a-般取值为0. 2-0. 5 ;根据东川槽的肋槛配置间距,潭配置密度b-般取值为1-10 ; 深潭段数量n的取值为n多1 ;根据调查和实践经验,一般排导槽设计纵比降为0. 05-0. 20, 阶梯-深潭型泥石流排导槽适用于天然沟道纵比降为0. 20-0. 40。通过上述边界条件限制, 得到阶梯-深潭型泥石流排导槽的纵比降特性的适用条件,如下公式5 :
[0020]
[0021] 本发明在上述计算理论分析基础之上,提出一种阶梯-深潭型泥石流排导槽的设 计纵比降测算方法,并给定了测算方法中各个参数的限制关系。具体而言,所述阶梯-深潭 型泥石流排导槽的设计纵比降测算方法步骤如下:
[0022] (一)通过现场调查实测,确定排导槽选址范围内的天然沟道平均纵比降k通过 现场调查,并结合工程实际情况,确定排导槽设计总长度L、单位m,及阶梯段悬空高度H、取 值3-5m。对于粘性泥石流,H取较小值,对于稀性泥石流,H取较大值。
[0023] (二)通过现场调查,并结合工程实际情况,确定无量纲参数坡比a、取值0. 2-0. 5, 及潭配置密度b、取值1-10 ;对于粘性泥石流,a、b取较小值,对于稀性泥石流,a、b取较大 值。无量纲参数坡比a的含义为阶梯段悬空高度与深潭段长度的比值,潭配置密度b的含 义为阶梯段长度与深潭段长度的比值,即a=H/Lpb= ,其中H为阶梯段悬空高度、U 为深潭段长度、L2为阶梯段长度、单位均为m,阶梯段悬空高度H的取值由步骤(一)确定。
[0024] (三)通过以下公式确定深潭段的数量n
[0025] v
U'
[0026] 式中,n-深潭段数量(n取整数,即先
然后向上 取整);
[0027] L一排导槽设计总长度,单位m,由步骤(一)确定;
[0028] iQ-天然沟道平均纵比降,由步骤(一)确定;
[0029] a-无量纲参数坡比,由步骤(二)确定;
[0030] b-潭配置密度,由步骤(二)确定;
[0031] H-阶梯段悬空高度,由步骤(一)确定。
[0032] 深潭段数量n的计算公式是将排导槽设计总长度L整体投影到水平轴上得到水平 距离,再将深潭段长度U和阶梯段长度L2也分别投影到水平轴上得到水平距离,前者除以 后者即可得到深潭段数量n。
[0033] (四)将步骤(一)中得到的天然沟道平均纵比降iQ,步骤(二)中得到的无量 纲参数坡比a、潭配置密度b,及步骤(三)中得到的深潭段(2)数量n,分别代入以下公式, 求解排导槽设计纵比降i(即阶梯段设计纵比降)
[0034]
[0035] (五)如果步骤(四)中得到的排导槽设计纵比降i大于等于0.05同时小于等于 0. 20,则测算结束;如果步骤(四)中得到的排导槽设计纵比降i大于0. 20、或小于0. 05, 则重复进行步骤(二)一步骤(四)。
[0036] 本发明的阶梯-深潭型泥石流排导槽设计纵比降测算方法适用于天然沟道平均 纵比降、为0. 20-0. 40的泥石流沟。适用于阶梯-深潭型泥石流排导槽的纵断面设计参 数的确定;排导槽设计纵比降i确定后,将求解排导槽设计纵比降i所用的无量纲参数坡比 a、潭配置密度b和步骤(一)中得到的阶梯段悬空高度H分别代入公式a=H/Lpb=L2/ U,得到深潭段长度U和阶梯段长度L2。
[0037] 排导槽设计纵比降i确定后,还可进一步计算纵比降降低率n= (icri)/%。通过 纵比降降低率来定量评价阶梯-深潭型泥石流排导槽通过设置阶梯段悬空高度分段排泄 泥石流以达到分段、间接降低沟道整体纵比降的特性,评估测算得到的排导槽设计纵比降i 与天然沟道平均纵比降L相比所发挥的效益。
[0038] 与现有技术相比,本发明的有益效果是:通过理论推导建立了阶梯-深潭型泥石 流排导槽设计纵比降i与天然沟道纵比降L的定量关系,得到阶梯-深潭型泥石流排导 槽设计纵比降计算公式,通过野外调查天然沟道,输入排导槽设计总长度L、阶梯段悬空高 度H、无量纲参数坡比a和潭配置密度b等相关参数,就能合理确定阶梯-深潭型泥石流排 导槽的设计纵比降,为排导槽的纵断面设计提供依据,为定量评估阶梯-深潭型泥石流排 导槽的分段降低纵比降特性提供了方法,且计算简便,计算结果精度高,能适应实际工程需 要。
【附图说明】
[0039] 图1是阶梯-深潭型泥石流排导槽的纵剖面示意图。
[0040] 图中标号如下:
[0041]
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1