用于生产焊接基质的方法、工艺和设备与流程

文档序号:22582654发布日期:2020-10-20 17:09阅读:116来源:国知局
用于生产焊接基质的方法、工艺和设备与流程
相关申请的交叉引用本申请要求于2017年11月11日提交的美国临时专利申请no.62/584,795的优先权,该美国临时申请通过引用整体并入本文。本公开涉及用于生产纤维复合材料的方法、可以由这些纤维复合材料制成的产品以及用于生产着色的焊接基质的方法。
背景技术
:合成聚合物(诸如聚苯乙烯)通常使用溶剂(诸如二氯甲烷)焊接。离子液体(例如1-乙基-3-甲基咪唑乙酸盐)能够在无需衍生化的情况下溶解天然纤维生物聚合物(例如纤维素和丝)。天然纤维焊接是生物聚合物纤维以与传统塑料焊接大致类似的方式熔合的工艺。如美国专利no.8,202,379(其通过引用整体并入本文)中所公开的,可以用于部分溶解天然纤维以进行结构和化学改性的一种类型的工艺溶剂(processsolvent)是离子液体基溶剂。该专利公开了使用台式设备和材料开发的基本原理。然而,在其他方面,该专利未公开用于以商业规模制造复合材料的方法和设备。具有天然纤维生物聚合物溶液被浇铸到模具中以产生期望的大致二维形状的示例。在这些情况下,生物聚合物被完全溶解,从而破坏原始结构并使生物聚合物变性。相比之下,对于纤维焊接,纤维内部(每一根纤维的芯)被有意地留在其原生状态。因为由生物聚合物构成的最终结构保留了一些原始材料性质,以从诸如丝、纤维素、甲壳素、壳聚糖、其他多糖及其组合的生物聚合物产生耐性材料,所以这是有利的。使用生物聚合物溶液的传统方法的缺点是:在溶液中能够溶解多少聚合物存在物理限制。例如,即使在升高温度的情况下,棉(纤维素)的质量比为10%和离子液体溶剂的质量比为90%的溶液也是粘性的并且难以处理的。纤维焊接工艺允许在焊接开始之前将纤维束操纵成所需的形状。天然纤维的使用和处理通常允许控制最终产品的设计,这对于基于溶液的技术是不可能的。附图说明被包含在本说明书中并构成其一部分的附图示出了实施例,并与说明书一起用于解释方法和系统的原理。图1提供了用于生产焊接基质的工艺的各个方面的示意图。图2提供了用于生产焊接基质的另一工艺的各个方面的示意图。图2a提供了可以与焊接工艺一起使用的一种类型的工艺溶剂回收区的示意图。图3示出了使用图3(也被称为图3a-3e)的子工艺或组分在纤维基复合物内添加和物理截留固体材料的工艺。功能材料在焊接前被预先分散在纤维基质中。图4示出了使用图4(也被称为图4a-4d)的子工艺或组分,利用(预)分散在il基溶剂中的材料,在纤维基复合物内添加和物理截留固体材料的工艺。图5示出了使用图5(也被称为图5a-5d)的子工艺或组分,利用(预)分散在il基溶剂中的材料与另外的溶解的聚合物,在纤维基复合物内添加和物理截留固体材料的工艺。图6a提供了工艺溶剂应用区的一种配置的侧视剖视图。图6b提供了工艺溶剂应用区的另一配置的透视图。图6c提供了工艺溶剂应用区的另一配置的透视图。图6d提供了可以与各种焊接工艺一起使用的设备的侧视图。图6e提供了图6d的设备的侧视图,其中板相对于彼此被不同地设置。图6f提供了可以与各种焊接工艺一起使用的设备的侧视图,其中该设备可以被配置成与彼此相邻设置的多个1d基质一起使用。图7a是可以用于生产图7c中所示的焊接基质的焊接工艺的示意图。图7b提供了由30/1环锭纺棉纱组成的原始1d基质的扫描电子显微镜图像。图7c提供了图7b中所示的原始基质在另一种焊接工艺中使用包括离子液体的工艺溶剂被处理以生产焊接基质之后的扫描电子显微镜图像。图7d提供了代表性原始纱线基质样品和图7c的代表性焊接纱线基质样品相对于百分比伸长率的应力(以克为单位)的图示,其中顶部曲线是焊接纱线基质,而底部迹线是原始纱线基质。图8a是可以用于生产图8c中所示的焊接基质的焊接工艺的示意图。图8b提供了由30/1环锭纺棉纱组成的原始1d基质的扫描电子显微镜图像。图8c提供了图8b中所示的原始基质在另一种焊接工艺中使用包括离子液体的工艺溶剂被处理以生产焊接基质之后的扫描电子显微镜图像。图8d提供了代表性原始纱线基质样品和图8c的代表性焊接纱线基质样品相对于百分比伸长率的应力(以克为单位)的图示,其中顶部曲线是焊接纱线基质,而底部迹线是原始纱线基质。图9a是可以被配置成生产图9c-9e中所示的焊接基质的焊接工艺的透视图。图9b提供了由30/1环锭纺棉纱组成的原始1d基质的扫描电子显微镜图像。图9c提供了图9b中所示的原始基质在焊接工艺中使用包括离子液体的工艺溶剂处理之后的扫描电子显微镜图像,其中焊接基质是轻度焊接的。图9d提供了图9b中所示的原始基质在焊接工艺中使用包括离子液体的工艺溶剂处理之后的扫描电子显微镜图像,其中焊接基质是中度焊接的。图9e提供了图9b中所示的原始基质在焊接工艺中使用包括离子液体的工艺溶剂处理之后的扫描电子显微镜图像,其中焊接基质是高度焊接的。图9f提供了由图9d中所示的焊接基质制成的织物的图像。图9g提供了代表性原始纱线基质样品和图9c和图9k的代表性焊接纱线基质样品相对于百分比伸长率的应力(以克为单位)的图示,其中顶部曲线是焊接纱线基质,而底部迹线是原始纱线基质。图9h在图片的左侧提供了由图9b中所示的原始基质制成的织物并在图片的右侧提供了由图9d中所示的焊接基质制成的织物的图像。图9i和图9j提供了可以被认为是壳焊接基质的焊接基质的图像。图9k提供了图9b中所示的原始基质在焊接工艺中使用包括离子液体的工艺溶剂处理之后的扫描电子显微镜图像,其中焊接基质是轻度焊接的。图9l提供了图9b中所示的原始基质在焊接工艺中使用包括离子液体的工艺溶剂处理之后的扫描电子显微镜图像,其中焊接基质是中度焊接的。图9m提供了图9b中所示的原始基质在焊接工艺中使用包括离子液体的工艺溶剂处理之后的扫描电子显微镜图像,其中焊接基质是高度焊接的。图10a是可以被配置成生产图10c-10f中所示的焊接基质的焊接工艺的透视图。图10b提供了由30/1环锭纺棉纱组成的多个原始1d基质的扫描电子显微镜图像。图10c提供了图10b中所示的原始基质在焊接工艺中使用包括氢氧化物的工艺溶剂处理之后的扫描电子显微镜图像,其中焊接基质是轻度焊接的。图10d提供了图10b中所示的原始基质在焊接工艺中使用包括氢氧化物的工艺溶剂处理之后的扫描电子显微镜图像,其中焊接基质是中度焊接的。图10e提供了图10b中所示的原始基质在焊接工艺中使用包括氢氧化物的工艺溶剂处理之后的扫描电子显微镜图像,其中焊接基质是高度焊接的。图10f提供了图10e的中心焊接基质的一部分的放大图像。图10g提供了代表性原始纱线基质样品和图10c的代表性焊接纱线基质样品相对于百分比伸长率的应力(以克为单位)的图示,其中顶部曲线是焊接纱线基质,而底部迹线是原始纱线基质。图11a提供了示出调节纤维焊接工艺的各个方面的示意图。图11b提供了示出调节纤维焊接工艺的其他方面的示意图。图11c提供了示出调节纤维焊接工艺的其他方面的示意图。图11d提供了示出调节纤维焊接工艺的其他方面的示意图。图11e提供了通过调节焊接工艺生产的焊接基质的图像,其中图的右侧上的部分是轻度焊接的并且图的右侧上的部分是高度焊接的。图11f提供了由调节的焊接基质制成的织物的另一图像,其中该织物表现出杂色效果(heatheringeffect)。图12a提供了由牛仔布构成的原始2d基质的扫描电子显微镜图像。图12b提供了图12a的原始基质在被加工成高度焊接的焊接基质之后的扫描电子显微镜图像。图12c提供了由针织物构成的原始2d基质的扫描电子显微镜图像。图12d提供了图12c的原始基质在被加工成中度焊接的焊接基质之后的扫描电子显微镜图像。图12e提供了由平纹针织棉织物构成的原始2d基质的扫描电子显微镜图像。图12f提供了图12e的原始基质在被加工成轻度焊接的焊接基质之后的扫描电子显微镜图像。图12g提供了由平纹针织棉织物构成的原始2d基质的放大的扫描电子显微镜图像。图12h提供了图12e的原始基质在被加工成轻度焊接的焊接基质之后的放大的扫描电子显微镜图像。图13提供了使用在大约20℃下具有重构溶剂(reconstitutionsolvent)的焊接工艺生产的焊接纱线基质的扫描电子显微镜图像。图14a提供了使用在大约22℃下具有重构溶剂的焊接工艺生产的焊接纱线基质的扫描电子显微镜图像。图14b提供了使用在大约40℃下具有重构溶剂的焊接工艺生产的焊接纱线基质的扫描电子显微镜图像。图15a提供了曲线a上的原棉纱线和从被完全溶解在离子液体中的原棉纱线基质重构的棉纱的x射线衍射数据。图15b提供了由图15a的曲线a中所示的相同原棉纱线基质生产的三种不同的焊接纱线基质的x射线衍射数据。图16a提供了示出各种单独棉纤维的原棉纱线基质的横截面的绘图。图16b提供了使用现有技术被环染色的原棉纱线基质的横截面的绘图。图17a提供了可通过一种染色和焊接工艺生产的焊接纱线基质的横截面的绘图。图17b提供了来自于图17a所示的焊接纱线基质的单支焊接纤维的横截面的绘图。图18a提供了可以通过另一种染色和焊接工艺生产的焊接纱线基质的横截面的绘图。图18b提供了来自于图18a所示的焊接纱线基质的单支焊接纤维的横截面的绘图。图19a提供了可以通过焊接工艺生产的焊接纱线基质的横截面的绘图。图19b提供了可以通过另一种焊接工艺生产的焊接纱线基质的横截面的绘图。图19c提供了可以通过另一种焊接工艺生产的焊接纱线基质的横截面的绘图。图20提供了原始纱线基质的横截面的绘图。图21提供了示出在某些关注区域中的不同焊接程度的各种原始基质的关注区域的横截面的绘图。图22a提供了已被均匀焊接的纱线的横截面的绘图。图22b提供了已被壳焊接的纱线的横截面的绘图。图22c提供了已被芯焊接的纱线的横截面的绘图。图22d提供了已被均匀焊接并且在其上应用了糖果(candy)涂层焊接的纱线的横截面的绘图。图22e提供了已被壳焊接并且在其上应用了糖果涂层焊接的纱线的横截面的绘图。图23提供了可以通过调节焊接工艺生产的焊接纱线以及沿着焊接纱线的长度的两个不同点处的横截面特性的绘图。图24提供了可以通过调节焊接工艺生产的另一种焊接纱线以及沿着焊接纱线长度的两个不同点处的横截面特性的绘图。图25是取决于焊接工艺的具体配置如何可以操纵三个不同自变量的图示。图26是取决于焊接工艺的具体配置如何可以操纵四个不同自变量的图示。图27a是具有壳焊接的焊接纱线基质的扫描电子显微镜图像,其中纱线壳具有硬焊接而纱线芯具有中等焊接,并且其中焊接的纱线基质被配置有通常卵形的横截面形状。图27b是具有壳焊接的焊接纱线基质的扫描电子显微镜图像,其中纱线壳具有硬焊接而纱线芯具有中等焊接,并且其中焊接的纱线基质被配置有通常圆形的截面形状。图27c是具有壳焊接的焊接纱线基质的扫描电子显微镜图像,其中纱线壳具有软焊接而纱线芯没有焊接。图27d是具有壳焊接的焊接纱线基质的扫描电子显微镜图像,其中纱线壳具有中等焊接而纱线芯具有软焊接。这里的图可能被原始切割图28不同类型的焊接纱线形态的表示,其中较暗的区域通常表示该区域内的单根纤维之间的相对较多的焊接。图29a是原纱线基质的侧视图。图29b是来自于图29a的原始纱线基质在沿着垂直于原始纱线基质的纵轴的平面被切割之后的端视图,该平面具有近似于原始纱线基质的横截面面积的圆。图29c是具有相对低程度的焊接的壳焊接纱线基质的侧视图。图29d是来自于图29c的焊接纱线基质在沿着垂直于焊接纱线基质的纵轴的平面被切割之后的端视图,该平面具有近似于焊接纱线基质的横截面面积的圆。图30a是图29a和图29b的原始纱线基质在沿着垂直于原始纱线基质的纵轴的平面被切割之后的端视图。图30b提供了三个壳焊接纱线基质在沿着垂直于焊接纱线基质的纵轴的平面被切割之后的横截面视图,其中相对程度的焊接从左向右增加。图31a提供了具有相对中等程度的焊接的壳焊接纱线基质的横截面视图。图31b提供了图31a的横截面视图的详细视图,其中同心圆叠加在横截面面积上以表示其两个不同部分。图32提供了在其上执行了各种图像分析步骤之后的图31a和图31b的横截面视图的三个附加详细视图,以及横截面面积的特定部分的纤维体积比作为该部分距横截面面积几何中心的距离的函数的结果曲线图。图33是在图32中计算出的纤维体积比与从零(原始纱线基质)到三(高度焊接的纱线基质)的焊接程度之间的图形相关性。图34a提供了具有各种叠加在其上的同心圆的图31a、图31b和图32的横截面视图。图34b提供了与图34a相关的用于表示横截面面积的一部分的焊接程度和纤维体积比与该部分距横截面面积的几何中心的距离的平滑函数。图35a提供了来自图29a和图29b的原始纱线基质在沿着垂直于原始纱线基质的纵轴的平面被切割之后的另一个端视图。图35b提供了两个芯焊接纱线基质在沿着垂直于焊接纱线基质的纵轴的平面被切割之后的横截面视图,其中相对程度的焊接从左向右增加。图36a提供了图35b中的左焊接纱线基质的横截面视图的横截面视图,该图35b具有各种叠加在其上的同心圆。图36b提供了与图36a相关的用于横截面面积的一部分的焊接程度和纤维体积比与该部分距横截面面积的几何中心的距离的平滑函数。图37a提供了用于横截面面积的一部分的焊接程度和纤维体积比与该部分距均匀地焊接到相对较高程度(例如,相对较硬的焊接)的焊接纱线基质中的横截面面积的几何中心的距离的平滑函数。图37b提供了用于横截面面积的一部分的焊接程度和纤维体积比与该部分距均匀地焊接到相对较低程度(例如,相对较软的焊接)的焊接纱线基质中的横截面面积的几何中心的距离的平滑函数。图38a提供了用于横截面面积的一部分的焊接程度和纤维体积比依赖于该部分距壳焊接到相对较高的程度(例如,相对较硬的焊接)的焊接纱线基质中的横截面面积的几何中心的距离的平滑函数。图38b提供了用于横截面面积的一部分的焊接程度和纤维体积比与该部分距壳焊接到相对较低程度(例如,相对较软的焊接)的焊接纱线基质中的横截面面积的几何中心的距离的平滑函数。图39a提供了用于横截面面积的一部分的焊接程度和纤维体积比与该部分距壳焊接到相对较高程度(例如,相对较硬的焊接)的焊接纱线基质中的横截面面积的几何中心的距离的平滑函数。图39b提供了用于横截面面积的一部分的焊接程度和纤维体积比与该部分距壳焊接到相对较低程度(例如,相对较软的焊接)的焊接纱线基质中的横截面面积的几何中心的距离的平滑函数。具体实施方式在公开和描述本方法和设备之前,应理解,方法和设备不限于具体方法、具体组件或特定实施方式。还应理解,本文使用的术语仅用于描述特定实施例/方面的目的,而不是限制性的。如说明书和所附权利要求书中所使用的,单数形式“一”、“一个”和“所述”包括复数指代物,除非上下文另有明确规定。范围在本文中可以表示为从“大约”一个特定值,和/或到“大约”另一个特定值。当表示这样的范围时,另一个实施例包括从一个特定值和/或到另一个特定值。类似地,当通过使用先行词“约”将值表示为近似值时,将理解该特定值形成另一个实施例。将进一步理解,每个范围的端点相对于另一个端点都是重要的,并且独立于另一个端点。“可选的”或“可选地”是指随后描述的事件或情况可以发生或可以不发生,并且该描述包括所述事件或情况发生的实例和不发生的实例。当提到方法,设备和/或其组件时,“方面”并不意味着需要被称为方面的限制、功能、组件等,而是它是特定说明性公开的一部分而非限制方法、设备和/或其组件的范围,除非在所附权利要求书中如此指明。在本说明书的整个说明书和权利要求书中,词语“包括”和其变体(例如“包含”和“含有”)意指“包括但不限于”,并且不旨在排除例如其他组件、整数或步骤。“示例性”指“…的示例”,并且不旨在指示优选或理想实施例。“诸如”不是用于限制性意义,而是用于解释目的。公开了能够用于执行所公开的方法和设备的组件。本文公开了这些和其他组件,并且应理解何时公开了这些组件的组合、子集、交互、组等,虽然可以不明确地公开这些组件的每个各种个体和集体组合的特定参考和置换,但是对于全部方法和设备,每个都在本文中被具体考虑和描述。这适用于本申请的所有方面,包括但不限于所公开方法中的步骤。因此,如果存在能够被执行的各种附加步骤,则应理解这些附加步骤中的每个能够利用所公开方法的任何特定实施例或实施例的组合来执行。通过参考本文包括的示例和优选方面的下面详细描述以及附图及其之前和之后的描述,可以更容易地理解本方法和设备。当涉及配置的一般性和/或相应的组件、方面、特征、功能、方法和/或构造材料等这些术语时,相应的术语可以互换使用。应当理解,本公开的应用不限于以下描述中阐述的或附图中示出的结构细节和组件布置。本公开能够以其他实施例实践或以各种方式来执行。此外,应理解本文中使用的指设备或元件方位的措辞和术语(诸如,例如“前”、“后”、“上”、“下”、“顶部”、“底部”等)仅用于简化描述,并不单指示或暗示所指的设备或元件必须具有特定方位。另外,诸如“第一”、“第二”和“第三”的术语在本文和所附权利要求书中用于描述的目的,并不旨在表示或暗示相对重要性或显著性。1.定义贯穿本公开,可以使用各种术语来描述可以结合本公开使用的工艺的某一部分、设备和/或其他组件。为清楚起见,下面紧接着提供了一些术语的定义。然而,当用于描述这些组件时,除非在所附权利要求书中如此指明,否则这些术语及其定义并不意在限制范围,而是旨在说明本公开的一个或多个方面。另外,除非在所附权利要求书中如此指明,否则包括的任何术语和/或其定义并不意在需要在本文公开的任何具体工艺或设备中表现该组件。a.基质材料如本文所用的“基质”可以包括纯生物材料(例如,棉纱等)、多种生物材料(例如,与丝纤维混合的木质纤维素纤维)、或包含已知量的生物材料的材料。在一个方面,基质可以包含天然材料,该天然材料含有至少一种通过氢键结合在一起的生物聚合物组分(例如纤维素)。在某些方面,术语“基质”可以指合成材料,例如聚酯、尼龙等;然而,术语“基质”指合成材料的实例通常将贯穿全文被特别注明。可以以限制基质的至少一种组分变性的方式来执行熔合或焊接工艺。例如,可以在适中的温度和压强下加入有限量的工艺溶剂并在受控的时间限制木质纤维素纤维的变性。“纤维素基基质”可以包括棉、纸浆和/或其他精制纤维素纤维和/或颗粒等。“基于木质纤维素的基质”可以包括木材、大麻、玉米秸秆、豆秆、草等。“基于其他糖的生物聚合物基质”可以包括几丁质、壳聚糖等。“基于蛋白质的基质”可以包括角蛋白(例如,羊毛、蹄、角、指甲)、丝、胶原蛋白、弹性蛋白,组织等。如本文所用的“原始基质”可以包括未经过任何焊接工艺的任何基质。b.基质形式类型基质形式能够是各种商业可获得或定制产品。“松散的”、一维(1d)、二维(2d)和/或三维(3d)基质都能用于根据本公开的各种工艺中。成品焊接基质或复合材料可以分别以1d、2d和/或3d成形。以下定义适用于基质和焊接基质(如下面进一步定义的)二者。“松散的”可以包括任何天然纤维和/或颗粒或以松散和/或相对未缠结的形式供给到焊接工艺中的天然纤维和/或颗粒的混合物(例如,松散棉与木纤维和/或颗粒的混合物)。“1d”可以包括纱线和线、非堆积单根纱线和线以及堆积的纱线和线。“2d”可以包括纸替代品(例如,纸板替代品、包装纸等),木板替代品(例如硬纸板、胶合板、osb、mdf、规格材等的替代品)。“3d”可以包括汽车部件、结构建筑部件(例如,挤压梁、托梁、墙壁等)、家具部件、玩具、电子箱和/或组件等。通常,产生的焊接基质或复合材料可以由大量天然材料(例如,由生命形式和/或酶产生的材料)组成,其中天然材料可以通过天然生物聚合物的熔合或焊接而不是通过胶水、树脂和/或其他粘合剂保持在一起。c.工艺溶剂体系“工艺溶剂”可以包括能够破坏基质的分子间力(例如,氢键)的材料,并且包括能够溶胀、活动和/或溶解基质内的至少一种生物聚合物组分和/或以其他方式破坏可以将一种生物聚合物组分与另一种生物聚合物组分结合的力的材料。“纯工艺溶剂”可以包括不含额外添加剂的工艺溶剂,并且可以包括离子液体、3-乙基-1-甲基咪唑乙酸盐、3-丁基-1-甲基咪唑氯化物和目前已知或以后开发的用于破坏基质的分子间力的其他类似盐。“深共晶工艺溶剂”可以包括以混合物形式掺入一种或多种化合物以得到熔点低于构成混合物的一种或多种组分的共晶的离子溶剂,并且可以进一步包括纯离子液体工艺溶剂与其他离子液体和/或分子种类混合。“混合有机工艺溶剂”可以包括与极性质子溶剂(例如甲醇)和/或极性非质子溶剂(例如乙腈)混合的离子液体(例如,3-乙基-1-甲基咪唑乙酸盐)以及含有4-甲基吗啉4-氧化物(也称为n-甲基吗啉n-氧化物,nmmo)的溶液。“混合无机工艺溶剂”可以包括盐水溶液(例如,可以与尿素或其他分子添加剂混合的lioh和/或naoh、含水氯化胍(aqueousguanidiniumchloride)、n,n-二甲基乙酰胺(dmac)中的licl等的水溶液)。在一个方面,工艺溶剂可以包含额外的功能材料,诸如相对少量(例如,质量比小于10%)的完全溶解的天然聚合物(例如,纤维素),但是也可以包含所选的合成聚合物(例如,芳香族聚酰胺),以及其他功能材料。d.功能材料“功能材料”可以包括天然或合成无机材料(例如,磁性或导电材料、磁性微粒、催化剂等),天然或合成有机材料(例如,碳、染料(包括但不限于荧光和磷光)、酶、催化剂、聚合物等)和/或可以向基质添加特征、功能和/或益处的装置(例如,rfid标签、mems装置、集成电路)。另外,功能材料可以被放置于基质和/或工艺溶剂中。e.工艺润湿的基质“工艺润湿的基质”可以指使用工艺溶剂被施加到全部或部分基质以被润湿的具有任意形式和类型组合的基质。因此,工艺润湿的基质可以含有一些部分溶解的、活动的天然聚合物。f.重构溶剂体系“重构溶剂”可以包括具有非零蒸气压的液体,并且能够与来自工艺溶剂体系的离子形成混合物。在一个方面,重构溶剂体系的一个特性可以是它不能自身溶解天然材料基质。通常,重构溶剂可以用于从基质分离和去除工艺溶剂离子。也就是说,在一个方面,重构溶剂从工艺润湿的基质中去除工艺溶剂。如此做,可以将工艺润湿的基质转变成如下定义的重构的润湿基质。重构溶剂可以包括极性质子溶剂(例如水、醇等)和/或极性非质子溶剂(例如丙酮、乙腈、乙酸乙酯等)。重构溶剂可以是分子组分的混合物,并且可以包括离子组分。在一个方面,重构溶剂可以用于帮助控制功能材料在基质内的分布。重构溶剂可以被配置成与工艺溶剂体系中的分子添加剂化学性质类似或化学性质基本相同。在一个方面,(纯)重构溶剂可以与离子组分混合以形成工艺溶剂。重构溶剂可以被配置成与工艺溶剂体系中的分子添加剂化学性质类似或化学性质基本相同。例如,乙腈是具有非零蒸气压的极性非质子分子液体,当纯净时不能溶解纤维素。可以将乙腈与足量的3-乙基-1-甲基咪唑乙酸盐混合以形成能够破坏氢键的溶液,并且可以使用乙腈作为重构溶剂。因此,含有足够浓度(离子强度)的适当离子的混合物能够用作工艺溶剂。在本公开中,不含有足够离子强度来溶解或活动(mobilize)天然基质聚合物的乙腈中的任意3-乙基-1-甲基咪唑乙酸盐的混合物被认为是重构溶剂。g.重构的润湿基质“重构的润湿基质”可以指使用被施加到全部或部分工艺润湿的基质的重构溶剂润湿的具有任意形式和类型组合的工艺润湿的基质。通常,重构润湿的基质不包含部分溶解的、活动的天然聚合物,这可能是因为通过应用重构溶剂去除了工艺溶剂。h.干燥气体系统“干燥气体”可以包括在室温和大气压下为气体的材料,但也可以是超临界流体。在一个方面,干燥气体能够与工艺润湿的基质和/或重构的润湿基质二者混合并从工艺润湿的基质和/或重构的润湿基质二者携走非零蒸气压组分(例如,全部或部分重构溶剂)。干燥气体可以是纯气体(例如氮气、氩气等)或气体混合物(例如空气)。i.焊接基质“焊接基质”可以用于指由至少一种天然基质组成的成品复合材料,在该成品复合材料中,一种或多种个体纤维和/或颗粒通过作用于来自这些纤维和/或颗粒的生物聚合物和/或在基质内的另一种天然材料的工艺溶剂被熔合或焊接在一起。通常,焊接基质可以包括“成品复合材料”和/或“纤维基复合材料”。具体地,“纤维基复合材料”可以用于指具有用作焊接基质的纤维和基体的天然基质的焊接基质。j.焊接如本文所用的“焊接”可以指通过聚合物的紧密分子间缔合来接合和/或熔合材料。k.生物聚合物如本文所用,“生物聚合物”是指天然存在的聚合物(由生命过程产生),与可以合成衍生自天然存在的材料的所有聚合物相反。2.一般焊接工艺本公开提供了用于将含有纤维和/或颗粒的生物聚合物基质转换为焊接基质(其一个示例是复合材料)的各种工艺和/或设备,并且还公开了可以由焊接基质制造的各种产品。除非在所附权利要求书加以限制地指明,通常,用于将含有纤维和/或颗粒的生物聚合物基质转换为焊接基质的工艺步骤和/或工艺步骤的组合在本文中可称为“焊接工艺”。在方法的一个方面,可以将工艺溶剂施加到一个或多个含有天然材料的基质上。在一个方面,工艺溶剂可以破坏包含天然材料的基质的至少一个组分内的一个或多个分子间力(该分子间力可以包括但不限于氢键)。在去除一部分工艺溶剂后(可以使用如下面进一步详细描述的重构溶剂完成),基质内的纤维和/或颗粒可以熔合或焊接在一起,这可以产生焊接基质。通过测试,已经确定焊接基质可以具有比原始基质(在遭受处理之前)增强的物理性质(例如,增强的拉伸强度)。因为在将基质转换成焊接基质的焊接工艺之前或期间为焊接工艺本身选择参数或者将功能材料包含到基质中,焊接基质还可以被赋予增强的化学性质(例如,疏水性)或其他特征/功能。本文公开的各种工艺和/或设备可以概括为使得工艺和/或设备可以被配置成与任意数量的工艺溶剂和/或基质(包括在学术上或者专利文献中已知的能够完全溶解天然材料的生物聚合物或后来开发的生物聚合物的工艺溶剂和/或基质)一起使用。在本公开的一个方面,焊接工艺可以被配置成使得含有基质的生物聚合物在处理工艺中未完全溶解。在另一方面,可以在没有胶和/或树脂的情况下生产各种组成成分和形状的坚固(robust)复合材料(即使在被配置成不完全溶解包含基质的生物聚合物的工艺中)。除非在所附权利要求书中进行限制性的指明,通常,焊接工艺和/或设备可以被配置为谨慎且有意地控制工艺溶剂的量、温度、压强、工艺溶剂暴露于天然材料的持续时间和/或其他参数。另外,能够有效地再循环工艺溶剂、重构溶剂和/或干燥气体以再利用的方法可以被优化以商业化。如此,本文公开的是在现有技术的基础上非显而易见的创新概念和特征的集合。鉴于天然材料通常是丰富的、廉价的并且能够可持续地生产,本文公开的工艺和设备可以是用于每年制造价值数万亿美元的材料的变革性和可持续方式的原型。该技术可以允许人类以不受资源(例如含石油和含石油的材料)限制的方式向前发展。在一个方面,本公开可以使用新颖且非显而易见的工艺和/或设备来实现该结果,所述工艺和/或设备被配置用于与现有技术中未公开的基质、工艺溶剂和/或重构一起使用,这可以生产各种新颖和非显而易见的最终产品。a.基质供给区现在参考附图,其中相同的附图标记贯穿若干视图表示相同或相应的部件,图1提供了示出了可以被配置成生产焊接基质的一种焊接工艺的各个方面的示意图。该一般焊接工艺可以至少基于特定基质、特定工艺溶剂体系、要生产的特定焊接基质、所使用的功能材料和/或其组合进行修改和/或优化。图1中示意性描述的焊接工艺不是限制性的,而是仅用于说明目的,除非在所附权利要求书中进行限制性的指明。下面进一步提供用于生产焊接基质的焊接工艺的某些方面的额外细节(例如,特定设备、工艺参数、工艺溶剂体系等),并且下面紧接的焊接工艺示例旨在提供突出本公开的某些方面的总体框架,其可适用于广泛的基质、工艺溶剂体系、重构溶剂体系、焊接基质、功能材料、基质形式、焊接基质形式和/或其组合。通常,焊接工艺可以被配置成使得基质供给区1包括焊接工艺的一部分,在该部分处基质形式可以可控地供给(进入)焊接工艺和/或与其相关联的设备。基质供给区1可以包括从特定基质材料或基质材料混合物产生特定基质形式的设备。或者,基质供给可以被配置成输送预制基质形式卷。可以通过基质供给区1推或拉基质。基质可以承载于动力输送系统。基质可以经由挤压型螺杆通过基质供给区1被供给。此外,本公开的范围不受基质是否和/或如何在基质供给区1中移动,和/或基质是否保持静止以及焊接工艺的设备和/或其他部件是否相对于基质移动的限制,除非在所附权利要求书中如此指明。基质可以含有可以添加到基质供给区1内的基质的其他功能材料。设备和仪器可以用于至少监测和控制基质供给区1内的材料的温度、压强、组分和/或供给速度。通常,基质或多个基质可以从基质供给区1移动到工艺溶剂应用区2。在根据本公开的被配置成与某些1d基质(例如,纱线和/或类似基质)一起使用的焊接工艺的一个方面,有利的是包括在基质进入焊接之前对基质应用应力的设备。通过在进入纤维焊接工艺之前对基质应用预定应力,可以破坏和暴露基质的薄弱部分。该设备还可以配置有用于打结以重建连续基质的机构。最终结果是如此配置的焊接工艺可以定位并固定基质的薄弱部分,以便限制停机时间。该设备可以是独立的机器,以在执行焊接工艺之前长时间地改进某些基质。替代地,该设备能够被直接集成到基质供给区1中。b.工艺溶剂应用在工艺溶剂应用区2中,随着基质移动通过工艺溶剂应用区2,可以通过浸渍、涂覆、涂漆、喷墨印刷、喷洒等或通过其任意组合将一种或多种工艺溶剂施加到基质上。工艺溶剂可以包括功能材料和/或分子添加剂,两者都在下面被进一步详细描述。在一个方面,工艺溶剂应用区2可以配置有附加设备,该附加设备将功能材料与工艺溶剂分开地添加到基质。设备和仪器可以用于在工艺溶剂应用期间至少监测和控制工艺溶剂、基质和/或大气的温度和/或压强。可以使用监测和控制所应用的工艺溶剂的组分、量和/或速度的设备和仪器。根据工艺溶剂应用的方法,可以将工艺溶剂施加到特定位置或整个基质。在使用挤压生产焊接基质的焊接工艺的方面,模具可以终止工艺溶剂应用区2。随着基质移动通过工艺溶剂应用区2,如此配置的焊接工艺还可以包括从被应用工艺溶剂的松散基质形成1d、2d或3d形状的设备。通常,溶剂应用区2的最佳配置可以至少取决于基质形式、选择的工艺溶剂和/或工艺溶剂体系以及用于应用工艺溶剂的设备。这些参数可以被配置成实现所需量的粘滞阻力。如本文所用的“粘滞阻力”表示工艺溶剂和/或工艺溶剂体系粘度和将工艺溶剂和/或工艺溶剂体系施加到基质中的机械力(例如,压强、摩擦力、剪切力等)之间的平衡。在一些情况下,最佳粘滞阻力被配置成产生始终具有一致的性质的焊接基质,并且在其他情况下,最佳粘滞阻力被配置成产生如下面进一步详细讨论的调节焊接基质。在根据本公开的配置成与某些1d基质(例如,纱线和/或类似基质)一起使用的焊接工艺的一个方面,有利的是使用适当尺寸的针状孔口,该孔口可以被设计为将工艺溶剂适当地施加到基质上(从而影响粘滞阻力)以生产焊接基质的所需属性。工艺溶剂可以被可控计量地加入设备中,同时可以使基质同步地移动通过孔口。至少可以监测和/或控制工艺溶剂的温度、流速和流动特性、和/或基质供给速度,以在最终的焊接基质中赋予所需的属性。孔口的尺寸、形状和结构(例如,直径、长度、斜率等)可以被设计成当应用工艺溶剂时限制或增加对基质的应力,如下面关于图6a-6c进一步详细讨论的。这种设计考虑对于未经梳理以去除短纤维的细纱或纱线可能尤其重要。工艺溶剂应用区2的具体配置可以至少取决于用于工艺溶剂和/或工艺溶剂体系的特定化学性质。例如,一些工艺溶剂和/或工艺溶剂体系在相对低的温度下有效地溶胀和活动生物聚合物(即,约-5℃或更低温度的氢氧化锂-尿素),其他(即离子液体,nmmo等)在较高温度下有效。某些离子液体在50℃以上变得有效,而nmmo可能需要高于90℃的温度。另外,许多工艺溶剂和/或工艺溶剂体系的粘度可以是温度的函数,使得工艺溶剂应用区2的各个方面(或焊接工艺的其他方面)的最佳配置可以取决于工艺溶剂应用区的温度、工艺溶剂本身和/或工艺溶剂体系。也就是说,当特定的工艺溶剂和/或工艺溶剂体系在低温下是有效的并且在该低温下也相对粘稠时,用于将工艺溶剂和/或工艺溶剂体系应用于基质的设备必须被设计以适应那些温度和粘度。在给定工艺溶剂和/或工艺溶剂体系的有效温度范围内,可以进一步细化该范围内的温度、工艺溶剂体系和/或工艺溶剂的化学性质(例如,共溶剂的添加和/或比例等)、与工艺溶剂应用区2相关联的设备的配置等,以产生适当量的粘滞阻力,该粘滞阻力适当地将工艺溶剂以如下方式施加到基质上:使得产生具有在焊接工艺的剩余步骤所需的属性的润湿基质。然而,工艺溶剂应用区2中的特定操作温度不限制本公开的范围,除非在所附权利要求书中如此指明。c.工艺温度/压强区在将工艺溶剂施加到基质上时,润湿的基质可以进入至少温度、压强和/或大气(成分)可控的焊接处理区达控制的时间量。设备和仪器可以用于至少监测,调节和/或控制基质供给区1内的工艺润湿的基质的温度、压强、和/或供给速度。特别地,可以通过利用冷却器、对流烘箱、微波、红外线或任何数量的其他合适的方法或设备来控制和/或调节温度。在一个方面,工艺溶剂应用区2可以与工艺温度/压强区2分开。然而,在根据本公开的另一方面中,焊接工艺可以被配置为使得这两个区2、3成为一个连续区段。例如,被配置成使得基质可以在受控的温度和压强条件下浸入工艺溶剂浴器特定时间,并且在该特定时间移动通过工艺溶剂浴器的焊接工艺将工艺溶剂应用区2和工艺温度/压强区3组合。通常,工艺溶剂应用区和工艺温度/压强区3一起可以被认为是焊接区。在根据本公开的执行挤压的焊接工艺的方面中,模具可以包括在工艺温度/压强区3的内部或末端。根据本公开的焊接工艺的其他方面还可以包括从已经被应用工艺溶剂并且已经移动通过工艺温度/压强区3的松散基质形成1d、2d或3d形状的设备。d.工艺溶剂回收区可以在工艺溶剂回收区4内将工艺溶剂与基质分离。在一个方面,工艺溶剂可以含有具有很小蒸汽压或无蒸气压的盐。为了从基质上去除工艺溶剂(至少一部分由离子组成的工艺溶剂),可以引入重构溶剂。在将重构溶剂施加到工艺润湿的基质上时,工艺溶剂可以移出基质并移入重构溶剂中。尽管不是必需的,但在一些方面,重构溶剂可以沿与基质移动相反的方向移动,使得需要最少量的重构溶剂来在适用情况下使用最小的时间、空间和能量来回收工艺溶剂。在根据本公开配置的焊接工艺的一个方面,工艺溶剂回收区4也可以是浴器(bath)、一系列浴器或一系列区段,其中重构溶剂对冲工艺润湿的基质或流经工艺润湿的基质。设备和仪器可以用于至少监测和控制工艺溶剂回收区4内的重构溶剂的温度、压强、组分和/或流速。在离开该区4时,基质可以使用重构溶剂被润湿。在一个方面,最佳的是使工艺溶剂体系配置有离子液体工艺溶剂与分子添加剂组合,并且将重构溶剂配置成使得其与分子添加剂化学性质相似或化学性质相同。对于由离子液体组成的工艺溶剂,有益的是选择具有相对低沸点但相对高蒸气压的分子添加剂。另外,通常有益的是这种分子添加剂是极性非质子(因为极性质子溶剂通常可能更难以与离子液体分离并且还易于降低包含离子液体的溶剂体系的效能),例如,除非在所附权利要求书中如此指明,否则不限于乙腈、丙酮和乙酸乙酯。对于由含水氢氧化物(例如lioh)组成的工艺溶剂,有利的是选择由作为极性质子的水组成的重构溶剂。使用与重构溶剂化学性质相似或化学性质相同的分子添加剂配置焊接工艺可以有利于焊接工艺的经济性,因为它可以至少简化工艺溶剂回收区4、溶剂收集区7和溶剂再循环8所需的设备和/或能量和/或时间。另外,当人们升高重构溶剂和/或工艺溶剂回收区4的温度时,重构所需的时间可以被显著地减少,这可以使得焊接工艺和相关设备的总长度变小,这可以反过来减少用于控制体积固结的基质张力和能力中的复杂性和/或变化(如下面进一步详细解释的)。替代地,焊接工艺可以配置有重构溶剂组成和产生具有特定属性的焊接基质的温度。例如,在利用由emimoac组成的工艺溶剂和由水组成的重构溶剂的一种焊接工艺中,水的温度可能影响焊接纱线基质的属性,如下面进一步详细描述的。e.干燥区可以在干燥区5内将重构溶剂与基质分离。也就是说,重构的润湿基质可以在干燥区5中转变成成品(干燥的)焊接基质。尽管不是必需的,但在一个方面,干燥气体可以沿与重构的润湿基质的移动相反的方向移动,以便可以需要最少量的干燥气体,同时在使用情况下通过使用最少的时间、空间和/或能量去除重构溶剂来干燥重构的润湿基质。设备和仪器可以用于至少监测和控制干燥区5内的气体的温度、压强、组分和/或流速。干燥区5可以被配置成使得在干燥工艺步骤期间,在基质、工艺润湿的基质、重构的基质和/或焊接基质中观察“受控体积固结”。如本文所用的,“受控体积固结”表示成品焊接基质在干燥和/或重构时体积收缩和/或符合特定形状因子的特定方式。例如,在诸如纱线的一维基质中,随着纱线直径的减小和/或纱线的长度减小,能够发生受控的体积固结。通过在干燥工艺中至少适当地约束重构的润湿基质,能够在一个或多个方向/维度上限制受控体积固结。此外,所使用的工艺溶剂和/或重构溶剂的量和类型(包括粘滞阻力的程度和类型等)能够影响在干燥时重构的润湿基质将尝试收缩的程度。例如,在1d基质(例如,纱线、线)中,通过配置干燥区5能够将受控体积固结限制为仅减小直径,以便基质在焊接工艺的一个或多个步骤期间(特别是工艺溶剂回收区4、干燥区5和/或焊接基质收集区6)经受适当的张力。以类似的方式,在二维片型基质的示例中,在焊接工艺的一个或多个步骤(特别是工艺溶剂回收区4、干燥区5和/或焊接基质收集区6)基质合适的张力和定位能够约束受控体积固结仅影响基质的厚度而不改变基质的面积(长度和/或宽度)。或者,可以允许片型基质在一个或多个维度方向上经历受控的体积减小。受控体积固结可以在干燥区5中通过专用设备来促进和/或限制,所述专用设备在干燥时保持重构的润湿基质,以便控制基质收缩的方向性或迫使成品焊接基质物理地符合特定的形状或形式。例如,一系列辊防止纸板替代型产品沿辊的长度或宽度收缩,但允许材料压缩厚度。另一示例是模具,在其上可以压制重构的润湿基质,使得它可以在干燥时呈现并保持特定的3d形状。在根据本公开的焊接工艺的一个方面,干燥区5可以被配置成使得重构的润湿基质可以经受小于环境压强的压强,并且可以暴露于相对少量的干燥气体中。在这样的配置中,可以将重构的润湿基质冷冻干燥。这种类型的干燥可以有利于防止或最小化在重构溶剂升华时产生的收缩量。在根据本公开的焊接工艺的一个方面中,其中使用的重构溶剂是良性的(例如水),则可以省略干燥区5,以便重构的润湿基质可以直接进行到收集步骤。例如,配置为纱线的重构的润湿基质可以在收集卷筒上卷起,然后在收集之后和/或收集期间风干。f.焊接基质收集区焊接基质收集区6可以是焊接工艺的收集焊接基质(例如,成品复合材料)的部分。在本公开的某些方面,焊接基质收集区6可以被配置为一卷材料(例如,纱线卷、纸板替代品等)。焊接基质收集区6可以采用从例如配置为复合挤压件的焊接基质切出板和/或形状的锯或印模。在一个方面,自动堆叠设备可以用于包装成品复合材料束。另外,在缠绕和包装的1d焊接基质的示例中,缠绕和包装的方法可以被配置成影响一个或多个变量,该一个或多个变量会影响焊接工艺的粘滞阻力。在根据本公开的被配置成与某些1d基质(例如,纱线和/或类似基质)一起使用的焊接工艺的一个方面,有利的是使用可以在工艺溶剂应用区2之后或在工艺温度/压强区之后立即将焊接基质通过圆柱形或管状结构卷成线圈的设备。该设备可以用于在基质进入工艺溶剂回收区4之前从一维基质生产三维管状结构。这样做,基质可以符合新的管状形状。预期这种设备在用于如下焊接工艺时特别有用,该焊接工艺被至少部分地配置成由包含功能材料(例如,嵌入在纱线中的催化剂)的纱线基质生产功能性复合材料,除非在所附权利要求书中如此指明,否则不受限制。在根据本公开的被配置为与某些1d基质(例如,纱线和/或类似基质)一起使用的焊接方法的另一个方面,有利的是使用可以在工艺溶剂应用区2之后或在工艺温度/压强区3之后立即针织或机织基质的设备。该设备可以被配置成在进入工艺溶剂回收区4之前从基质生产织物结构。此设备可以被配置成使得焊接工艺可以生产具有通过其他制造方法无法实现的独特性能的2d织物。在根据本公开的被配置为与某些1d基质(例如,纱线和/或类似基质)一起使用的焊接方法的又一个方面,有利的是使用可以生产卷绕的纱线包的设备(例如,卷绕凸轮(traversecam))。此设备可以被配置成将焊接基质卷成线圈状的包,该包可以在稍后被展开而不会缠结。g.溶剂收集区如上所述的,可以通过工艺溶剂回收区4内的重构溶剂从工艺润湿的基质中洗掉工艺溶剂。因此,在一个方面,重构溶剂可以与工艺溶剂的各部分(例如,离子和/或任何分子组分等)混合。可以在溶剂收集区7内的适当点收集该混合物(或相对纯的工艺溶剂或重构溶剂)。在一个方面,收集点可以位于工艺润湿的基质的进入点附近。此结构对于利用重构溶剂关于工艺润湿的基质逆向流动的结构特别有用,因为工艺润湿的基质内的工艺溶剂组分的浓度在其在重构溶剂中的浓度最低的点处最低。该配置可以减少重构溶剂的使用,并且易于分离和再循环该工艺溶剂和重构溶剂。在溶剂收集区7中,可以使用各种设备和仪器来至少监测和控制重构溶剂、工艺润湿的基质和/或重构的润湿基质的温度、压强、组分和流速。h.溶剂再循环在一个方面,根据本公开的焊接方法可以被配置成收集混合溶剂(例如,部分重构溶剂和部分工艺溶剂),可以收集和再循环相对纯的工艺溶剂和/或相对纯的重构溶剂。可以使用各种设备和/或方法来分离、纯化和/或再循环重构溶剂和工艺溶剂。可以使用任何已知的方法和/或设备或以后开发的方法和/或设备来分离重构溶剂和工艺溶剂,并且用于此分离的最佳设备将至少取决于该两种溶剂的化学组分。因此,本公开的范围不受用于分离重构溶剂和工艺溶剂的特定设备和/或方法的限制,这些设备和/或方法可以包括但不限于共溶剂和/或离子液体的简单蒸馏(例如,美国专利第8,382,926号中公开的方法)、分馏、基于膜的分离(例如渗透蒸发和电化学交叉流动分离)和超临界co2相。在重构溶剂和工艺溶剂已经充分分离后,各个溶剂可以再循环到该工艺中的适当区。i.混合气体收集如上所述的,与重构的润湿基质接触配合使用的重构溶剂可以在干燥区中从重构的润湿基质上去除。在一个方面,可以从干燥区5收集由载体干燥气体与其中的一部分重构溶剂气体组成的混合气体或重构溶剂气体。设备和/或仪器可以用于至少监测和控制所收集气体的温度、压强、组分和流速。j.混合气体再循环当气体被收集时,它们可以被送到分离和再循环载体干燥气体、重构溶剂或二者的设备中。在一个方面,该设备可以是单级或多级冷凝器技术。分离和再循环还可以包括透气膜和其他技术,除非在所附权利要求书中指明,否则不受限制。取决于选择的载气,它可以被排放到大气中或返回到干燥区5。取决于选择的重构溶剂,其可以被处理掉或再循环到工艺溶剂回收区4中。通常,根据前述描述的方面配置的焊接工艺可以被配置为使用基质供给区1、溶剂应用区2、工艺温度/压强区3、工艺溶剂回收区4、干燥区5和焊接基质收集区6,在连续和/或间歇焊接工艺中将含有天然纤维和/或颗粒的基质转换为成品焊接基质。在某些方面,关键的是监测和控制工艺溶剂相对于基质的量、组分、时间、温度和压强。3.焊接工艺示例(图1和图2)参考图1,基质可以通过任何合适的方法和/或设备(例如,推、拉、传送或系统、螺杆挤压系统等)以受控的速度移动。在一个方面,基质可以以连续方式移动通过基质供给区1、工艺溶剂应用区2、工艺温度/压强区3、工艺溶剂回收区4、干燥区5和/或焊接基质收集区6。然而,基质从1、2、3、4、5、6中的一个区到另一个区的特定顺序可以随着从一个焊接工艺到下一个焊接工艺发生变化,并且如前所述的在根据本公开的焊接工艺的一些方面中,基质可以在移动到干燥区5之前移动通过焊接基质收集区6。另外,在一些方面,基质可以保持相对静止,而溶剂和/或其他焊接工艺组件和/或设备移动。在根据本公开配置的焊接工艺中的任何点处,可以采用自动机械、仪表和/或设备来监视、控制、报告、操纵焊接工艺的一个或多个组成部分和/或其设备和/或以其他方式与焊接工艺的一个或多个组成部分和/或其设备交互。此自动机械、仪器和/或设备包括但不限于(除非在所附权利要求书中如此指明)可以监测和控制施加在基质、工艺润湿的基质、重构的基质和/或成品焊接基质上的力(例如,张力)的自动机械、仪器和/或设备。通常,用于焊接工艺的各种工艺参数和设备可以被配置成控制用于所需工艺溶剂应用的粘滞阻力的量。用于焊接工艺的各种工艺参数和设备可以被配置成执行受控的体积固结,以产生具有所需属性、形状因子等的焊接基质。仍然参考图1,在其中描述的焊接工艺的一个方面中,工艺溶剂环路可以定义为工艺溶剂应用区2、工艺温度/压强区3、工艺溶剂回收区4、溶剂收集区7和溶剂再循环8,在溶剂再循环8之后工艺溶剂可以再次移动到工艺溶剂应用区2。在图1中描述的焊接工艺的另一方面中,重构溶剂环路可以定义为两个单独的环路:一个用于液态的重构溶剂,另一个用于气态的重构溶剂。液体重构溶剂环路可以由回收区4、溶剂收集区7和溶剂再循环8组成,在溶剂再循环8之后重构溶剂可以再次移动到工艺溶剂回收区4。气态重构溶剂环路可以由工艺溶剂回收区4、干燥区5、混合气体收集9和混合气体再循环10组成,在混合气体再循环10之后重构溶剂可以再次移动到工艺溶剂回收区4。在气态重构溶剂环路的一个方面,一部分重构溶剂可以通过重构的润湿基质被携带入干燥区5。在根据本公开的使用载气的焊接工艺中,载气可以在由干燥区5、混合气体收集9和混合气体再循环10组成的环路中被再循环,在混合气体再循环10之后干燥气体可以再次移动到干燥区5。对于商业化,再循环工艺溶剂、重构溶剂、载气和/或其他焊接工艺组分可能是关键的。此外,用于工艺溶剂、重构溶剂、载气和/或其他焊接工艺组分的任何环路可以包括缓冲罐、存储容器等(除非在所附权利要求书中进行指明,否则不受限制)。如下面进一步详细描述的,具体选择的基质、工艺溶剂、重构溶剂、干燥气体和/或期望的成品焊接基质可以至少显著地影响最佳焊接工艺步骤、其顺序、焊接工艺参数和/或与之一起使用的设备。根据前面的描述,明显的是,根据本公开的焊接工艺可以被分成离散的处理步骤。例如,一种焊接工艺可以按基质供给区1、工艺溶剂应用区2、工艺温度/压强区3和焊接基质收集区6的顺序配置,之后将工艺润湿的基质存储或老化一段时间,然后在稍后的时间执行工艺溶剂回收区4和/或干燥区5的功能。此外,在某些方面,可以省略一个或多个处理步骤(例如,当水用作重构溶剂时的干燥区5)。此外,在根据本公开的焊接工艺的某些方面中,一些处理步骤可以同步进行,或者一个处理步骤的结束可以自然地流入另一个处理步骤的开始,如下面进一步详细描述的。现在参考图2,其提供了示出了可以被配置成生产焊接基质的另一焊接工艺的各个方面的示意图,其中描述的焊接工艺与图1中所描述的相类似。但是在图2中,工艺温度/压强区3和工艺溶剂回收区4可以混合成一个连续的焊接工艺步骤,而不是组成离散的焊接工艺步骤。另外,图2中描述的焊接工艺可以采用两个混合的气体收集区9,并且溶剂收集区7可以主要收集工艺溶剂,使得溶剂再循环可以主要适用于工艺溶剂(与工艺溶剂和重构溶剂的混合物完全不同)。预期此配置可以提供与设备简化和/或合并相关的某些优点。在根据本公开的各种焊接工艺中,工艺溶剂回收区4可以被配置成使得重构溶剂和工艺润湿的基质相对于彼此相反地移动,如图2a中示意性示出的。在根据图2配置的焊接工艺的一个方面中,焊接工艺可以适于使用其中重构溶剂是工艺溶剂的组分(例如,由3-乙基-1-甲基咪唑乙酸盐与乙腈的混合物组成的工艺溶剂和乙腈的重构溶剂)。在此配置中,其一些优点在下面进一步详细描述,一部分挥发性乙腈可以在焊接工艺中的任何点捕获并工艺溶剂分离,在该点处工艺溶剂通过任何合适的方法和/或设备呈现,包括但不限于受控低压环境、载气和/或其组合,除非在所附权利要求书中如此指明,否则不受限制。通常,足够浓度的3-乙基-1-甲基咪唑乙酸盐可以破坏某些基质中的分子间力(例如,纤维素中的氢键)。因此,工艺温度/压强区3和工艺溶剂回收区4的组合可以构成在其中任何位置的一般焊接工艺区,其中3-乙基-1-甲基咪唑乙酸盐与乙腈的摩尔比适于导致所需的破获基质中分子间力的特性。如果适当地设计和/或控制合适的流速、温度、压强、其他焊接工艺参数等,则该一般焊接工艺区也可以构成重构和再循环区的全部或一部分。仍然参考图2,基质可以使用任何合适的方法和/或设备(例如,推、拉、传送或系统、螺杆挤压系统等)以受控速度再次移动通过焊接工艺(除非在所附权利要求书中进行指明,否则不受限制)。在一个方面,基质可以以连续的方式移动通过基质供给区1、工艺溶剂应用区2、工艺温度/压强区3和工艺溶剂回收区4的组合、干燥区5和/或焊接基质收集区6。然而,基质从1、2、3、4、5、6中的一个区到另一个区的特定顺序可以随着从一个焊接工艺到下一个焊接工艺发生变化,并且如前所述的在根据在本公开的焊接工艺的一些方面中,基质可以在移动到干燥区5之前移动通过焊接基质收集区6。另外,在一些方面,基质可以保持相对静止,而溶剂和/或其他焊接工艺组件和/或设备移动。在根据本公开配置的焊接工艺中的任何点处,可以采用自动机械、仪表和/或设备来监视、控制、报告、操纵焊接工艺的一个或多个组成部分和/或其设备和/或以其他方式与焊接工艺的一个或多个组成部分和/或其设备交互。这种自动机械、仪器和/或设备包括但不限于(除非在所附权利要求书中另有指示)可以监测和控制施加在基质、工艺润湿的基质、重构的基质和/或成品焊接基质上的力(例如,张力)。仍然参考图2,在其中描述的焊接工艺的一个方面,工艺溶剂环路可以定义为工艺溶剂应用区2、工艺温度/压强区3和工艺溶剂回收区4的组合、(工艺)溶剂收集区7,在(工艺)溶剂收集区7之后工艺溶剂可以再次移动到工艺溶剂应用区2。在图2中描述的焊接工艺的另一方面中,重构溶剂环路可以定义为两个单独的环路:一个用于液态的重构溶剂,另一个用于气态的工艺溶剂。液体重构溶剂环路可以由工艺温度/压强区3和工艺溶剂回收区4的组合以及一个或多个混合气体收集区组成,在一个或多个混合气体收集区之后重构溶剂可以再次移动到工艺温度/压强区3和工艺溶剂回收区4的组合。气态重构溶剂环路可以由干燥区5、至少一个混合气体收集9和混合气体再循环10组成,在混合气体再循环10之后重构溶剂可以再次移动到工艺温度/压强区3和工艺溶剂回收区4的组合。在气态重构溶剂环路的一个方面,一部分重构溶剂可以通过重构的润湿基质进入干燥区5。在根据本公开的使用载气的焊接工艺中,载气可以在由干燥区5、至少一个混合气体收集8和混合气体再循环10组成的环路中再循环,在混合气体再循环10之后干燥气体可以再次移动到干燥区5。在图2中描述的焊接工艺的一个方面中,焊接工艺还可以包括载体挥发捕获环路,该环路可以由工艺温度/压强区3和工艺溶剂回收区4的组合,至少一个混合气体收集8和混合气体再循环10组成。在根据本公开的焊接工艺的一个方面中,其中重构溶剂可以存在于工艺溶剂中,焊接工艺可以包括一个以上的载气环路。例如,如果将工艺溶剂配置为3-乙基-1-甲基咪唑乙酸盐与乙腈的混合物,则乙腈可以用作重构溶剂。可以预期的是对于某些焊接工艺,有利的是包括一个或多个电子控制阀门、驱动轮和/或基质引导件(例如,很少或没有人为干预的情况下使得新的松散端或断纱端的纱线(重新)穿进焊接工艺的设备的引导件)。可以预期的是,与未如此配置的焊接工艺相比,如此配置的焊接工艺可以减少焊接工艺的停机时间量和焊接工艺所需的人体接触量。在一个方面,工艺溶剂回收区4可以被配置成使得可以收集工艺润湿的基质,同时将重构溶剂引入到工艺润湿的基质。例如,在配置成使用纱线和/或线作为基质的焊接工艺中,能够将卷绕机构放置在工艺温度/压强区3的末端。在一个方面,卷绕机构能够被封闭,使得当将重构溶剂引入到工艺润湿的基质上时(例如,通过喷洒),工艺润湿的基质可以被连续地洗涤并转换成重构的润湿基质。此配置能够大大地简化整个焊接工艺,因为基质不需要从工艺溶剂回收区4连续地运行到干燥区5。替代地,重构能够更多地作为分批工艺发生,由此可以生产和重构基质的特定部分(例如,卷成连续的未缠结实体的圆柱或球纱线)。在某一点,重构的湿润包能够被转移到二级重构工艺和/或发送到干燥区以去除重构溶剂。在另一方面,一种焊接工艺被配置为连续工艺,其中基质可以连续地从工艺温度/压强区3移动到工艺溶剂回收区4到干燥区5。在此配置中,基质上的张力可以是附加的,并且有时能够引起破损,这对焊接工艺的效率造是很大的问题。因此,焊接工艺可以配置有辊、滑轮和/或其他合适的方法和/或设备,以帮助基质移动通过焊接工艺以减轻和/或消除破损。附加地和/或替代地,焊接工艺可以被配置成减少基质在焊接工艺的全部或一部分期间经受的张力的量。在此配置中,基质可以移动通过指定的空间,在该指定的空间可以将重构溶剂施加到工艺润湿的基质上(例如,通过如下面进一步详细描述的应用器),而不是将基质移动通过单独的管(这可能是昂贵的,并且使得重新穿进变得更困难)。此配置可以与任何基质形式一起使用,并且可以预期此配置对于单独的或由彼此相邻布置的多个单独基质组成的片型结构的1d基质(例如,纱线和/或线)和/或2d基质(例如,织物和/或纺织品)特别有用。如此配置的工艺溶剂回收区4可以减轻和/或消除基质上的摩擦和/或不必要的张力的累积,这可以增加通过焊接工艺的基质的产量。4.溶剂应用区:设备/方法与工艺溶剂应用有关的粘滞阻力概念的各个方面在图6a中被示出,其提供了可以在工艺溶剂应用区2中使用的设备的剖视图。注意,天然纤维基质的每单位横截面和/或面积的纤维密度可以变化。能够调节对基质的工艺溶剂应用,使得每单位质量基质应用的工艺溶剂的质量比得到很好地控制。这能够通过用适当的传感器主动监测基质的变化并使用该数据来控制工艺溶剂泵送的速度和/或基质通过工艺溶剂应用区和/或工艺溶剂组合物的速度来实现。或者,能够设计粘滞阻力点,其在工艺润湿的基质上应用适当的挤压强和/或剪切以控制工艺溶剂应用。粘滞阻力的设计能够包括允许工艺溶剂适当地汇集的小体积。如此做,工艺溶剂能够被应用使得工艺溶剂与基质的质量比可以保持在稳定值或者在期望的容差内调节。(调节纤维焊接工艺在下面被更详细地描述。)在焊接工艺的一个方面(调节或非调节不受限制,除非在所附权利要求书中进行指明),焊接工艺可以被配置成通过喷射器应用工艺溶剂。在喷射器的一种配置中,喷射器可以包括具有两个入口和一个出口的窄管。由纱线(或其他1d基质)组成的基质可以进入一个入口,并且工艺溶剂可以流入另一个入口。工艺润湿的基质(应用有工艺溶剂的纱线)可以离开出口。喷射器可以包括用于添加功能材料、附加工艺溶剂和/或其他组分的附加入口。如上文所述,工艺润湿的基质(例如,被应用工艺溶剂的纱线、线、织物和/或纺织品)可以在工艺溶剂应用区2之后,传递到工艺温度/压强区3。如图6a所示,喷射器60可以被配置成与1d或2d基质(例如,分别为纱线或织物)一起使用。喷射器可以包括与基质出口64相对的基质输入部61。喷射器60可以被配置成将受控量的工艺溶剂输送到一个或多个基质(该基质可以包括织物、纺织品、纱线、线等),并且通常可以进一步配置成在该基质内或周围适当地分配工艺溶剂。例如,在非调节焊接工艺中,期望将工艺溶剂来均匀地分布在给定的基质上,而在调节焊接工艺中,期望改变给定基质中的工艺溶剂的分布。如此配置的喷射器60的一个示例可以包括具有t形横截面的壳体,其中1d或2d基质可以通过相对直的路径进入和离开喷射器。工艺溶剂可以通过辅助输入来泵送,该辅助输入可以处于通常与基质的路径垂直的路径中。喷射器60的这种配置在图6a中示出。如图6a所示,喷射器60可以包括基质输入部61,原始基质(纱线、线、织物、纺织品等)可以被供给到基质输入部61中。喷射器60还可以包括工艺溶剂输入62,其与基质输入部61的一部分流体连通。因此,工艺溶剂可以通过工艺溶剂输入62流入喷射器60并且使用与应用接口63相邻的基质。喷射器60的该部分可以构成如上所述的工艺溶剂应用区2。当被配置为与1d基质一起使用时,从基质输入部61到基质出口64的喷射器60部分可以被配置为类似管。当被配置成与2d基质一起使用时,喷射器60的该部分可以被配置为彼此间隔的两个板(类似于图6c中所示的设备,其在下面进一步详细描述)。基质和/或工艺润湿的基质可以定位在两个板82、84之间的空间中,并且至少一个板82、84可以形成有至少一个工艺溶剂输入63。基质出口64可以与喷射器60的通常与基质输入部61相对的部分接合。在喷射器60的一种配置中,基质出口64可以是非线性的,如图6a所示。非线性基质出口64可以被配置为物理地接触工艺润湿的基质的外部,以将工艺溶剂引导到基质的期望部分,该物理接触可以至少在一个或多个拐点处完成,这可以向基质提供剪切力和/或压缩力。另外,非线性基质出口64可以被配置成物理接触工艺润湿的基质的外部。该物理接触可以是实现给定焊接工艺的期望粘滞阻力的一个方面。物理接触可以被配置成为向工艺润湿的基质的外部增加额外的光滑度,以消除和/或减少所得焊接基质上的短发/纤维的量。与工艺润湿的基质的物理接触还可以改进从工艺溶剂到基质和/或工艺润湿的基质的热传递,该热传递可以缩短所需的处理时间(例如,焊接时间),从而缩短焊接室的长度,并减小与给定焊接工艺相关的设备所需的空间。可以通过多种设计考虑来实现与基质和/或工艺润湿的基质的物理接触(在一维、二维和/或三维上创建拐点),包括但不限于改变基质输入部61、应用接口63和/或基质出口64的尺寸(例如,直径、宽度等)和/或曲率,和/或它们的组合,邻近基质和/或工艺润湿的基质设置另一结构(例如,擦拭器、挡板、辊、柔性孔等)除非在所附权利要求书中如此指明,否则不受限制。或者,喷射器可以被配置成使得它是y形的,和/或一个或多个喷射器可以配置有多个级(stage)以在焊接工艺期间在特定位置和特定条件下在一个或多个点添加工艺溶剂、功能材料和/或其他组分。在一个方面,喷射器可以与纱线接收器和/或允许沿着一个维度选择性地放置喷射器和纱线接收器的其他合适的方法和/或设备结合使用,其中喷射器和纱线接收器都可以被配置成在轨道系统上滑动。被配置为允许在至少一个维度上选择性地操纵一个或多个喷射器和/或纱线接收器的焊接工艺(例如,通过允许它们沿着轨道系统的长度滑动),与没有此选择性操纵的焊接工艺相比,可以减少在焊接工艺中的任何一点(特别是通过工艺温度/压强区3)重新穿进纱线和/或线所需的时间和/或资源,并且可以同时实现在相对较小的空间内要被复用的高(较高)密度的焊接工艺。例如,在配置有被同时处理的‘n’根纱线的焊接工艺中,仅外部纱线相对容易接近。如果单根纱线断裂,这能够使重新穿进变得困难。通过在基质供给区1、工艺溶剂应用区2和/或工艺温度/压强区3的起始处具有可移除的轨道安装的喷射器,一个(人或自动机械)能够容易地移除喷射器,并将其移动到设置在焊接工艺中的一组基质的末端用于重新穿进。可以预期,对于一些应用来说,有利的是以蛤壳式设计配置喷射器,但也可以是管组件(除非在所附权利要求书中如此指明,否则不受限制)。也就是说,喷射器能够设计成“蛤壳”结构,其中至少两块材料包围一根纱线或一组纱线。这允许纱线更容易地被初次加载到焊接工艺机械中,并且还有助于将系统设计为纱线的多个端部同时提供适当粘滞阻力。当任何特定的喷射器被移除时,其他喷射器可以向下滑动一个位置以消除现有的间隙并且产生新的间隙,该新的间隙位于焊接工艺的设备的一个边缘处。通过一致地工作,设置在任何给定工艺区的末端或附近处的一系列接收单元也可以相应地移动,使得各根纱线分别移动到它们各自的新位置。接收单元的最佳配置可以从焊接工艺的一个方面到下一个方面变化,并且可以至少取决于基质的尺寸、所使用的工艺溶剂和/或所使用的基质的类型。在一个方面,接收单元可以包括简单的滑轮或导纱器,该导纱器将纱线引导到工艺溶剂回收区4和/或干燥区5。在另一方面,取决于如何配置焊接工艺(例如工艺溶剂应用区2、工艺温度/压强区3、工艺溶剂回收区4和/或干燥区5的结构),接收单元能够更复杂(即,卷绕机构)。图6b示出了说明与工艺溶剂应用有关的粘滞阻力概念的另一设备。如图6b所示,可以配置为托盘70的设备可以被配置为与1d基质和2d基质一起使用。如图6b所示,托盘70可以被配置有一个或多个基质凹槽72,该一个或多个基质凹槽72形成在托盘70的表面上。托盘70可以具有多个凹槽72,使得工艺溶剂可以同时施加到多个基质(图6b中所示的1d基质)。尽管图6b中所示的凹槽72可以是线性的,但是在托盘70的其他方面,凹槽可以以与图6a中所示的喷射器60和图6c中所示的板相关的方式呈非线性的。也就是说,托盘70和其凹槽72可以配置成使得托盘70的一部分和/或凹槽物理地接触基质的一部分(该物理接触可以是优化粘滞阻力的考虑因素)。物理接触可以通过多种设计考虑来实现(在一维、二维和/或三维上产生拐点、剪切力,压缩等),包括但不限于改变凹槽72的深度、凹槽72的截面形状、凹槽72的宽度、凹槽72的曲率和/或它们的组合,和/或邻近基质和/或工艺润湿的基质设置另一结构(例如,擦拭器、挡板、辊、柔性孔口等)(除非在所附权利要求中指明,否则不受限制)。在一种配置中,1d基质的间隔能够被减小到许多基质在二维平面或“片材”中基本一起移动的程度,如图6c中进一步所示的。在另一配置中,凹槽72的宽度可以被选择成允许大致二维的织物和/或纺织品片材通过凹槽72相对于托盘70移动。通常,可以将工艺溶剂连续地供应到每个凹槽72和/或其一部分,使得当基质沿着凹槽72移动时,将工艺溶剂施加到其上以便产生工艺润湿的基质。凹槽72可以充满工艺溶剂(其中凹槽72可以起到类似于工艺溶剂浴器的作用),和/或工艺溶剂可以施加到邻近凹槽72的前缘的基质上,然后随着基质朝向凹槽的后缘移动,适当地擦拭基质的外部部分。在焊接工艺的一种配置中,托盘70可以相对于水平成角度以利用工艺溶剂上的重力,并且最佳角度可以至少取决于基质相对于托盘70的移动的速度和方向。每个凹槽72的最佳配置将随着焊接工艺的应用的不同而变化,并且因此决不限制本公开的范围,除非在所附权利要求书中如此指明。当配置彼此横向间隔等于或大于每个基质的平均直径的距离的多个1d基质时,可以预期凹槽72的宽度可以近似等于其深度,并且每个尺寸可以比基质的平均直径大约大10%。每个凹槽72的最佳横截面形状也可以随着焊接工艺的不同而变化。例如,在一些应用中,最佳的是凹槽72(或至少其底部)的横截面形状接近和/或匹配基质(或其至少一部分)的横截面形状。例如,当配置成与由1d纱线或线组成的基质一起使用时,凹槽72可以被配置有u形横截面。当配置成与由2d织物或纺织品组成的基质一起使用时,凹槽72可以被配置成具有比其深度大得多(例如,10倍、20倍等)的宽度。然而,除非在所附权利要求书中如此指明,否则凹槽72的特定横截面形状、深度、宽度、结构等决不限制本公开的范围。图6c示出了被配置成与近似2d片材的多个1d基质(可以由线和/或纱线组成)一起使用的工艺溶剂应用区2的配置。工艺溶剂应用区2可以采用具有相应曲率的第一板82和第二板84,以在至少一个维度上产生至少三个物理接触点(即,拐点)。在其他配置中,板82、84可以被不同地配置以在一个或多个维度上产生更多或更少的拐点,其中拐点被配置为对基质和/或工艺润湿的基质应用更大的阻力或对其应用更小的阻力。物理接触可以通过多种设计考虑来实现(在一维、二维和/或三维上产生拐点),包括但不限于改变板82,84之间的距离、板82或板84的曲率,板82、84中的一个的曲线的凹度是否对应于板82、84中的另一个的曲线的凸度,和/或它们的组合,和/或在基质和/或工艺润湿的基质附近设置另一结构(例如,擦拭器、挡板、辊、柔性孔口等)(除非在所附权利要求书中指明,否则不受限制)。在另一配置中,粘滞阻力可以至少基于一个或多个结构组件的相对位置而变化。例如,具体参考图6d、6e和6f,板可以被配置成使得其内边缘以可调节的量彼此重叠。当内边缘重叠更大的量时,如图6e所示,位于相应板之间的基质相对于板的移动可能经受更大的物理阻力。当内边缘重叠较小的量时,如图6e所示,位于相应板之间的基质相对于板的移动可能经受较小的物理阻力。图中示出了应用于焊接工艺的可调节重叠,该焊接工艺被配置与彼此相邻设置的多个1d基质一起使用。板的相对位置的可调节性可以允许多种工艺溶剂与给定的设备一起使用和/或用于给定设备,以应用于配置成生产具有不同属性的焊接基质的焊接工艺中。如上所述的涉及粘滞阻力的概念和图6a和6b,图6c、6d和6e中的板82、84可以被配置成控制工艺溶剂应用。图6a-6e中所示的设计不意欲以任何方式进行限制,除非在所附权利要求书中如此指明,并且可以使用任何合适的结构和/或方法将工艺溶剂适当地施加到基质和/或与基质和/或工艺润湿的基质适当地相互作用以获得焊接基质的所需属性。也就是说,适当量的粘滞阻力可以通过任何数量的结构(这些结构能够移动到预设的公差以实现所需的工艺溶剂应用效果)或方法实现,包括但不限于辊、成形边缘、光滑表面、拐点的数量和/或取向、相对运动的阻力、温度变化等(除非在所附权利要求中说明,否则不受限制)。在焊接工艺的另一配置中(无论是调节的还是非调节的,除非在所附权利要求中指明,否则不受限制),焊接工艺可以被配置成通过涂敷器应用工艺溶剂。在涂敷器的一种配置中,该应用可以与喷墨打印机、丝网印刷技术、喷枪、喷嘴、浸渍槽或歪斜托盘、和/或其组合中使用的相关,(其中一些至少在图6a-6f中被示出并且在上面被详细描述)(除非在所附权利要求中指明,否则不受限制)。可以预期,焊接工艺可以被配置成使得当基质(例如,纱线、线、织物和/或纺织品)相对于涂敷器适当地定位时,涂敷器将工艺溶剂引导到基质,从而创建工艺湿润的基质。此焊接工艺可以被配置成使得工艺溶剂和/或功能材料可以以多维图案应用,这可以用于使用焊接工艺将图案压印到织物和/或纺织品中。这种图案可以构成调节焊接工艺(如下面进一步详细描述的),其中调节是至少将工艺溶剂施加到基质的结果。如上文所述,在工艺溶剂应用区2之后,可以将工艺润湿的基质(例如,具有应用的工艺溶剂的纱线、线、织物和/或纺织品)传递到工艺温度/压强区3。一般地参考图11a-11d,在使用喷射器或涂敷器的调节焊接工艺的配置中,调节焊接工艺可以允许至少通过至少控制各种工艺溶剂成分的泵流速度来实时改变工艺溶剂的组分。调节焊接工艺可以被配置成允许至少通过控制工艺溶剂成分的泵流速度和/或通过至少改变基质移动通过工艺溶剂应用区2的速度来改变工艺溶剂与基质的比例(基于体积或质量)。图11b示出了配置用于与2d基质一起使用的这种调节焊接工艺的示意图,图11d示出了配置用于与1d基质一起使用的这种调节焊接工艺的示意图,所有这些都在下面进一步详细描述。现在参考图11a(2d基质)和图11c(1d基质),调节焊接工艺可以被配置为允许通过任何合适的方法和/或设备来调节温度,包括但不限于微波加热、对流、传导、辐射和/或其组合(除非在所附权利要求书中如此指明,否则不受限制)。调节焊接工艺可以被配置成允许调节基质和/或工艺润湿的基质所经受的压强、张力、粘滞阻力等。调节焊接工艺的各种参数的调节(包括但不限于前面提到的条件)的组合效果能够产生由焊接的纱线组成的独特焊接基质,其具有独特的染料和/或着色图案以及独特的触觉和/或面层。相反,如前所述的,焊接工艺可以被配置成通过将焊接工艺配置成非常一致地运行而不调节各种工艺参数(例如,工艺溶剂组分、工艺溶剂与基质质量比、温度、压强、张力等)来产生具有一致特性(例如,着色、尺寸、形状、触觉,面层等)的焊接基质。在被配置用于从彼此相邻设置的多个1d基质(例如,由彼此相邻设置的多根纱线组成的片型结构)按比例生产焊接基质的焊接工艺的一个方面中,纱线的多个端部能够作为片材(sheet)移动,这可以改进一些焊接工艺的规模经济。关于如本文所公开的配置用于2d基质(例如,织物、纸基质、纺织品和/或复合垫基质)的焊接工艺的相同概念和原理可以适用于彼此相邻设置的多个1d基质。通过类比,被配置为以片型构造焊接多个1d基质的焊接工艺可以类似于被配置为焊接2d基质(例如,织物和/或纺织品)的焊接工艺,但是可以预期1d基质的焊接工艺可以有一些重要的差异。这些差异可以包括但不限于调节装置(例如,导纱器),来减轻和/或消除一种基质与其自身和/或另一种基质(例如,单独的纱线)缠结的可能性,并且工艺溶剂应用可以对单根纱线或纱线组使用喷射器。或者,可以配置焊接工艺,使得如果通过喷涂、滴加、芯吸、浸泡和/或以其他方式以受控速度将工艺溶剂引入到片型结构上,来将工艺溶剂以片型结构直接施加到1d基质上,则不需要喷射器。因此,根据本公开,各种设备和/或方法可以被配置为产生高度复用的焊接工艺,该高度复用的焊接工艺可以扩展到批量生产。a.低水分基质已知纤维素(即棉、亚麻、再生纤维素等)和木质纤维素(即工业大麻、龙舌兰等)纤维含有大量(5%-10%的质量比)的水分。例如,棉花中的水分含量能够在大约6%到9%之间变化,这取决于环境温度和相对湿度。此外,il基溶剂,例如3-乙基-1-甲基咪唑乙酸盐(“emimoac”)、3-丁基-1-甲基咪唑氯化物(“bmimcl”)和1,5-二氮杂-双环[4.3.0]壬-5-稀乙酸盐(“dbnhoac”)通常在合成期间和/或通过从环境中吸收而被水污染。此外,工艺溶剂的分子组分添加剂(诸如乙腈(acn))也是吸湿的。通常,水的存在对纯离子液体和具有分子组分添加剂的il基溶剂溶解生物聚合物基质的效能产生负面影响。然而,从这些溶液中去除最后几个百分点(质量比)的水可能是困难的和/或是资源密集的。离子液体和il基溶剂的成本可以与它们的纯度直接相关,特别是与水分含量相关。因此,焊接工艺可以被配置成利用低水分基质来增加焊接基质的性能以及改进这种焊接工艺的整体经济性。除了使用离子液体和il基工艺溶剂辅助焊接工艺之外,低水分基质材料还能够帮助利用n-甲基吗啉n-氧化物(nmmo)作为工艺溶剂的纤维焊接工艺。通常,水的质量比为4%至17%的nmmo溶液能够溶解纤维素并且可以被用于lyocell型工艺。使用足够干燥的含生物聚合物的基质材料意味着焊接工艺可以配置有水含量最高为17%(质量比)的工艺溶剂,并且仍然有效且经济地生产所需的焊接基质。在配置为使用由对水分敏感的离子液体组成的工艺溶剂(例如,3-丁基-1-甲基咪唑氯化物(“bmim”cl)、3-乙基-1-甲基咪唑乙酸盐(“emimoac”)、1,5-二氮杂-双环[4.3.0]壬-5-烯乙酸盐(“dbnhoac”)等)的焊接工艺中,基质中的水分含量可能会影响焊接进行的速度,因此也会影响相关工艺参数和设备设计。在配置成使用对水分敏感度小于上述公开的某些离子液体的工艺溶剂(例如,nmmo,lioh-尿素等)的焊接工艺中,相对干燥的基质的优点被减少和/或消除。因此,实验已经表明被配置为使用在焊接之前已经人工干燥至低水分状态(<5%的质量比)的生物聚合物基质的焊接工艺带来令人意外的结果。低水分基质可以加速焊接工艺,同时改进焊接基质的质量(即强度、没有杂散纤维等)。更令人意外的是,通过低水分生物聚合物基质的强干燥性质,可以从离子液体和il基工艺溶剂中去除水。在一个方面,可以从通过非水介质(例如acn)重构的离子液体和il基工艺溶剂中去除水。实际上,随着工艺溶剂和水的重构溶剂通过纤维焊接工艺连续再循环,低水分基质可净化工艺溶剂和水的重构溶剂。可以通过在材料被引入到利用例如由水分敏感离子液体组成的工艺溶剂的焊接工艺之前,在足够干燥(有时是温热的,例如~40℃至80℃)的大气中将材料预处理受控的时间,来获得低水分基质材料。在焊接工艺之前和期间,将含生物聚合物的基质保持在受控气候中是重要的。此外,有意地将水引入生物聚合物基质内的空间的特定区域可以用于延迟在该位置的焊接并且可以允许另一种方法来调节焊接工艺,在下面描述了针对其的几种方法。通常,实验已经表明被配置为利用人工干燥的基质(例如,在引入到基质供给区1之前已经被干燥和/或在全部基质供给区1或其一部分中被干燥的基质)的焊接工艺产生了令人意外的新协同效应,其改进了焊接工艺和/或由此产生的焊接基质的经济性。例如,当使用bmimcl+acn溶液(或其他水分敏感的工艺溶剂体系)时,将棉基质干燥至水分质量比小于5%能够显著改进焊接的一致性和/或控制。此外,在连续使用干燥的棉基质并且多次再循环工艺溶剂时,实验表明,只要设备被适当地与外部的水(例如,大气中的水)密封隔离,两种工艺溶剂(例如bmimcl+acn)和重构溶剂(例如acn)的水含量就可以降低。随着水分含量降低,干燥的棉基质的干燥性质被增大。换句话说,水的质量比为3%的棉花比水的质量比为4%的棉花更干燥。5.商业规模生产的焊接基质的属性前面的描述公开了可以使用根据本公开的焊接工艺生产的各种新材料(这些材料通常称为1d焊接基质和2d焊接基质)的属性。下面的属性相对于现有技术是新颖的和非显而易见的,因为当这些材料被大量制造时(例如,以商业规模),这些属性仅存在于下面材料中。材料属性可以允许纺织品的制造成本降低以及实现含有纺织品的天然基质(例如棉)的新用途。众所周知,石油基材料(例如聚酯等)可以被配置成生产长丝型纱线和短纤维纱线。如本文所用的,术语“短纤维纱线”表示由具有相对短的离散长度(短纤维)的纤维纺成的纱线。然而,在本文公开的方法和设备之前,没有衍生自天然短纤维的长丝型纱线,其中天然短纤维(并且因此由其衍生的长丝型纱线)保持短纤维的原始属性、结构等度量。本文公开的方法和设备可以与关于rayon、modal、等的所有现有教导不同,其中人造短纤维通过纤维素的完全溶解和/或衍生被生产并且然后被挤出(其可以使用nmmo、基于离子液体的系统等来完成完全溶解)。在rayon、modal、等的情况下,纤维素前体以如下方式被完全溶解和变性,使得几乎不可能确定从中得到短纤维的纤维素来源(例如山毛榉材树浆、竹浆、棉纤维等)。相比之下,根据本公开制造的焊接基质在基质中保留了如下面进一步详细描述的短纤维的某些属性、特性等。在保留这些原生属性、特性等方面,相对于现有技术,本方法和设备每单位焊接基质使用相对少量的工艺溶剂,并且甚至在实现传统上与合成和/或石油基长丝型纱线相关的新功能(例如,降低保水性、增加强度等)时。这些新的焊接基质及其功能反过来实现现有技术无法实现的全新的织物应用。焊接基质表达和/或表现出这些功能的程度可以至少取决于用于制造焊接基质的焊接工艺的配置。可以使用根据本公开的焊接工艺制造的1d焊接基质中包括非合股的“单根”纱线和/或线和合股的纱线和/或线以及“焊接纱线基质”。尽管前述属性和示例可归因于焊接的纱线基质,但本公开的范围不限于此,并且术语“1d焊接基质”不限于此,除非在所附权利要求书中如此指明。通常,焊接的纱线基质与传统的原始基质对应物的区别至少在于:(1)构成纱线的单根纤维之间的空隙量,因为焊接的纱线基质比传统原始基质对应物明显更致密,该传统原始基质的平均直径比每单位长度具有相同重量的生物聚合物基质的传统纱线小约20%至200%;(2)焊接的纱线基质在其表面上通常不会有很多松散的纤维,因此不会脱落(并且可以在焊接工艺期间操纵其表面上的任何松散纤维的数量和特性)。下面详细说明焊接基质和相应的天然纤维基质的具体经验数据。通常,当在焊接的纱线基质的表面存在松散纤维时,松散纤维的至少一部分被焊接到焊接的纱线基质上。也就是说,纤维实际上并不松散从而与焊接的纱线基质分离,而是固定在焊接的纱线基质的中间的焊接纤维芯部上。如果在焊接工艺期间工艺溶剂倾向于迁移到基质纱线的中心,则可能发生这种情况。然而,焊接工艺可以被配置成通过至少改变工艺溶剂的组分和/或在不同时间添加多种工艺溶剂组分来限制或促进在纱线基质的芯部或外部部分内的焊接。出于多种原因,上面单独和/或组合列出的两种属性可以是期望的/有利的。例如,没有脱落的棉纱能够用氨纶(也称为莱卡或弹性纤维)或其他合成纤维更有效地针织,因为松散纤维(棉绒)的量被减少和/或消除,使得它不会导致针织机的问题。棉绒和脱落是纺织工业中的已知问题,因为它会导致纺织品的缺陷和由于棉绒积聚而必须清洁和/或固定设备的停机时间。静电粘附导致松散的纤维自然地粘附到合成纤维上并且是有问题的。焊接纱线基质显著减少了这些问题,因为脱落被消除和/或减轻。由焊接的纱线基质和氨纶(或莱卡等)生产的织物和/或纺织品可以用作休闲服(例如衬衫、裤子、短裤等)和/或内衣(例如,内衣、胸罩等)(除非在所附权利要求书中指明,否则不受限制)。可以制造焊接纱线基质,使得它们比它们的传统原始基质对应物(每单位长度以及每单位直径的相似重量)更结实。焊接的纱线基质能够消除在生产机织材料(例如牛仔布)期间“浆纱”(或“上浆”)的需要。纱线浆纱是将上浆剂(例如淀粉)施加到纱线上(最常见地在机织之前)使其足够强以经历机织工艺的工艺。在生产机织纺织品时,必须洗掉上浆剂。纱线浆纱不仅增加了费用,而且也是资源(例如,水)密集型。浆纱也不是永久性的,因为在去除上浆剂后,纱线恢复到其原始(较低)强度。相比之下,焊接工艺可以被配置成与传统的纱线相比增强产生的焊接纱线基质,使得不需要浆纱,因此节省了费用和资源,同时增加了强度的更持久提高。歪斜是一种织物状态,其中经纱和纬纱虽然是直的,但彼此不成直角。这源于传统的纱线在制造期间被加捻并偏向于解开(拆散)的事实。由焊接的纱线基质制造的织物可以具有如下属性:它们比由传统的原始基质对应物制造的织物歪斜小,因为焊接的纱线基质可以具有如下属性:因为单独的纤维可以被熔合/焊接,所以在焊接工艺之后它们不能解开(拆散)。焊接的纱线基质可以将低捻纱线\具有较短纤维长度的纱线和/或由低质量纤维(例如,不同纤度的纤维)生产的纱线转换为更高价值、更结实的焊接纱线基质。例如,在传统的纱线中,捻系数与强度密切相关。每单位长度更多的捻度会花费更多的钱。用作根据本公开的焊接工艺的基质的低捻纱线可以导致焊接纱线基质比传统的纱线基质更结实,因为焊接工艺可以被配置成熔合单根纤维。焊接的纱线基质可以将未梳理过的纱线转换为更高价值、更结实的焊接纱线基质。在传统的纱线中,梳理工艺从纱条中去除短纤维,从而在制造链的更下游产生更高强度的纱线。梳理是机器和能源密集型的,并增加了纱线生产的成本。从由未梳理的纱条组成的基质生产的焊接的纱线基质可以使得焊接的纱线基质比传统的纱线基质更结实,因为焊接工艺可以被配置成熔合短纤维和长纤维以增加强度。焊接工艺可以被配置成以显著的成本节约生产更结实的纱线。由焊接的纱线基质生产的纺织品可以具有如下属性:它们保持它们的形状并且不具有与由传统纱线制造的织物一样多的收缩倾向和/或习性。因为焊接工艺可以被配置成使得焊接的纱线基质与传统纱线相比在其表面处具有明显更少(几乎没有)的松散纤维,所以能够使用比由传统纱线生产的纺织品更小的填充因子,并且以类似于单丝合成纱线(例如,聚酯)所做的方式,从焊接的纱线基质生产纺织品。现在参考图12a和12b,其分别提供了原始牛仔布2d基质以及所得到的焊接的2d基质(使用来自图12a的原始基质作为起始材料)的sem图像,与原始基质相比,对于焊接的基质,可以容易地在视觉上观察到相邻纤维之间的增强的接合。相邻纤维之间增强的接合可以为焊接基质提供各种在原始基质中不存在的属性,包括但不限于增大的刚度、较低的吸水性和/或增大的干燥速度。现在参考图12c和12d,其分别提供了原始针织2d基质以及所得到的焊接的2d基质(使用来自图12c的原始基质作为起始材料)的sem图像,与原始基质相比,对于焊接的基质,可以容易地在视觉上观察到相邻纤维之间的增强的接合。相邻纤维之间增强的接合可以为焊接基质提供各种在原始基质中不存在的属性,包括但不限于增大的刚度、较低的吸水性和/或增大的干燥速度。在配置成作用在2d基质上的焊接工艺(例如,配置成生产类似于图12b或12d所示的焊接基质的焊接工艺)中,添加溶解的聚合物(到基质和/或工艺溶剂)和/或在工艺温度/压强区3期间增大工艺润湿的基质上的压强可以在制造多层和/或层压复合材料时促进增加层间粘合力。通常,基质焊接的程度(例如,高度、中度、低度)可能影响所得的焊接基质的柔韧性。除了增大的破裂强度(burststrength)之外,当使用马丁代尔起球测试(martindale起球测试)进行测试时,诸如图12b和12d所示的织物可以在织物的评分中显示显著的增加。例如,如果该织物经受焊接工艺(该焊接工艺在基质上甚至执行中度的适当焊接),则在该测试中的得分由原始纱线基质组成的织物的1.5分或2分提高到5分。与传统纱线,特别是传统棉纱相比,焊接的纱线基质可以具有优异的吸湿性和芯吸性。因此,焊接的纱线基质可以比传统的纱线更快地干燥,从而减少相关成本和资源。加上较少收缩倾向和/或习性,由焊接的纱线基质构成的织物可以在休闲服装(例如运动服)、贴身衣服(例如女用贴身内衣)等中具有更大的实用性,其中水分管理和无收缩的组合是重要的属性。与由传统纱线生产的纺织品相比,由焊接的纱线基质生产的纺织品可以被配置成对其重量而言更结实。因为对于给定重量的纱线,焊接的纱线基质的平均直径可以小于传统纱线的平均直径,所以观察到使用焊接的纱线基质制造的纺织品的破裂强度显著增大。另外,由焊接的纱线基质生产的纺织品可以被配置成允许纺织品的“手感”(例如,触感、质地等)和面层中的广泛变化和可控结果,因为焊接工艺可以被配置为将涂层添加到基质和/或调节基质中工艺溶剂渗透的深度。例如,在焊接工艺的一个方面,焊接工艺可以被配置为用溶解的纤维素涂覆纱线基质作为膜,与传统的原始基质对应物相比,这可以极大地改变所得的焊接纱线基质的外部的光滑度。可以使用根据本公开的焊接工艺制造的2d焊接基质中包括焊接基质纸板、焊接基质纸类型和/或焊接基质纸替代材料。尽管前述属性和示例可以归因于焊接基质纸替代材料,但是本公开的范围不限于此,并且术语“2d焊接基质”不限于此,除非在所附权利要求书中如此指明。通常,与传统材料相比,2d焊接基质的材料和/或其属性可以允许减少纸类型和建筑材料的制造成本以及实现这些材料的新用途。通常,焊接基质纸替代材料可以与传统的原始基质对应物区分开,这至少是因为焊接基质纸替代材料可以含有大量(例如,质量比或体积比大于10%)的木质纤维素材料的事实。相反,传统的纸板和其他纸材料含有精制的纤维素纸浆以及很少或没有木质纤维素材料。根据本公开的焊接工艺可以被配置成生产含有大量木质纤维素材料的焊接基质纸替代材料。木质纤维素材料可以用作低成本填料和/或增强(强化)剂。这些焊接基质纸替代材料可以允许纸和纸板工业中的目前未发现的分化(differentiation)。例如,用于咖啡杯的低成本保温套管、比萨和其他食品的配送/包装盒、用于运输应用的盒子、衣架等。这些焊接基质纸替代材料可以是革新性的(transformative),因为消除了制浆(例如,牛皮纸制浆)的成本。二维和/或三维焊接基质可以通过提供更结实和/或更轻的材料(例如尿布、纸板替代品、纸替代品等)用于利用纸和/或纸板的应用中(除非在所附权利要求中指明,否则不受限制)。已经用于验证和量化焊接基质与其原始基质对应物相比的优异属性的一些标准纺织品/织物测试包括但不限于:(1)aatcc135(洗涤测试织物);(2)aatcc150(洗衣测试服);(3)astmd2256(单端纱线测试);(4)astmd3512(起球随机翻滚);(5)astmd4970(martindale起球测试)。该列表不是穷尽的,并且本文可以提及其他测试。因此,除非在所附权利要求书中如此指明,否则本公开的范围不受特定原始基质或焊接基质的具体测试和/或定量数据限制。6.各种焊接工艺的具体方面和所得的焊接基质的性能。下面是使用根据本公开的各种方法和设备制造的焊接基质的数据。然而,下面公开的以下具体示例(例如,用于制造各种焊接基质的工艺参数、焊接基质的属性、维度、结构等)中的任何内容均不意味着限制本公开的范围,而是用于说明目的,除非在所附权利要求书中指明。生产焊接基质的一种工艺可以被配置成使用由emimoac和acn组成的工艺溶剂,来施加到由原始30/1环锭纺棉纱(‘30单’,特克斯(tex)=19.69重量纱线)组成的基质。这种基质的扫描电子显微镜(sem)图像示在图7b中被示出,并且所得到的焊接基质的sem图像在图7c中被示出。表示出了用于制造图7c中的焊接基质的一些关键工艺参数。在这种配置中,通过将基质拉动通过33英寸长的管来完成工艺溶剂应用,其中该管充满工艺溶剂。因此,这种配置不会导致离散的工艺溶剂应用区2。在管的末端,柔性孔(例如,刮板)被设计成物理接触工艺润湿的基质以从工艺润湿的基质的外表面去除一部分工艺溶剂,并且将工艺溶剂适当地分布于基质。图7a示出了焊接工艺的示意图,并且该焊接工艺可以被配置成生产图7c中所示的焊接基质。图7a中所示的焊接工艺可以根据本文先前关于图1、图2和图6a-6e描述的与粘滞阻力、工艺溶剂应用、与工艺润湿的基质的物理接触等有关的各种原理和概念来配置。为简洁起见,省略了该焊接工艺的与工艺溶剂回收区4、溶剂收集区7、溶剂再循环8、混合气体收集9和混合气体再循环区10相关的方面。注意,通过共同优化工艺溶剂组分、温度,刮板孔的柔韧性和尺寸等来实现粘滞阻力。焊接基质的体积受控固结仅限于通过在干燥区中其干燥期间控制工艺焊接基质和/或重构的润湿基质上的线性张力以及通过在受控张力下缠绕焊接基质的收集方法来减小纱线直径。然而,对于2d基质或3d基质,焊接基质的体积受控固结可以在其他维度上限制工艺润湿的基质、重构的润湿基质等上的张力,这可能需要控制至少第一线性张力、第二线性张力、和/或第三线性张力。表1.1表1.1示出了利用图7a中所示的焊接工艺制造图7c中的焊接基质的一些关键工艺参数。注意,在表1.1中,“焊接区时间”是指基质位于工艺溶剂应用区2和工艺温度/压强区3中的持续时间。该时间大致表示与现有技术相比,焊接时间的减少量级。当然,存在许多已经被披露的为其将样品处理几分钟到几小时的工艺。然而,现有技术没有公开能够在如此短的持续时间内实现所需效果的部分溶解型工艺。焊接时间的显著缩短仅能通过将工艺溶剂化学与设计用于实现所需效果的硬件和控制系统共同优化来实现。也就是说,通过以实现适当的粘滞阻力和受控体积固结的方式来结合化学和硬件,以在成品焊接纱线基质中实现令人意外的新效果。图7d示出了以克为单位的应力与应用于代表性原始纱线基质样品和代表性焊接纱线基质二者的百分比伸长率的图示,其中顶部曲线是焊接纱线基质,而底部迹线是原始纱线基质。仍然参考表1.1,“拉动速度”是指基质移动通过焊接工艺的线性速度(其影响粘滞阻力),“溶剂比率”是指工艺溶剂与基质的质量比。表1.2提供了图7c中所示的焊接基质的各种属性(如在焊接纱线基质的大约20个独特样品上执行的),这些属性通过使用instron(英斯特朗)牌机械性能测试仪在接近astmd2256的拉伸测试模式下操作来收集。如表1.2中使用的,断裂强度(breakingstrength)表示焊接基质承受的以克为单位的平均绝对力。标准化断裂强度是除以原纱基质的重量(对于该样品为19.69tex)被标准化的换算成百分之一牛顿的克数。百分比伸长率表示发生断裂时的位移除以标距长度后乘以100。表1.2制造焊接基质的另一种工艺可以被配置成使用由emimoac和acn组成的工艺溶剂,来施加到由原始30/1环锭纺棉纱组成的基质上。这种焊接工艺的示意图在图8a中被示出。图8a中所示的焊接工艺可以根据本文先前关于图1、图2和图6a-6e描述的与粘滞阻力、工艺溶剂应用、与工艺润湿的基质的物理接触等有关的各种原理和概念来配置。为简洁起见,省略了该焊接工艺的与工艺溶剂回收区4、溶剂收集区7、溶剂再循环8、混合气体收集9和混合气体再循环区10相关的方面。在该示例中,用于与焊接工艺一起使用的设备的各方面被特别配置为增加由纱线组成的基质移动通过该工艺的速度。具体地,通过使用类似于图6a中描述的喷射器60设备将工艺溶剂应用2与工艺温度/压强区3分离。表2.1示出了利用图8a中所示的焊接工艺制造图8c中的焊接基质的一些关键工艺参数。表2.1中每列标题的工艺参数与先前关于表1.1所述的相同。在该焊接工艺中,工艺溶剂应用区2和工艺温度/压强区3的温度保持在不同的值,以共同优化所需的粘滞阻力量并促进增加工艺溶剂效能。另外,通过使用计量泵实现工艺溶剂应用并在整个工艺溶剂应用区2的关键点应用粘滞阻力,能够限制纱线基质上的摩擦力(例如剪切)以实现更大的张力控制。这带来进一步辅助纱线基质直径控制体积而减少的效果。整体设计实现了比前一个示例更快的总吞吐量,并且通过比较表1.1和表2.1是很明显的。图8b示出了可以与图8a的焊接工艺一起使用的由原始30/1环锭纺棉纱组成的基质的扫描电子显微镜(sem)图像。图8c示出了所得的焊接基质的sem图像。表2.1示出了用于制造图8c中的焊接基质的一些关键工艺参数。表2.12.2提供了使用表2.1中描述的参数生产图8c中所示的焊接基质的各种属性。所述属性是在焊接纱线基质的大约20个独特样品上所执行的平均,这些属性通过使用instron(英斯特朗)牌机械性能测试仪在接近astmd2256的拉伸测试模式下操作来收集。表2.2中每列标题的机械性能与先前关于表所述的相同。图8d示出了以克为单位的应力与应用于代表性原始纱线基质样品和代表性焊接纱线基质二者的百分比伸长率的图示,其中顶部曲线是焊接纱线基质,而底部迹线是原始纱线基质。表2.2生产焊接基质的另一种工艺可以被配置成使用由emimoac和acn组成的工艺溶剂,来施加到由原始30/1环锭纺棉纱或10/1自由端锭纺棉纱组成的基质。此种工艺可以类似于图8a中示意性示出的工艺。表3.1示出了用于从由10/1自由端锭纺棉纱组成的基质制造焊接基质的一些关键加工参数,表3.2提供了焊接基质和使用表3.1中所示的参数的焊接工艺的原始基质的各种属性。当然,这些数据是可以通过焊接工艺完成的焊接基质的属性的说明,并不意欲限制能够被焊接的焊接纱线基质的类型和/或焊接基质的属性,除非在所附权利要求中指明。生产焊接基质的另一种工艺可以被配置成使用由emimoac和acn组成的工艺溶剂,来施加到由原纱组成的基质。图9a示出了可以被配置成执行这种焊接工艺的各种设备的透视图。图9a中所示的焊接工艺和设备可以根据本文先前关于图1、图2和图6a-6e描述的与粘滞阻力、工艺溶剂应用、与工艺润湿的基质的物理接触等有关的各种原理和概念来配置。为简洁起见,省略了该焊接工艺的与工艺溶剂回收区4、溶剂收集区7、溶剂再循环8、混合气体收集9和混合气体再循环区10相关的方面。图9b示出了可以与图9a的焊接工艺和设备一起使用的基质的扫描电子显微镜(sem)图像,图9c示出了所得的焊接基质的sem图像。表3.1示出了使用图9a中所示的焊接工艺和设备制造焊接基质的一些关键工艺参数,用于生产图9k中的焊接基质(其类似于图9c中所示的焊接基质,因为它是轻度焊接的)。表3.1中每列标题的工艺参数与先前关于表1.1所述的相同。注意,该焊接工艺可以被配置为同时移动纱线基质的多个端部,并且实际上可以调整所有重要的工艺参数,例如工艺溶剂流速、温度、基质供给速度、基质张力等。特别地,该焊接工艺和设备可以使能针对特定产品设计的具体焊接基质的粘滞阻力和受控体积固结的共同优化。图9c-9e和图9i-9m示出了选定数量的焊接纱线基质。表3.1表3.2提供了使用表3.1中描述的参数生产图9k中所示的焊接基质的各种属性。所述属性是在焊接纱线基质的大约20个独特样品上所执行的平均,这些属性通过使用instron(英斯特朗)牌机械性能测试仪在接近astmd2256的拉伸测试模式下操作来收集。表3.2中每列标题的机械性能与先前关于表1.2所述的相同。图9g示出了以克为单位的应力与应用于代表性原始纱线基质样品和代表性焊接纱线基质(例如图9c和9k中所示的已经轻度焊接的焊接基质)二者的百分比伸长率的图示,其中顶部曲线是焊接纱线基质,而底部迹线是原始纱线基质。表3.2表4.1示出了使用图9a中所示的焊接工艺和设备制造焊接基质的一些关键工艺参数,用于生产图9l中的焊接基质(其类似于图9d中所示的焊接基质,因为它是中度焊接的)。表4.1中每列标题的工艺参数与先前关于表1.1所述的相同。注意,该焊接工艺可以被配置为同时移动纱线基质的多个端部,并且实际上可以调整所有重要的工艺参数,例如工艺溶剂流速、温度、基质供给速度、基质张力等。特别地,该焊接工艺和设备可以使能针对特定产品设计的具体焊接基质的粘滞阻力和受控体积固结的共同优化。表4.1表4.2提供了使用表4.1中描述的参数生产图9l中所示的焊接基质的各种属性。所述属性是在焊接纱线基质的大约20个独特样品上所执行的平均,这些属性通过使用instron(英斯特朗)牌机械性能测试仪在接近astmd2256的拉伸测试模式下操作来收集。表4.2中每列标题的机械性能与先前关于表1.2所述的相同。表4.2表5.1示出了使用图9a中所示的焊接工艺和设备制造焊接基质的一些关键工艺参数,用于生产图9m中的焊接基质(其类似于图9e中所示的焊接基质,因为它是高度焊接的)。表5.1中每列标题的工艺参数与先前关于表1.1所述的相同。注意,该焊接工艺可以被配置为同时移动纱线基质的多个端部,并且实际上可以调整所有重要的工艺参数,例如工艺溶剂流速、温度、基质供给速度、基质张力等。特别地,该焊接工艺和设备可以使能针对特定产品设计的具体焊接基质的粘滞阻力和受控体积固结的共同优化。表5.1表5.2提供了使用表5.1中描述的参数生产图9m中所示的焊接基质的各种属性。所述属性是在焊接纱线基质的大约20个独特样品上所执行的平均,这些属性通过使用instron(英斯特朗)牌机械性能测试仪在接近astmd2256的拉伸测试模式下操作来收集。表5.2中每列标题的机械性能与先前关于表1.2所述的相同。表5.2图9c-9e示出了基质被焊接的程度的进展,所有这些焊接基质可以使用图9a中所示的工艺和设备通过改变工艺参数来制造。特别地,sem数据说明了逐渐消除棉纱上的松散毛发以及图9c中所示的轻度焊接基质、图9d中所示的中度焊接基质、图9e中所示的高度焊接基质的受控体积固结的改变程度。所有这些焊接基质都是使用由原始30/1棉纱组成的基质制造。除非本文或所附权利要求中指明,术语“轻度”、“中度”和“高度”并不意味任何意义的限制,而是旨在传达相对的、定性的方面。图9f示出了由轻度焊接基质(其焊接基质可以类似于图9c或9k中所示的焊接基质)生产的测试织物。由焊接基质针织或机织的织物的绝对属性可以变化,并且可以至少通过工艺参数和包括织物的焊接基质上执行的焊接程度来操纵。表6.1示出了使用图9a中所示的焊接工艺和设备制造焊接基质的一些关键工艺参数,生产用于图9f中所示织物的焊接基质。表6.1中每列标题的工艺参数与先前关于表1.1所述的相同。表6.1表6.2提供了包括诸如图9c和9k中的轻度焊接基质的三个不同样品(使用原始30/1环锭纺纱线基质)的织物各种属性和使用原纱基质制成的相应织物的各种属性。使用astmd3786确定破裂强度。列标题“破裂强度”指以磅/平方英寸为单位的绝对破裂强度,并且列标题“破裂强度提高”指由焊接纱线基质组成的织物比由原始基质组成的织物的百分比提高,其是可控制的。表6.2织物中使用的纱线破裂强度(psi)破裂强度提高(%)控制(原始基质)60.0-焊接a(轻度焊接基质)71.5+19%焊接b(轻度焊接基质)72.5+21%焊接c(轻度焊接基质)72.9+21%除了增大破裂强度之外,织物(诸如图9f中所示的)还可以在使用martindale起球测试(astmd4970)测试时展现出织物得分的显著提高。例如,如果相同的原始纱线基质经受焊接处理使得其甚至被中度焊接,则在该测试中由原始基质组成的织物由1.5分或2分将提高到5分。图9k-9m示出了基质被焊接的程度的另一进展,所有这些焊接基质可以使用图9a中所示的工艺和设备通过改变如上关于与用于生产每种焊接基质的焊接工艺相关联的表格有关的工艺参数来制造。特别地,sem数据说明了逐渐消除棉纱上的松散毛发以及图9k中的轻度焊接基质、图9l中的中度焊接基质、图9m中的高度焊接基质的受控体积固结的改变程度。所有这些焊接基质都是使用由原始30/1棉纱组成的基质制造。图9k-9m中所示的纱线的一些机械性能和图9i和9j中所示的那些在表7.1中被示出,其提供了对原始基质的相同机械性能的对比。在表7.1中,“韧度”指强度的重量标准化的测量值,其通常用于纱线和纤维工业中。表7.1通常,可以观察到焊接基质比其原始基质对应物强度增大。如前所述的,图9f中所示的织物的破裂强度比由原纱基质生产的类似针织控制织物的断裂强度大大约30%。还观察到其他改进,例如与原始基质对应物相比,干燥时间(洗涤后)减小、耐磨性增大和染色活力增大,下面将进一步详细讨论。可以至少通过工艺参数(例如,焊接工艺的程度和质量)来控制观察这些属性的绝对程度。反过来,焊接工艺的程度和质量可以至少是工艺溶剂应用和粘滞阻力以及在焊接工艺的各个步骤期间发生的受控体积固结共同优化的函数。再次参考图9g,其示出了作为施加到原始基质和焊接基质的线性张力(以克计)的函数的百分比伸长率的对比,焊接基质表现出优异的机械性能。图9c中所示的焊接基质可以被认为是“芯焊接”基质,其中术语“芯焊接”指工艺溶剂应用和焊接作用相对均匀地遍布基质直径而渗透基质的焊接基质。图9i和图9j中所示的焊接基质可以被认为是“壳焊接”基质,其中术语“壳焊接”指优先在基质的外部外表面上焊接(即,以便形成焊接壳)的焊接基质。如图9j中所示的中心定位的焊接基质的中心部分清楚地示出的,焊接壳与最小/非焊接芯不同。该壳焊接基质可以利用图9a中所述的焊接工艺和设备从由原始30/1环锭纺棉纱组成的基质制造。表8.1示出了使用图9a中所述的焊接工艺和设备制造壳焊接基质的一些关键工艺参数,来生产图9i和9j中的焊接基质。表8.1中每列标题的工艺参数与先前关于表1.1所述的相同。注意,该焊接工艺可以被配置为同时移动纱线基质的多个端部,并且实际上可以调整所有重要的工艺参数,例如工艺溶剂流速、温度、基质供给速度、基质张力等。特别地,该焊接工艺和设备可以允许针对特定产品设计的具体焊接基质的粘滞阻力和受控体积固结的共同优化。表8.1表8.2提供了使用表8.1中描述的参数生产图9i和9j中所示的焊接基质的各种属性。所述属性是在焊接纱线基质的大约20个独特样品上所执行的平均,这些属性通过使用instron(英斯特朗)牌机械性能测试仪在接近astmd2256的拉伸测试模式下操作来收集。表8.2中每列标题的机械性能与先前关于表1.2所述的相同。表8.2通过优化各种工艺参数(例如,工艺溶剂与基质的比例、温度、压强等,以及由此产生的工艺溶剂的效能)和粘滞阻力,能够控制基质在一维上从基质的外部到其内部焊接的深度。也就是说,焊接工艺可以被配置为优先焊接基质的外部区域,使得基质芯未被焊接到与其外部相同的程度。与原始基质相比,这具有增大强度的效果,同时还通常保持原始基质的伸长性能,因此导致韧性增加(断裂能量增加)。注意,当与其原始基质对应物相比时,芯焊接基质和壳焊接基质都能够显示出积极的属性,例如更快的干燥、更大的耐磨性、更高的抗起球性、更鲜艳的颜色等。图9h示出了由约50%的原始(未加工)棉纱基质和50%的中度焊接的纱线基质构成的一块织物的图片,其中图的左侧部分示出原棉纱线,而图的右侧部分示出焊接的棉纱基质。这种分片织物经过缸染色工艺,并且为由焊接纱线基质针织的织物侧面显示出增强、丰富、加深、更鲜艳的色彩。焊接的纱线基质和所得到的织物至少因为共同优化的工艺溶剂应用方法、粘滞阻力和溶剂效能而具有较少的毛发。此外,与焊接工艺的焊接、重构和干燥步骤相关联的受控体积减小可以被配置成减小焊接纱线基质内的表面面积和空白空间。这减少了光能够散射的接口的数量。这些组合效果的最终结果是染料着色剂更能够通过焊接基质被看到,其比原始基质更透明。应该注意的是,纤维焊接基质内的空白空间的减少和相对缺少毛发也有助于干燥纤维焊接基质所需的时间的急剧和显著减少。同样,通过受控体积固结缺少基质表面上的毛发并减少焊接基质内的空白空间可以被配置为限制重力水能够在焊接基质内集成的程度。这就是焊接基质的干燥速度通常是原始基质干燥速度的两倍(所需能量的一半)多的原因。最后,观察到,帮助降低原棉保水性的相同涂料和表面改性化学物质与纤维焊接棉基质一起更为有效。对丝、亚麻和其他天然基质也观察到类似的结果。生产焊接基质的另一种工艺可以被配置成使用由氢氧化锂和尿素组成的工艺溶剂,来施加到由原始30/1环锭纺棉纱组成的基质。图10a示出了可以被配置成执行这种焊接工艺的各种设备的透视图。图10a中所示的焊接工艺和设备可以根据本文先前关于图1、图2和图6a-6e描述的与粘滞阻力、工艺溶剂应用、与工艺润湿的基质的物理接触等有关的各种原理和概念来配置。在该配置中,基质(例如,图10a中所示的特定配置的纱线)被多次拖动通过诸如图6b中所示的带凹槽托盘。每次通过托盘都会为基质贡献额外的工艺溶剂。基质的整个焊接路径可以被包含在温度受控环境中(在-17℃和-12℃之间操作的一种配置中)。焊接的纱线基质通常可以在14分钟的低温焊接时间后达到最佳强度。在此持续时间之后,工艺润湿的基质可以行进至重构区。为简洁起见,省略了该焊接工艺的与工艺溶剂回收区4、溶剂收集区7、溶剂再循环8、混合气体收集9和混合气体再循环区10相关的方面。图10b示出了可以与图10a的焊接工艺和设备一起使用的基质的扫描电子显微镜(sem)图像,图10e示出了所得的焊接基质的sem图像。表9.1示出了使用图10a中所示的焊接工艺和设备制造图10e中的焊接基质的一些关键工艺参数。表9.1中每列标题的工艺参数与先前关于表1.1所述的相同。该焊接工艺可以被配置为同时移动纱线基质的多个端部,并且实际上可以调整所有重要的工艺参数,例如工艺溶剂流速、温度、基质供给速度、基质张力等。特别地,该焊接工艺和设备可以允许针对特定产品设计的具体焊接基质的粘滞阻力和受控体积固结的共同优化。图10b-10f示出了选定数量的焊接纱线基质。在配置为使用由lioh(氢氧化锂)和尿素组成的工艺溶剂的其他焊接工艺中,工艺溶剂与基质的质量比可以小于表9.1中所示的值。例如,在一种焊接工艺中,比率可以是0.5:1,在另一焊接工艺中,它可以是1:1,在另一焊接工艺中,它可以是2:1,在又另一焊接工艺中,它可以是3:1(该焊接工艺和由此生产的焊接基质至少在表10.1中被详细讨论),在另一焊接工艺中,它可以是4:1,而在又另一焊接工艺中,它可以是5:1。此外,该比率可以是除整数之外的值,例如4.5:1。因此,除非在所附权利要求书中指明,否则本公开的范围不受该比率的具体值限制。表9.1表9.2提供了使用图10a的焊接工艺和设备以及图10b中所示的原始基质,使用表9.1中描述的参数生产的焊接基质的各种属性。所述属性是在焊接纱线基质的大约20个独特样品上所执行的平均,这些属性通过使用instron(英斯特朗)牌机械性能测试仪在接近astmd2256的拉伸测试模式下操作来收集。表9.2中每列标题的机械性能与先前关于表1.2描述的相同。图10g示出了应力(以克为单位)与应用于代表性原始纱线基质样品和代表性焊接纱线基质二者的百分比伸长率的图示,其中顶部曲线是焊接纱线基质,而底部迹线是原始纱线基质。表9.2图10c-10e示出了基质被焊接的程度的进度,所有这些焊接基质可以使用图10a中所示的工艺和设备通过改变工艺参数来制造。用于图10a中所示的工艺和设备的工艺溶剂的化学性质,与图9a中所示的工艺和设备相比,可以从根本上不同并且涉及各种工程考虑。也就是说,整个焊接工艺可以根据与先前针对图7a、8a和9a所示的焊接工艺和相关设备所描述的类似原理和设计概念来操作。此外,关于图1和图2描述的原理和概念与理解总体工艺设计相关。以类似于先前关于图9c-9e描述的方式,图10a中所示的焊接工艺和相关设备可以被配置成使得焊接的程度是可控的。从图10c到图10e示出了使用各种焊接参数来提高棉纱基质的毛发减少和受控体积固结的进展。所有这些焊接基质均使用由原始30/1棉纱组成的基质制造。sem数据说明了逐渐消除棉纱上的松散毛发以及图10c中所示的轻度焊接基质、图10d中所示的中度焊接基质、图10e中所示的高度焊接基质的受控体积固结的改变程度。所有这些焊接基质都是使用由原始30/1棉纱组成的基质制造。此外,由焊接基质针织或机织的焊接织物的绝对属性可以变化,并且可以至少通过工艺参数来操纵。显而易见的是,适当地共同优化各种工艺参数(例如,通过设计适当的粘滞阻力、工艺区的温度和时间、通过干燥区的速度等来优化工艺溶剂组分的效能和粘度),焊接工艺能够被控制来实现与图9c-9e中详述的类似的效果。这些数据说明了能够通过使用粘滞阻力和受控体积固结概念共同优化工艺实现的一些意想不到的效果。换句话说,这些数据说明共同优化的硬件、软件和化学能够实现预期的结果,并且是这项开创性工作中展示的强有力的新教导。图12e示出了由平针织棉组成的原始2d基质的sem图像,图12g示出了其放大图像。图12f示出了相同的织物在被轻度焊接后的sem图像,图12h示出了其放大图像。表10.1示出了用于制造图12f和12h中所示的焊接2d基质的一些关键工艺参数。该焊接工艺可以被配置为使得实际上可以调整所有重要的工艺参数,诸如工艺溶剂流速、温度、基质供给速度、基质张力等。对于具体实例,焊接工艺可以作为分批工艺执行,其中工艺溶剂被均匀地施加到原始基质上并被允许作用在基质上7分钟。已经使用更多或更少的焊接区时间产生了具有类似结果的具体示例,其中更多的焊接区时间通常对应于更高程度的焊接,并且更少的焊接区时间通常对应于更低程度的焊接。水被用作重构溶剂。在工艺溶剂应用2、工艺压强/温度区3、工艺溶剂回收区4和干燥区5期间,基质被约束用于受控体积固结,使得各根纱线不彼此牢固地粘附。因此,焊接的2d基质保持原始基质的相对柔软的手感和柔性,但是与原始基质相比,表现出优异的破裂强度(大约大20%)和martindale起球测试分数(从1.5或2增加到至少4)。表10.1重要的是要注意,当向焊接基质添加功能材料和添加剂以及配置特定的焊接工艺来生产呈现所需属性的焊接基质时,具有多种工艺溶剂化学物质产生了巨大的灵活性。离子液体基溶剂(例如,如图9a中所示的焊接工艺和设备)例如倾向于呈微酸性,特别是当所用的阳离子是咪唑基时。另一方面,碱金属尿素型工艺溶剂(例如,图10a中所示的焊接工艺和设备)是基础性的。工艺溶剂的选择通常基于工艺溶剂与特定添加剂配合的适用性来决定,并且成为当功能材料被纤维焊接工艺截留(如下面进一步详细描述的)时要考虑的一个重要的新教导。7.功能材料如前所述,在根据本公开的焊接工艺的一个方面,基质可以暴露于工艺溶剂,以便随后物理或化学地操纵基质和/或其性能。工艺溶剂可以至少部分地中断基质的分子间键合以打开和活动(溶剂化)基质以进行修改。尽管前述说明和描述涉及通过由天然纤维组成的焊接工艺特征基质的功能材料掺入,但是本公开的范围不限于此,除非在所附权利要求书中指明。如前所述,一种或多种功能材料、化学物质和/或组分可以集成在用于1d、2d和3d基质的焊接基质和/或焊接基质内。通常,预期功能材料的掺入可赋予新的功能性(例如,磁性、导电性),但不会使生物聚合物完全变性,否则会对基质的性能特征(物理和化学性质)产生有害影响。通常,预期功能材料在焊接基质内的最佳集成可能需要优化粘滞阻力(其可以主要与工艺溶剂应用区2和/或工艺温度/压强区3相关联)和/或调整体积控制固结,这两个概念在上面被详细描述。例如,如果期望功能材料被均匀地分布在焊接基质的整个表面面积上,则粘滞阻力可以被配置为促进其中设置有功能材料的工艺溶剂均匀分布在基质上。如果希望功能材料集中在焊接基质上的特定位置,则粘滞阻力可以被配置成促进这种工艺溶剂的不均匀分布。因此,可以根据如上所述的和/或在下面进一步详细描述的概念、示例、方法和/或设备来优化被配置为将功能材料集成到焊接基质中的焊接工艺。在根据本公开的焊接工艺的一个方面,基质(可以包括但不限于纤维素、几丁质、壳聚糖、胶原、半纤维素、木质素、丝、通过氢键结合在一起的其他生物聚合物组分、和/或其组合)可以通过能够破坏基质的分子间力的合适的工艺溶剂来溶胀,此外,功能材料(包括但不限于碳粉、磁性微粒和包括染料或其组合的化学物质)可以是在应用工艺溶剂之前、同时或之后被引入。在根据本公开的一种焊接工艺的一个方面,纤维状生物聚合物基质、功能材料和工艺溶剂(其可以是离子基液体或“有机电解质”,但不限于此,除非在所附权利要求书中如此指明)可以被允许在受控温度下相互作用,其可以包括基于激光或其他定向能量加热,以及特定的大气和压强条件。在规定的时间后,可以去除工艺溶剂。在干燥时,所得的功能材料可以被键合到基质上,并且与原始基质材料的性能相比,可以为焊接基质提供额外的功能性质。通过根据本公开的焊接工艺可以实现功能材料成功和永久地集成到纤维材料中。功能材料可以在焊接之前与工艺溶剂一起引入和/或与基质接合。通常,在焊接工艺的一个方面,天然纤维可以被比作可以放置功能材料的封套,并且一旦在焊接工艺期间消除所有或一部分空白空间,就可以捕获功能材料。例如,在焊接工艺的一个方面,焊接工艺可以被配置为将诸如微型rfid芯片的设备嵌入到纱线的中间。在另一工艺中,功能材料被设置在用作基质粘合剂的材料中。例如,焊接工艺可以被配置成使得在焊接工艺期间基质的纤维可以涂覆溶解的基质粘合剂。在焊接工艺的一个方面,工艺溶剂可以对天然基质中的生物聚合物具有活性并且还与功能材料相兼容。在一个方面,功能材料可以包括与基质材料结合的另一生物材料,这种结构的一个示例是使用溶解的几丁质作为纤维素中的抗菌材料,或者作为伤口敷料中的血液凝结剂。从前面的内容可以明显看出,本公开的范围不受特定基质、工艺溶剂、焊接工艺中引入功能材料的点、引入功能材料的方法和/或载体、如何在焊接基质中保留功能材料、和/或功能材料类型的限制,除非在所附权利要求书中指明。基质的溶剂和/或功能材料渗透深度以及基质纤维可以被焊接在一起的程度可以至少通过溶剂的量、温度、压强、纤维间距、功能材料的形式和/或颗粒尺寸(例如,分子、聚合物、rfid芯片等)、停留时间、其他焊接工艺步骤、基质性能(例如,水分含量和/或梯度)重构方法、和/或其组合来控制。一段时间后,可以如前所述去除工艺溶剂(例如,用水,重构溶剂等)以产生具有掺入的(截留的)功能材料的焊接基质,其可以通过共价键合被保留。除聚合物运动外,还可在此工艺期间进行化学衍生化。在根据本公开的焊接工艺的一个方面,焊接工艺可以被配置为使得与基质的材料密度和表面积相比,增加由一束纤维组成的成品焊接基质的材料密度(例如,可以去除纤维之间的所有或一些开放空间)并且减小其表面积,同时将功能材料截留在焊接基质内。通常,焊接工艺影响给定基质内的空白空间量的程度可以至少使用与上面所列出的关于溶剂和/或功能材料渗透深度的相同变量来操纵,其包括但不限于溶剂的量、温度、压强、纤维间距、功能材料的形式和/或局部尺寸(例如,分子、聚合物、rfid芯片等)、停留时间、其他焊接工艺步骤、基质性能(例如,水分含量和/或梯度)重构方法和/或其组合。在另一方面,焊接工艺可以被配置为控制给定基质的去除空白空间的特定区域,这将在下面进一步详细描述。此外,功能材料可以与工艺溶剂一起被直接添加到基质(在焊接前),和/或在工艺溶剂被去除之前的任何时间点添加。在根据本公开的焊接工艺的一个方面,焊接工艺可以被配置为允许使用与多维印刷技术类似的概念来从空间控制基质的物理和化学性质的交替。例如,通过用类似于喷墨打印机的设备将工艺溶液添加到基质或者通过用定向能量束(例如,来自红外激光器或本领域已知的任何其他设备)加热基质的所选部分来激活在所选部分上的焊接。下面关于涉及调节焊接工艺的图11a-11e更详细地描述这种焊接工艺。在焊接工艺的一个方面,工艺溶剂的量相对于基质的量可以保持相对低,以限制在焊接工艺期间基质被修改的程度。如前所述的,工艺溶剂可以通过第二溶剂体系(例如,重构溶剂)、通过蒸发(如果工艺溶剂具有足够的挥发性)或通过任何其他合适方法和/或设备来去除,除非在所附权利要求书中指明,否则不受限制。焊接工艺可以被配置成通过将工艺润湿的基质置于真空下和/或使其经受加热来提高工艺溶剂的蒸发速度。焊接工艺可以被配置成生产可以构成“天然纤维功能复合材料”或“纤维基复合材料”的焊接基质,如果在焊接工艺之前单独观察,“天然纤维功能复合材料”或“纤维基复合材料”则表现出从构成焊接基质的单个基质和/或组分观察不到的功能(例如,物理和/或化学特性)。如下面进一步详细讨论的,焊接工艺可以被配置成通过利用由离子液体基溶剂(“il基溶剂”)组成的工艺溶剂来生产由包含功能材料的纤维基复合材料组成的焊接基质。工艺溶剂中的一种或多种分子添加剂可以增加工艺溶剂作为溶胀和活动剂的效能,和/或增强工艺溶剂与一种或多种功能材料的相互作用,和/或增强天然纤维基质对工艺溶剂和/或功能性材料的吸收。il基工艺溶剂通常通过重构溶剂而从焊接基质(其可以构成纤维基复合材料)中去除,其通常包括用重构溶剂冲洗/洗涤工艺润湿的基质,该重构溶剂可以由过量分子溶剂组成。在干燥时,(可以通过升华、蒸发、煮沸或以其他方式去除重构溶剂或任何其他合适的方法和/或设备完成,除非在所附权利要求书中指明,否则不受限制),焊接基质可以构成成品的纤维基复合材料,其包括具有相关新颖物理和化学特性的功能材料。基质可以由天然纤维组成,天然纤维可以包括纤维素、木质纤维素、蛋白质和/或其组合。纤维素可以包括棉、精制纤维素(例如牛皮纸浆)、微晶纤维素等。在焊接工艺的一个方面,焊接工艺和与其相关联的设备可以被配置成与由棉花形式的纤维素或其组合组成的基质一起使用。由木质纤维素组成的基质可以包括来自亚麻、工业大麻及其组合的韧皮纤维。由蛋白质组成的基质可以包括丝、角蛋白等。通常,与本文中的基质相关的术语“天然纤维”意在包括由活有机体和/或酶生产的任何高纵横比的含纤维的天然材料。一般而言,术语“纤维”的使用表示关注材料的宏观(大规模)角度。天然纤维的其他示例包括但不限于亚麻、丝、羊毛等。在可以根据本公开生产的焊接基质的一个方面,天然纤维通常可以是纤维基复合材料的强化纤维组分。另外,天然纤维可以以诸如无纺毡、纱线和/或纺织品的形式使用。虽然天然纤维通常主要由生物聚合物组成,但是存在通常不被视为天然纤维的含生物聚合物的材料。例如,蟹壳主要是几丁质,它是由n-乙酰葡糖胺单体(葡萄糖的衍生物)组成的生物聚合物,但通常不被称为纤维体。类似地,胶原蛋白和弹性蛋白是蛋白质生物聚合物的示例,其在许多通常不被认为是纤维体的组织中提供结构支持。由植物生产的天然纤维通常是如下不同生物聚合物的混合物:纤维素、半纤维素和/或木质素。纤维素和半纤维素具有糖的单体单元。木质素具有交联的酚基单体。由于交联,木质素通常不能被il基溶剂溶解(例如,溶胀或活动)。然而,含有大量木质素的天然纤维能够用作复合材料中的结构支撑纤维。另外,含有大量木质素的天然纤维基质可以使用非il基工艺溶剂溶胀或活动。动物产生的天然纤维通常由蛋白质生物聚合物组成。蛋白质中的单体单元是氨基酸。例如,有许多组成丝的独特的丝纤蛋白。羊毛、角和羽毛主要由被归类为角蛋白的结构蛋白组成。天然纤维可以包括纤维素、木质纤维素、蛋白质和/或其组合。除非在所附权利要求书中指明,“天然纤维”通常可以包括但不限于纤维素、几丁质、壳聚糖、胶原蛋白、半纤维素、木质素、丝和/或其组合。在根据本公开的焊接工艺的一个方面,焊接工艺可以被配置成将由天然纤维和功能材料组成的基质结合并转换成焊接基质,该焊接基质是连续的纤维基复合材料。焊接工艺的一个目的可以是将由天然纤维和功能材料组成的基质结合并转换成构成天然纤维功能复合材料的焊接基质,在此也称为“连续纤维基复合材料”或简称为“纤维基复合材料”。通常,功能材料被截留在纤维基复合材料的基质部分内。焊接工艺可以被配置成使得天然纤维构成焊接基质纤维基复合材料的纤维部分的主体,并且通常用作主要增强剂。a.离子液体基工艺溶剂焊接工艺如前所述的,焊接工艺可以被配置成使用由离子液体组成的工艺溶剂。如本文所用的,术语“离子液体”可以用于指相对纯的离子液体(例如,如上文所定义的“纯工艺溶剂”),并且术语“离子液体基溶剂”(“il基溶剂”)通常可以指包含阴离子和阳离子两者的液体,并且可以包括分子(例如,水、醇、乙腈等)物质,并且(溶剂混合物)能够溶解、活动、溶胀和/或稳固聚合物基质。离子液体是有吸引力的溶剂,因为它们是非挥发性的、不易燃的、具有高的热稳定性、制造起来相对便宜、对环境无害的,并且能够用于在整个工艺方法中提供更大的控制和灵活性。美国专利第7,671,178号包含许多合适的离子液体溶剂的示例,其可以与根据本公开的各种焊接工艺一起使用。在一种焊接工艺中,焊接工艺可以被配置成使用熔点低于约200℃、150℃或100℃的离子液体溶剂。在一种焊接工艺中,焊接工艺可以被配置成与由咪唑基阳离子和乙酸根和/或氯阴离子组成的离子液体溶剂一起使用。在焊接方法的另一个方面,阴离子可以包括离液序列高的阴离子,包括单独的乙酸盐、甲酸盐、氯化物、溴化物等、或其组合。在焊接工艺的另一个方面,焊接工艺可以被配置成与il基溶剂一起使用,所述il基溶剂可以包括极性非质子溶剂作为分子添加剂,例如乙腈、四氢呋喃(thf)、乙酸乙酯(etoac)、丙酮、二甲基甲酰胺(dmf)、二甲基亚砜(dmso)等。更一般地,用于il基工艺溶剂体系的分子添加剂可以是具有相对低的沸点(例如,在环境压强下小于80℃)和相对高的蒸气压的极性非质子溶剂。在一个方面,il基溶剂可以是每摩尔离子液体约0.25摩尔至约4摩尔极性非质子溶剂。在另一方面,极性非质子溶剂可以以每摩尔离子液体约0.25摩尔至约2摩尔的总极性非质子溶剂的范围加入到il-基溶剂中。极性质子溶剂(例如水、甲醇、乙醇、异丙醇)通常以小于1摩尔总极性质子溶剂的范围存在于1摩尔il基溶剂中。在另一方面,对于每摩尔离子液体,il基溶剂可以包括约0.25摩尔至约2摩尔的极性非质子溶剂。在配置为与作为工艺溶剂的il基溶剂一起使用的焊接工艺的一个方面,添加的il基工艺溶剂的量可以是对1质量份的基质使用约0.25质量份至约4质量份的工艺溶剂。在一个方面,焊接工艺可以被配置成使用由一种或多种极性质子溶剂组成的il基溶剂,该极性质子溶剂包括但不限于水、甲醇、乙醇、异丙醇和/或其组合。在一个方面,少于约1摩尔的极性质子溶剂可以与最多约1摩尔的离子液体组合。焊接工艺可以被配置成使用由一种或多种极性非质子溶剂(其可以构成工艺溶剂体系的分子添加剂)组成的il基溶剂,该极性非质子溶剂包括但不限于乙腈、丙酮、和乙酸乙酯。将分子添加剂添加到il基工艺溶剂中的原因包括调节工艺溶剂作为溶胀和活动剂的效能,和/或增强工艺溶剂与功能材料的相互作用,和/或增强将工艺溶剂和功能材料引入基质。这些分子添加剂可以包括但不限于低沸点溶剂,其能够调节il的效能以及工艺溶剂的流变学特性。也就是说,可以选择分子添加剂及其相对量,使得至少产生所需的粘滞阻力和受控体积固结。通常,对于大多数受人关注的生物聚合物材料,单独的分子组分是非溶剂。在焊接方法的一个方面,生物聚合物或合成聚合物材料的部分溶解可以限于如下情况:其中对于最多约4摩尔的分子组分,存在约1摩尔离子液体(离子)的合适浓度。分子组分可以降低离子液体离子溶解、活动和/或溶胀基质中的聚合物的总体能力,或者它们可以提高il基工艺溶剂的总体效能,这可以至少取决于分子组分的氢键的施予和接受能力。存在于生物聚合物基质中的聚合物以及许多合成聚合物基质中的聚合物通常通过分子间和分子内氢键结合在分子水平上被结合在一起并被组织。如果分子组分降低il基工艺溶剂效能,则这些分子组分能够用于减缓焊接工艺和/或允许进行特殊的空间和时间控制,而这使用纯离子液体本来是不可能做到的。在焊接工艺的一个方面,如果分子组分增加il基工艺溶剂效能,则这些分子组分可以用于加速焊接工艺和/或进行特殊的空间和时间控制,这使用纯离子液体是不可能的。另外,在另一方面,分子组分可以显著降低焊接工艺的总成本,特别是与工艺溶剂相关的成本。例如,乙腈的成本低于3-乙基-1-甲基咪唑乙酸盐。因此,除了允许操纵给定基质的焊接工艺之外,乙腈还可以降低每单位体积(或质量)使用的工艺溶剂的成本。当将相对大量的il基工艺溶剂引入到主要由天然纤维组成的基质时(如本文所用的“大”表示每1质量份的基质,大约大于10质量份的工艺溶剂)并且在足够的时间和合适的温度下,基质内的生物聚合物能够被完全溶解。在本讨论中,完全溶解表明破坏保持基质内部的自然结构、特征和/或特性所必需的分子间力(例如,由于溶剂的作用而破坏氢键)和/或分子内力。一般而言,预期对于根据本公开的许多焊接工艺,配置焊接工艺使得其不完全溶解主要量的生物聚合物可能是有利的。具体地,完全溶解通常通过不可逆地变性具有的天然生物聚合物结构来降解天然纤维强化物。然而,在焊接工艺的某些方面,例如当生物聚合物用作功能材料时,完全溶解生物聚合物材料可能是有利的。在如此配置的焊接工艺中,相对于所使用的il基工艺溶剂的质量,所使用的完全溶解的聚合物(功能材料)的量通常在质量上小1%。考虑到添加到天然纤维中的相对少量的il基工艺溶剂,任何完全溶解的生物聚合物材料可以是所得焊接基质的微量组分。由于天然结构丢失,天然材料可能失去其天然的物理和化学性质。因此,焊接工艺可以被配置成限制相对于包含天然纤维的基质添加的il基工艺溶剂的量。限制被引入到基质中的工艺溶剂的量可以反过来限制生物聚合物从其天然结构变性的程度,因此可以保持基质的天然功能和/或特性,例如强度。令人意外的是,根据本公开的焊接工艺可以促进由功能结构组成的焊接基质的产生,其可以通过可控地熔合/焊接纤维线、机织材料、纤维毡和/或其组合与附加的功能材料生产。通过至少严格控制应用的il基工艺溶剂的量、暴露于il基工艺溶剂的持续时间、温度、处理期间应用的温度和压强,可以可重复地操纵焊接基质的物理和化学性质。可以使用合适的工艺变量来焊接一个或多个基质和/或功能材料以产生层压结构。这些基质和/或功能材料的表面可以被优先改性,同时使一些基质和/或功能材料保持在天然状态。表面改性可以包括但不限于直接操纵材料表面化学,或通过掺入附加的功能材料间接赋予所需的物理或化学性质。功能材料可以包括但不限于可与一种或多种基质相兼容的药物和染料分子、纳米材料、磁性微粒等。功能材料可以在il基溶剂中悬浮、溶解或上述二者的组合。功能材料可以包括但不限于导电碳、活性炭等,除非在所附权利要求书中如此指明,否则不受限制。活性炭可以包括但不限于炭、石墨烯、纳米管等,除非在所附权利要求书中如此指明,否则不受限制。在一个方面,焊接工艺可以被配置为与功能材料一起使用,所述功能材料可以包括磁性材料,例如ndfeb、smco、氧化铁等,除非在所附权利要求书中指明,否则不受限制。在本文公开的焊接工艺的一个方面,焊接工艺可以被配置为与可以包括量子点和/或其他纳米材料的功能材料一起使用。在焊接工艺的另一配置中,功能材料可以包括矿物沉淀物,例如但不限于粘土。在焊接工艺的又另一配置中,功能材料可以包括染料,该染料包括但不限于uv-vis(紫外可见)吸收染料、荧光染料、磷光染料等,除非在所附权利要求书中如此指明,否则不受限制。在根据本公开的焊接工艺的又一种配置中,焊接工艺可以被配置成与包括药物、所选的合成聚合物(例如,间芳族聚酰胺,也称为),量子点、碳的各种同素异形体(例如,纳米管、活性炭、石墨烯和石墨烯类材料)的功能材料一起使用,还可以包括天然材料(例如,蟹壳、角等)和天然材料的衍生物(例如,壳聚糖、微晶纤维素、橡胶)和/或其组合,除非在所附权利要求书中指明,否则不受限制。在一个方面,焊接工艺可以被配置成与由聚合物组成的功能材料一起使用。在此种配置中,可以预期有利的是选择不是交联聚合物的聚合物来获得所需的功能性质。然而,除非在所附权利要求书中如此指明,否则本公开的范围不限于此。在焊接工艺的一种此配置中,聚合物可以由天然聚合物或蛋白质组成,例如纤维素淀粉、丝、角蛋白等。在焊接工艺的一个方面,构成功能材料的聚合物可以比il基工艺溶剂的质量小约1%。另外,各种天然材料可以用作功能材料。如前所述的,焊接工艺可以被配置成使得一种或多种功能材料被预先分散到基质的天然纤维,该基质可以是无纺毡和纸、纱线、机织的纺织品等的形式,除非在所附权利要求书中指明,否则不受限制。或者,在将il基工艺溶剂施加到天然纤维基质上之前,可以将功能材料溶解和/或悬浮在il基工艺溶剂中。在天然纤维基质中溶胀和活动生物聚合物时,功能材料可以被截留在所得焊接基质的基质内,其可以构成纤维基复合材料。各种工艺参数的最佳值将随着焊接工艺的不同而变化,并且至少取决于焊接基质的所需特性、所选择的基质、工艺溶剂、功能材料、基质在工艺溶剂应用区2和/或工艺温度/压强区3中的时间,和/或其组合。在一种焊接工艺中,可以预期工艺溶剂的最佳温度(并因此工艺温度/压强区3的温度)可以是从约0℃至约100℃。焊接工艺可以被配置成使得焊接工艺包括将il基工艺溶剂与基质结合约1秒至约1小时,或直至基质被加入il基工艺溶剂后饱和度达到至少1.5%、2%至5%之间、和至少10%。此焊接工艺可以被配置成使得功能材料与基质的混合和il基工艺溶剂与基质的混合在同时进行或者随后进行。在充分暴露il基工艺溶剂和功能材料之后,可以随后将一部分il基工艺溶剂从工艺润湿的基质去除。在一个方面,焊接工艺可以被配置成使得该部分il基工艺溶剂可以通过用水、甲醇、乙醇、异丙醇、乙腈、四氢呋喃(thf)、乙酸乙酯(etoac)、丙酮、二甲基甲酰胺(dmf)进行冲洗,或适用于该具体焊接工艺的任何其他方法和/或设备来去除(除非在所附权利要求书中指明,否则不受限制)。在一个方面,焊接工艺可以被配置成使得其通过用il基工艺溶剂部分溶解生物聚合物或合成聚合物而将功能材料截留在天然纤维基质内。在焊接工艺的一种配置中,焊接工艺可以配置为与il基工艺溶剂一起使用,该il基工艺溶剂包含阳离子和阴离子并且熔点低于150℃,并且该il基工艺溶剂可以包括如前所述的分子组分。然而,除非在所附权利要求书中如此指明,否则本公开的范围不限于此。焊接工艺可以被配置成在基质的天然纤维和功能材料之间形成离子键。在根据本公开配置的焊接工艺的一个方面,在引入il基工艺溶剂以部分溶解纤维基质之前,可以将一种或多种功能材料掺入到纤维基质中。在另一方面,功能材料可以分散在il基溶剂内用于部分溶解纤维基质。在另一方面,一种或多种功能材料可以分散在il基溶剂中。在焊接工艺的又一个方面,焊接工艺可以被配置成使用热来激活天然纤维基质和/或功能材料的部分溶解。在焊接方法的另一个方面,部分溶解的功能材料可以是生物聚合物和/或合成聚合物。在焊接工艺的一个方面,焊接工艺可以被配置成通过使用天然纤维基质、il基溶剂和功能材料来生产天然纤维功能复合材料。首先,天然纤维基质可以与il基工艺溶剂混合,并且该混合可以持续直到天然纤维被适当溶胀。接下来,可以将功能材料添加到溶胀的天然纤维基质和il基工艺溶剂混合物中。在焊接工艺的一个方面,焊接工艺可以被配置成向混合物应用压强和温度达一段时间。接下来,至少压强和去除至少一部分il基工艺溶剂可以使得成品焊接基质被配置为一维、二维或三维的天然纤维功能复合材料。在焊接工艺的一个方面,焊接工艺可以被配置为对每1质量份的基质使用少于4质量份的工艺溶剂,该质量比可以足以中断仅在基质的天然纤维的外鞘的氢键。氢键被破坏和天然结构被变性的程度可以至少取决于工艺溶剂组分,以及天然纤维基质暴露于il基工艺溶剂期间的时间、温度和压强条件。生物聚合物的溶胀和活动发生的程度能够定性获得,并且在一些情况下,至少通过x射线衍射、红外光谱、共焦荧光显微镜、扫描电子显微镜和其他分析方法来定量获得。在焊接工艺的一个方面,焊接工艺可以被配置成控制某些变量以限制纤维素i至ii转换的量,该纤维素i至ii转换在下面至少通过图15a和15b进一步详细描述。到目前为止该转换可能是重要的,因为它证明了在焊接基质中产生纤维基复合材料,其中天然纤维可以保留一些它们的天然结构并因此保留相应的天然化学和物理性质。通常沿宽度而不是长度观察基质纤维的溶胀,并且在焊接工艺的一个方面,焊接工艺可以被配置成将天然纤维直径增加超过约5%、10%或甚至25%。在由天然纤维组成的基质中最外层生物聚合物的活动通常可以被认为是根据本公开的焊接方法的特性。活动的聚合物可以被溶胀,使得功能性材料能够被插入并截留在所得到的焊接基质中的纤维基复合物基质中。因为il基工艺溶剂的主要作用模式可以是通过破坏氢键来溶胀和活动生物聚合物,所以含有相对高含量木质素(大约大于的10%木质素)的天然纤维基质通常不适合使用il基工艺溶剂进行溶胀和活动。这些木质纤维素天然纤维(例如木纤维)能够作为相对惰性的纤维强化物被掺入,然而,含有大约大于10%木质素的木质纤维素纤维不能提供太多的纤维素或半纤维素基质。这至少部分是因为本来会被il基工艺溶剂溶胀和活动的纤维素和半纤维素生物聚合物被基本上锁定在交联的木质素生物聚合物中。如本文所用的,术语“活动”包括如下作用:其中功能材料从基质纤维的外表面移动以与相邻基质纤维的外表面熔合,同时基质纤维芯中的材料保持在天然状态。在溶胀和活动生物聚合物并截留功能材料时,il基工艺溶剂通常从初步形成的纤维基复合材料焊接基质去除以被再循环。如本文所用的,术语“重构”用于指将工艺溶剂从工艺润湿的基质冲洗/洗掉的工艺。这通常是通过使过量的分子溶剂(例如水、乙腈、甲醇)环流并通过工艺润湿的基质或通过将工艺润湿的基质浸泡在分子溶剂浴器中来完成。重构溶剂的选择取决于如下因素:诸如组成基质的生物聚合物的类型以及工艺溶剂的组分和易于通过其回收和纯化工艺溶剂以再利用的因素。在去除工艺溶剂后,重构溶剂通常会被去除。这通常可以通过升华、蒸发或沸腾的任意组合来完成。根据天然纤维基质、选择的功能材料、以及在整个或部分焊接工艺期间基质是否受到物理约束,基质可以经历显著的维度变化。例如,当各个天然纤维之间的空白空间被固结成焊接基质中的连续纤维基复合材料时,纱线的直径可减少高达1/2。在焊接工艺的一个方面,焊接工艺可以被配置成使得在由天然纤维组成的基质中的天然纤维的一部分的直径被溶胀约2%至约6%。更具体地,在焊接工艺的一个方面,这种天然纤维的一部分的直径可以被溶胀超过约3%。在焊接工艺的一个方面,混合物可以是约90%的天然纤维基质和功能材料,以及约10%的il基工艺溶剂。或者,添加到基质和/或基质和功能材料的混合物中的il基工艺溶剂的量可以是对1质量份天然纤维使用约0.25质量份至约4质量份的工艺溶剂。在焊接工艺的一个方面,焊接工艺可以被配置成使得工艺温度/压强区3中的压强可以是大约真空。或者,焊接工艺可以被配置成使得工艺温度/压强区3中的压强是大约1个大气压。在又另一配置中,工艺温度/压强区3中的压强可以在约1个大气压至约10个大气压之间。如前所述的,还可以控制基质暴露于工艺溶剂的温度和/或时间。在焊接工艺的一个方面,焊接工艺可以包括提供由多种天然纤维组成的基质,提供il基工艺溶剂,并提供至少一种功能材料。如此配置的焊接工艺可以包括以规定的顺序混合基质il基工艺溶剂和功能材料,产生化学反应(该化学反应生产构成天然纤维功能复合材料的焊接基质,其中功能材料渗透到天然纤维),并且多个天然纤维和功能材料都可以被共价键合在一起。在焊接工艺的一个方面,至少可以控制化学反应的温度、压强和时间。焊接工艺可以被配置成去除一部分工艺溶剂,并且预期在某些应用中,有利的是去除大部分工艺溶剂或基本上所有工艺溶剂。在焊接工艺的一个方面,焊接工艺可以被配置成使得规定的工艺顺序在天然纤维基质与工艺溶剂混合并且天然纤维基质达到溶胀状态之后引入功能材料。在这种焊接工艺的一个方面,il基工艺溶剂可以通过分子溶剂组分稀释,并且其中生物聚合物或合成聚合物材料的部分溶解工艺在去除分子溶剂组分后开始(该去除可以通过任何合适的方法和/或设备完成,包括但不限于蒸发或蒸馏,除非在所附权利要求书中如此指明,否则不受限制)。在一种焊接工艺中,碳棉工艺溶剂混合物可以用于产生具有一层薄的碳/棉键的焊接基质,当棉织物暴露于具有工艺溶剂的溶液中时,将碳键合到棉织物。在焊接工艺的一个方面,工艺溶剂和天然纤维基质可以被混合以产生表面张力特性,其允许功能材料(诸如导电碳)移动到天然纤维基质中和/或在天然纤维基质(诸如棉)上形成一层薄的碳功能材料。下面的示例例示了焊接基质和/或完成其功能化的焊接工艺。下面示例不意味着以限制意义来阅读,而是作为本文公开的更广泛的概念和焊接工艺的说明。b.功能材料截留下面的说明性示例详述了一种焊接工艺,通过该工艺可以在由天然纤维材料构成的基质中截留一种或多种功能材料,并且其中可以在将功能材料掺入基质中之后引入il基工艺溶剂。此外,除非在所附权利要求书中如此指明,否则以下示例决不限制本公开的范围。在本公开的一个实施例中,截留包括在引入离子液体基溶剂之前将功能材料掺入纤维基质中。图3示出了使用图3(也被称为图3a-3e)的子工艺或组件在纤维基复合物内添加和物理截留固体材料的工艺。如图3a所示的,天然纤维基质10可以包括一定量的空白空间。如图3b所示,分配的功能材料20可以掺入到天然纤维基质10中。在图3c中描述了将il基工艺溶剂30引入到天然纤维基质10和功能材料20(以产生工艺润湿的基质)后的时间点。然后可以使用可控压强、温度和时间来产生具有分散和键合的功能材料21的溶胀的天然纤维基质11(如图3d中所示的)。在焊接工艺的一个方面,全部或部分il基工艺溶剂30然后可以从键合的功能材料21和溶胀的天然纤维基质11上去除,以产生具有截留的功能材料22的焊接纤维40,同时保持多个天然纤维基质10的功能特性和多个功能材料20的功能特性。除非另有说明,否则本文所述的用于焊接纤维40、42的任何属性、特征和/或特性可以延伸至织物、纺织品和/或由焊接纤维40、42组成的其他制品。在焊接工艺的一个方面,焊接纤维40可以是共价键合的功能材料21和溶胀的天然纤维基质11的组合。在焊接工艺的一个方面,焊接工艺可以被配置成使得所得到的焊接基质由通过扫描电子显微镜数据观察到的截留的磁性(ndfeb)微粒功能化的棉布组成。在焊接工艺的一个方面,焊接工艺可以被配置用于由去磁微粒组成的功能材料20,所述去磁微粒可以作为干粉被掺入到由布基质组成的天然纤维基质10中。令人意外的是,焊接工艺可以将磁性颗粒捕获在天然纤维基质10的生物聚合物内,使得磁性颗粒被观察到牢固地保持在焊接纤维40内,并且即使通过侵蚀性洗涤也不能去除。在焊接工艺的一个方面,焊接工艺可以被配置成使得与上述类似的过程在纱线和无纺纤维毡天然纤维基质10(包括棉和丝纱基质)中产生类似的优点和/或结果。如所讨论的,在前面的示例中描述的焊接工艺可以被配置成使得在将功能材料或天然纤维基质10暴露于il基工艺溶剂之前将纳米材料功能材料20的悬浮液添加到生物聚合物天然纤维基质10中。不同的分子溶液(诸如水性或有机(例如甲苯)溶液)可以被单独使用或与il基工艺溶剂30结合使用,这至少取决于可由量子点组成的功能材料20的表面化学性。纳米材料功能材料20的表面化学(即,疏水性/亲水性)与天然纤维基质10结合可以强烈影响所得的焊接纤维40内的纳米材料功能材料20的最终位置和离散。表面化学可以用作天然纤维基质10和功能材料20与il基工艺溶剂的自组装策略,以在复合材料内产生功能性的微制造。例如,在焊接工艺的一个方面,量子点可以由具有依赖于尺寸性质的半导体材料组成。它们的表面能够被功能化以与不同的化学环境兼容以用于医学、传感和信息存储应用,除非在所附权利要求书中如此指明,否则不受限制。c.来自工艺溶剂功能材料混合物的功能材料截留。图4示出了使用图4(也被称为图4a-4d)的子工艺或组件利用(预)分散在il基溶剂中的材料在纤维基复合物内添加和物理截留固体材料的工艺。图4a中描述了具有il基工艺溶剂30的起始天然纤维基质10,该il基工艺溶剂30具有分散在其中的功能材料20以制备工艺溶剂/功能材料混合物32。功能材料20可以被预先设置在il基工艺溶剂30中,以在如图4a所示的引入天然纤维12之前产生工艺溶剂/功能材料混合物32。天然纤维基质10和工艺溶剂/功能材料混合物32然后可以被结合(以产生工艺润湿的基质),如图4b所示。至少可控的压强、温度和/或时间可以用于在工艺溶剂/功能材料混合物32内产生溶胀的天然纤维基质112,如图4c所示。在焊接工艺的一个方面,焊接工艺可以被配置成使得il基工艺溶剂30的全部或一部分然后被从溶胀的天然纤维基质112去除,以产生具有截留的功能材料22的焊接纤维42,同时保持多个天然纤维基质10的功能特性和多个功能材料20的功能特性,如图4d所示。在焊接工艺的一个方面,焊接纤维42可以是共价键合的功能材料20和溶胀的天然纤维基质112的组合。在焊接工艺的一个方面,焊接工艺可以被配置成使得所得到的焊接基质由功能材料20组成,该功能材料20包括在由棉纸(纤维毡)组成的天然纤维基质10中截留的分子染料,其中功能材料20可以在施加到天然纤维基质10之前被分散在il基工艺溶剂30中(以产生工艺溶剂/功能材料混合物32)。在焊接工艺期间,生物聚合物(包括例如由棉纸组成的天然纤维基质10中的纤维素)可以被溶胀,使得由染料组成的功能材料20能够通过共价键合物理地扩散到聚合物基质中并被截留在聚合物基质中。在焊接工艺之后,染料可以被明显地截留在聚合物基质中。在焊接工艺的一个方面,焊接工艺可以被配置成使得某些信息和/或化学功能可以被可控地熔合到所得的焊接纤维40、42中的天然纤维基质10中。此焊接纤维40、42可以至少应用于纸基货币的防伪特征、衣服的染色(不褪色)、药物输送设备和其他相关技术。在焊接工艺的一个方面,焊接工艺可以被配置成与功能材料20一起使用,该功能材料20可以包括能够被分散到il基工艺溶剂30中的分子或离子物质,以掺入到天然纤维基质10中。通常,添加功能材料20的目的可以是专用的。例如,使用连接化学与纤维素共价键合的染料是相对昂贵的。在焊接工艺的一个方面,焊接工艺可以被配置成在焊接纤维40、42内截留不具有特殊连接化学性的低成本替代染料。由被截留在曾经溶胀和活动的生物聚合物(例如,溶胀的天然纤维基质11、112)内的一种或多种染料组成的功能材料20不易被洗掉并且可以至少适用于纺织品和/或条形码/信息存储应用。在其他方面,导电功能材料20能够被截留在焊接纤维40、42内以用于能量存储应用。由磁性材料组成的功能材料20的截留可以与基于纺织品的致动器相关。由药物和/或量子点组成的功能材料20的截留可以与医学应用有关。由粘土组成的功能材料20的截留与增强的阻燃性密切相关。由于其已知的抗菌性质,添加生物聚合物几丁质作为功能材料20可以得到应用。简而言之,可能的应用数量是非常大的。功能材料20包括但不限于粘土、所有碳同素异形体、ndfeb、二氧化钛、它们的组合等适合影响具有抗菌和/或抗微生物性质的电子、光谱、导热、磁性、有机和/或无机材料(例如,几丁质、壳聚糖,银纳米颗粒等)和/或其组合。因此,除非在所附权利要求书中指明,否则本公开的范围决不限于特定功能材料20和/或所得的焊接基质和/或焊接纤维40、42的具体应用。在焊接工艺的一个方面,焊接工艺可以被配置成使得不需要特殊的共价连接化学来牢固地截留本文关注的功能材料20,而是功能材料20可以被物理地截留在焊接纤维40、42内。在焊接工艺的一个方面,功能材料20可以与高空间控制结合,用于编码信息或产生不褪色染料,更一般地,用于集成设备功能。多维打印和制造技术允许在单个材料或对象内分层多种类型的功能。d.从工艺溶剂/功能材料/聚合物混合物截留功能材料如图5所示,使用在进一步被称为图5a-5d中的各种子工艺和组件,在一个方面,焊接工艺可以被配置成通过在il基工艺溶剂的混合物中引入功能材料20,将功能材料20掺入到天然纤维基质10中,并且该混合物中还包含附加的溶解的聚合物。如图5a所示,此工艺可以以天然纤维基质10和与功能材料20混合的il基工艺溶剂30开始,使得功能材料20被分散在il基工艺溶剂30中来构成工艺溶剂/功能材料混合物32。聚合物53可以被包含在工艺溶剂/功能材料混合物32中,使得聚合物53被溶解和/或悬浮在工艺溶剂功能材料混合物32中。图5a中示出了在施加到天然纤维基质10之前与聚合物53混合的工艺溶剂/功能材料混合物32。其中具有聚合物53的工艺溶剂/功能材料混合物32然后可以被引入到天然纤维基质10中以产生工艺润湿的基质,如图5b所述。焊接工艺可以被配置成使得可控的压强、温度和时间被用于在组合的工艺溶剂/功能材料混合物32、聚合物53和天然纤维基质10内产生溶胀的天然纤维基质11、112,如图5c所述。在焊接工艺的一个方面,il基工艺溶剂30的全部或一部分然后可以从工艺润湿的基质(其可以由键合的功能材料21和溶胀的天然纤维基质11、112组成)去除以产生如图5d所示的具有截留的功能材料22和聚合物53的焊接纤维40,而同时保持多个天然纤维基质10的功能特性和多个功能材料的功能特性。在焊接工艺的一个方面,焊接纤维40可以是共价键合的功能材料21、聚合物53和溶胀的天然纤维基质11的组合。聚合物可以由生物聚合物和/或合成聚合物组成。在配置用于某些聚合物53一起使用的焊接工艺中,其他的聚合物可以充当粘合剂(例如,胶)以及流变改性剂以改变溶液粘度。另外,此焊接工艺可以允许对焊接基质内的功能材料20的最终位置进行额外的空间控制。在焊接工艺的一个方面,焊接工艺可以被配置为用于由碳材料组成的功能材料20,并且天然纤维基质10可以由棉纱构成,以产生焊接纤维40、42,焊接纤维40、42已经被测试并验证为适合用作机织织物中高能量密度超级电容器的电极。这些可以适于提供灵活的可穿戴能量存储设备。焊接工艺可以被配置为生产具有功能材料20的焊接纤维40、42,该功能材料20由一种或多种导电添加剂(诸如,有机材料(例如,碳纳米管、石墨烯等)或无机材料(银纳米颗粒、不锈钢、镍、包括涂有金属和金属氧化物的纤维等))组成。此种焊接纤维40、42可以表现出增强的导电特性,并且当与适当的电解质(例如,凝胶、聚合物电解质等)结合时,这些焊接纤维40、42(和/或由其生产的织物和/或纺织品)能够进行电化学反应和/或电容能量存储。焊接工艺可以被配置为生产具有功能材料20的焊接纤维40、42,该功能材料20由电容添加剂(例如,mno2等)组成。当与适当的电解质(包括凝胶或聚合物电解质)结合时,这种焊接纤维40、42可以表现出增强的能量储存特性。焊接工艺可以被配置为生产具有功能材料20的焊接纤维40、42,该功能材料20由光敏添加剂(例如,tio2等)组成。这种焊接纤维40、42可以表现出增强的自清洁性(例如,在诸如tio2的宽带隙半导体的情况下)和/或耐紫外线特性。根据本公开的焊接工艺生产的焊接纤维40、42的其他应用可以包括但不限于从防伪到药物递送应用的技术。此外,前述功能材料列表并不意味穷举和/或限制,并且除非在所附权利要求书中如此指明,否则可以使用其他功能材料而不受限制。8.调节焊接工艺如本文前面所述的,焊接工艺可以被配置成允许从传统基质(非纤维焊接的)生产各种各样的焊接基质面层(例如,纱线面层),该传统基质在焊接工艺的某些配置中可以包括纱线和/或纺织品基质。例如,焊接工艺可以通过使用以受控、可变和/或调节速度被泵送的工艺溶剂,和/或通过以可变的速度移动通过焊接工艺的基质(例如,纱线、线、织物、和/或纺织品)和/或通过改变工艺溶剂组分,和/或通过改变工艺溶剂应用区2、工艺温度/压强区3、工艺溶剂回收区4中的温度和/或压强,通过改变(例如,基质、工艺润湿的基质等的)张力和/或其组合,被配置为调节焊接工艺。在一个方面,焊接工艺可以被配置为允许特定和精确地控制工艺溶剂相对于由纤维组成的基质的比率,使得焊接工艺可以将基质内的可控量的纤维转换成焊接状态。工艺溶剂相对于基质的比率可以至少根据具体的工艺溶剂和基质的特性来优化。例如,在配置成使用工艺溶剂混合物(诸如离子液体(例如,3-乙基-1-甲基咪唑乙酸盐、3-丁基-1-甲基咪唑氯化物等)与极性非质子添加剂混合(例如,乙腈)的混合物)的焊接工艺中,可以使用如下范围的工艺溶剂比例:1质量份的基质添加1质量份的工艺溶剂至1质量份的基质中添加4质量份的工艺溶剂。焊接工艺的另一个方面可以使用由冷碱(氢氧化钠和/或氢氧化锂)和尿素溶液组成的工艺溶剂,该尿素溶液具有如下范围的工艺溶剂比例:1质量份的基质使用2质量份的工艺溶剂至1质量份的基质使用超过10质量份的工艺溶剂。表11.1给出了已经成功用于焊接纱线的工艺参数示例,该焊接纱线使用采用由离子液体组成的工艺溶剂和由氢氧化物水溶液组成的工艺溶剂的焊接系统。表11.1中示出的参数不限制本公开的范围,除非在所附权利要求书中如此指明。在一种利用在水溶液中包含氢氧化物和尿素的工艺溶剂的焊接工艺中,氢氧化物可以包括naoh和/或lioh。在焊接工艺中,氢氧化物可以包括重量百分比为4%至15%的lioh和重量百分比为8%至30%的尿素。在某些应用中,有利的是配置工艺溶剂使得其包括重量百分比为6%至12%的lioh和重量百分比为10%至25%的尿素。在另一个应用中,有利的是配置工艺溶剂使得其包括重量百分比为8%至10%的lioh和重量百分比为12%至16%的尿素。表11.1关于表11.1中指定的温度范围,注意温度可以针对工艺溶剂体系的特定组分进行优化。此外,工艺溶剂体系的温度和组分可以至少使用溶剂应用区2硬件和/或工艺控制软件和/或设备被一起共同优化,以便在基质上实现所需的焊接量和焊接位置。也就是说,纤维焊接要么提供一致的焊接基质属性,要么提供调节的基质属性,这也可以通过在溶剂应用以及工艺温度/压强区3期间应用合适粘滞阻力来实现。如表11.1所示和上文所述的,工艺溶剂体系可以被配置作为il液体和分子添加剂的混合物。il液体与分子添加剂的摩尔比可以随着焊接工艺不同而变化,并且可以在将其施加到基质期间影响工艺溶剂体系的最佳温度。例如,在被配置为使用由1摩尔bmimcl配1摩尔acn组成的工艺溶剂体系的焊接工艺中,如果温度升高到120℃之上(其是焊接速度最佳的温度),则acn的蒸气压可能导致难以控制的加工条件(与健康和安全相关)。由于这种限制,所以焊接温度被设定为较低的温度(例如,105℃),但是在此温度下需要更长的持续时间(>30秒)。相比之下,在被配置为使用由emimoac组成的工艺溶剂体系的焊接工艺中,最佳温度可以在80℃和100℃之间,因为工艺溶剂的有效性高于bmimcl,因此使用emimoac在该温度范围的焊接时间可以是5-15秒。因此,至少工艺溶剂应用区2、工艺温度/压强区3以及焊接工艺的其他步骤的最佳温度可以随着其应用的不同而变化,因此本公开的范围决不受其限制,除非在所附权利要求书中指明。现在参考表9.1、10.1和11.1(其全部为被配置使用由氢氧化物水溶液组成的工艺溶剂的焊接工艺提供关键工艺参数),工艺溶剂与基质的最佳比例(基于质量或重量)可以至少基于基质形式类型而变化。例如,被配置为与2d基质一起使用的焊接工艺可以具有0.5至7的比率,并且一些焊接工艺可以以大约3.7的比率被最佳地配置。被配置为与1d基质一起使用的焊接工艺可以具有4至17的比率,并且一些焊接工艺可以以大约10的比率被最佳地配置。已经观察到,大约10或更高的比率(特别是17的比率)形成如下状况:工艺润湿的基质相对于工艺溶剂过于饱和,使得在工艺润湿的基质外部存在未被基质和/或工艺润湿的基质吸收的过量溶剂。然而,除非在所附权利要求书中指明,否则利用il基工艺溶剂或氢氧化物水溶液工艺溶剂的焊接工艺的具体比率决不限制本公开的范围。表11.2关于表11.2中所示的工艺溶剂的值和组分,注意,添加功能材料添加剂允许焊接的空间调节和独特的受控体积固结。在焊接工艺中添加诸如溶解的纤维素的功能性材料以及合适的硬件和控制可以允许如先前在上面至少关于图9i和9j详细描述的壳焊接的纱线的具有令人意外的效果。也就是说,焊接量可以通过基质横截面(即,图9i和9j的具体示例中的纱线直径)来控制,并且可以产生表现出相比于原始基质对照样品改进的韧性和伸长率的焊接基质(即,在特定示例中的焊接纱线基质)。还要注意,当重构的润湿基质被干燥时,重构溶剂的类型及其温度结合表11.1中描述的不同值也能够对受控体积固结产生令人意外的效果。图13示出了由18/1环锭纺棉纱组成的原始1d基质的sem图像。图14a示出了一种焊接基质,图14b示出了另一种焊接基质,两者均由图13中所示的原始基质生产。图14a和14b二者中示出的焊接基质是使用图9a中所示的焊接工艺和设备生产的。表12.1表12.1提供了图13中所示的原始基质的各种属性。所述属性是在焊接纱线基质的大约20个独特样品上所执行的平均,这些属性通过使用instron(英斯特朗)牌机械性能测试仪在接近astmd2256的拉伸测试模式下操作来收集。表12.1中每列标题的机械性能与先前关于表1.2所述的相同。表13.1示出了用于制造图14a中所示的焊接基质和图14b中所示的焊接基质的一些关键工艺参数。表13.1中每列标题的工艺参数与先前关于表1.1所述的相同。表13.1表13.2提供了使用表13.1中所述的参数生产图14a中所示的焊接基质的各种属性。所述属性是在焊接纱线基质的大约20个独特样品上所执行的平均,这些属性通过使用instron(英斯特朗)牌机械性能测试仪在接近astmd2256的拉伸测试模式下操作来收集。表13.2中每列标题的机械性能与先前关于表1.2所述的相同。表13.2表13.3提供了使用表13.1中所述的参数生产图14b中所示的焊接基质的各种属性。所述属性是在焊接纱线基质的大约20个独特样品上所执行的平均,这些属性通过使用instron牌机械性能测试仪在接近astmd2256的拉伸测试模式下操作来收集。表13.3中每列标题的机械性能与先前关于表1.2所述的相同。表13.3对比图14a与图14b,如何操纵体积受控固结以产生焊接纱线基质的某些属性是明显的。特别地,图14a和14b的对比示出了该方法、重构溶剂的组分和/或工艺溶剂回收区4的配置(和/或焊接工艺的其他步骤)如何影响焊接纱线基质的受控体积固结,并因此影响焊接基质的机械性能和/或其他重要属性。一个这样的属性是纱线的“手感”(即,人触摸的感觉)和由此制成的所得织物。特别地,图14a中所示的焊接纱线基质和图14b中所示的焊接纱线基质都是使用其中重构溶剂是由水组成的焊接工艺生产。然而,对于图14a的焊接纱线基质,水的温度是22℃,对于图14b的焊接纱线基质,水的温度是40℃。从图14a和14b的对比可以明显看出,与图14b中所示的焊接基质(较温暖的重构溶剂)相比,用于生产图14a中所示的焊接基质的焊接工艺(较冷的重构溶剂)可以产生具有明显更柔软手感的焊接基质。由具有高于40℃的重构溶剂的焊接工艺生产的焊接纱线基质制成的织物能够具有与由具有室温的重构溶剂的焊接工艺生产的类似焊接纱线基质制成的织物明显不同的手感特性。因此,工艺溶剂回收区4的配置(例如,重构方法)及其条件是重要的新参数。仍然参考图14a和14b,除了重构溶剂的温度不同之外,其由相同的焊接工艺生产,显然,重构溶剂的温度在焊接纱线基质的受控体积固结中起重要作用。此外,表13.2和13.3中分别示出了图14a和14b的焊接纱线基质的一些机械性能。尽管两种焊接的纱线基质在机械性能上展示出比原始纱线基质的显著改进(例如,比原始纱线基质提高了15%-23%),但是图14b中所示的(也参见表13.3)经受升高温度下的重构溶剂的焊接纱线基质在其表面上具有稍微更大的直径和更松散的纤维/毛发。尽管图14b中的焊接纱线基质比图14a中所示的焊接纱线基质稍微更纤维性,但是发现图14b中纤维的量比图13中所示的相应原始纱线基质的量小。此外,图14b中的焊接纱线基质上的纤维以如下方式固定到焊接的纱线基质上:防止从焊接纱线基质中分离出绒线。通过焊接工艺在焊接纱线基质的表面处或附近的改性纤维/毛发结构可以是影响由焊接纱线基质针织或机织的织物的手感的重要属性。通常,当在焊接工艺期间,在上面提到的范围内的溶剂比率不改变,而是保持恒定时并且假设其他关键变量诸如温度也保持恒定时,所述溶剂比率的特定值能够被用来为由纱线组成的基质生产非常一致的焊接纱线。如此做,焊接工艺可以被配置成产生如下焊接基质,该焊接基质具有一致的焊接量使得焊接纱线可以沿着焊接纱线的长度具有一致量的焊接纤维。适当控制动态工艺溶剂比率(此处定义为工艺溶剂的质量相对于基质的质量的比率),工艺溶剂的组分、应用工艺溶剂的压强和方法产生新颖的效果。例如,可以在焊接工艺中使用适当的动态控制以产生具有杂色(heather)和/或间隔染色(多色效果)外观的焊接基质,其中该焊接基质由纱线或纺织物组成的焊接基质,并且由于动态控制的焊接工艺可以具有不同程度的着色。如果在焊接工艺之后完成这些纺织品制造步骤,则仅在染整时才可以显示出产生杂色和/或间隔染色效果。然而,调节焊接工艺不限于产生杂色或间隔染色效果,而是可以被配置成生产具有可变直径的“压花”纱线(具有改变的纱线重量,也就是说不需要可变长度和/或直径的基质)以及尚未存在的纺织工业术语描述的任何其他独特效果。观察到效果的程度也可以是作用的纱线或纺织品基质的函数。例如,用于生产由纱线组成的基质的纺纱工艺类型(例如,环锭纺纱、自由端纺纱、涡流纺纱等)可能需要彼此不同的焊接条件(例如,不同的工艺溶剂比率和/或应用方法)。a.调节焊接工艺和非调节焊接工艺的比较现在将描述调节焊接工艺的一个说明性示例,并将其与非调节焊接工艺(诸如之前在上文中描述的)进行比较。然而,前述说明并不意味着以任何方式进行限制,因此,除非在所附权利要求书中如此指明,否则其具体参数不限制本公开的范围。在非调节焊接工艺中,焊接工艺可以被配置用于由30/1环锭纺纱线组成的基质,该基质可以通过一致地操作焊接工艺被转换为极其一致的焊接基质,其具有一致的着色、一致的触感和面层,以及一致量地可见外部纤维“毛发”。例如,通过配置焊接工艺来利用稳定的工艺溶剂与基质的质量比,通过焊接工艺的稳定的纱线移动速度、一致的温度和压强等。该焊接基质还可以表现出前面所述的一些焊接基质属性的全部。或者,如果需要,调节焊接工艺可以被配置用于由30/1环锭纺纱线组成的基质,以通过动态改变调节焊接工艺的某些参数来将基质转换成由具有多色杂色或间隔染色外观的纱线组成的焊接基质。这是令人意外且非常有用的结果,因为焊接工艺能够自动地将由商品30/1环锭纺纱线(其是大规模生产的大致统一的产品)组成的基质转换成由焊接纱线组成的焊接基质,该焊接基质具有独特的外观、触觉和/或面层,适用于多种最终用途和应用。在相关的调节焊接工艺中,焊接工艺可以被配置成与由较重(包括但不限于ne18纱线)和较轻(包括但不限于ne40纱线)的商品和专用纱线组成的基质一起使用(除非在所附权利要求书中如此指明,否则不受限制)。此外,调节焊接工艺不限于其仅使用由纱线组成的基质产生特殊效果和面层的配置。例如,包括但不限于混合无机溶剂(诸如氢氧化锂和/或氢氧化钠的水溶液与尿素)的工艺溶剂的应用能够被应用于由纱线组成的基质,甚至应用于由整个纺织品组成的基质,该整个纺织品自身由传统材料(例如,未经过焊接工艺的纱线)或焊接基质(例如,焊接纱线)生产。使用焊接工艺处理织物能够在织物或服装的局部区域或区域上完成。例如,诸如在工艺溶剂的喷墨和/或丝网印刷中使用的工艺能够是非常有用的方法,通过该方法可以完成2d和/或3d基质的区域特定焊接工艺。或者,焊接工艺可以被配置成在整块材料或服装上产生具有相对统一特性的2d和/或3d焊接基质。当焊接工艺通过适当控制其各种参数(例如,有限的焊接时间、相对低的工艺溶剂比率等)被配置并使用时,与传统原始基质相比,焊接工艺可以产生机织和针织纺织品的强度和起球特性改进的的对应的焊接基质,而不需要过度焊接纺织品内的纱线结点(junction)。或者,不同配置的焊接工艺(例如,更长的焊接时间、更高的工艺溶剂比率等)可以产生由机织或针织材料组成的焊接基质,其中机织或针织材料内焊接和/或部分焊接的纱线结点提供更硬和/或更坚固的材料。与1d基质(例如,纱线、线)相比,在2d和/或3d基质(例如,织物、纺织品)上使用焊接工艺的优点是可以同时处理大量材料。然而,如上所述的,在机织和/或针织之前,由纱线和/或线组成的焊接基质可以产生许多制造和性能协同效应。选择何时以及如何将给定的焊接工艺应用于特定基质在很大程度上取决于焊接基质的预期结果/最终用途的类型,因此决不限制本公开的范围,除非在所附权利要求书中如此指明。除了上面列出的可能性之外,还能够配置焊接工艺以将1d基质(例如,纱线和/或线)、2d基质和/或3d基质(例如,适用于2d和/或3d基质的织物和/或纺织品)、和/或基质的组分(例如,2d和/或3d基质的单根纱线或线)的横截面形成为除了圆形形状或具有圆形横截面形状的焊接基质之外的形状。可能的形状包括但不限于扁平椭圆形或带状形状。这可以通过配置焊接工艺以利用位于工艺溶剂应用区2、工艺温度/压强区3、工艺溶剂回收区4、干燥区5和/或其组合内的适当形状的模具和/或辊来完成。用作基质的传统纱线通常在焊接工艺之后产生呈现大致圆形的横截面形状的焊接基质。通常,这可能是因为当纤维被焊接/熔合时,随着毛细管力将工艺溶剂吸引到纱线的芯部,可以使势能最小化。焊接工艺可以被配置成通过至少使用特定的成形方法和/或设备来操纵工艺润湿的基质和/或在其干燥时形成重构的润湿基质,来产生具有非圆形横截面形状的焊接纱线基质。使用空间受控加热和/或空间受控工艺溶剂应用的调节焊接工艺和非调节焊接工艺先前已经公开了(诸如在美国专利第6,048,388号中)向基质添加化学物质的空间控制(例如,离子液体的喷墨印刷)。焊接工艺的空间控制也可以至少通过在基质内的选定区中的热激活来直接控制(以操纵如上详细描述的所得焊接基质的任何特性和/或属性),其中焊接工艺可以被配置为使用空间受控加热的调节焊接工艺。il基溶剂通常不会在室温(约20℃)下在分钟量级的时间帧明显地焊接(改性)天然纤维基质10。通常,有利的是施加热量以激活和/或加速焊接工艺。这可能涉及将整个基质加热到高于约40℃的温度至少几秒钟。图11a示出了可以被配置为调节焊接工艺的焊接工艺的示意图,其可以利用2d基质。图11a中所示的调节焊接工艺可以被配置为使用红外(激光)光束来加热先前已经被应用有工艺溶剂的基质的特定位置。通过将纤维素i(对于天然棉基质)转换为纤维素ii(焊接后的棉基质)和受控体积固结,来自定向能量束的热量可以激活基质的特定位置中的焊接工艺,并且该是明显的(即,可以减小基质的厚度,同时该区不受影响)。通过比较图10b和图10e,明显的是,通过视觉检查,基质表面的改变是明显的,这种改变是暴露于定向能源的结果。另外,通过控制能量源的功率(保持功率足够低),基质(在该示例中为纤维素)不被烧蚀。焊接工艺可以被配置为利用任何合适波长的电磁能,包括但不限于可见光、微波、紫外光和/或其组合(除非在所附权利要求书中如此指明,否则不受限制),来实现空间受控加热。现在参考图11a和11b,其提供了应用于2d基质的调节焊接工艺的示意图,图11a描述了空间受控加热,而图11b描述了空间受控工艺溶剂应用。此外,图11a描述了通过定向能束将热量添加到基质、工艺润湿的基质和/或工艺溶剂。工艺溶剂量和/或组分可以在特定位置被调节或在整个基质上散播。参考图11b,可以在特定位置调节工艺溶剂的量和/或其组分,然后可以通过散播的能量源加热工艺润湿的基质的大部分区域。两种调节焊接工艺可以引起重构和干燥后基质的体积受控固结。现在参考图11c和11d,其提供了应用于1d基质的调节焊接工艺的示意图,图11c描述了空间受控加热,而图11d描述了空间受控工艺溶剂应用。如图11a所示,可以通过脉冲能量源将热量添加到基质、工艺润湿的基质和/或工艺溶剂。工艺溶剂量和/或组分可以在特定位置调节或在整个基质上散播。参考图11d,可以在特定位置调节工艺溶剂的量和/或其组分,然后可以通过散播能量源和/或通过脉冲能量源加热工艺润湿的基质的大部分区域。两种焊接工艺都可以被配置成提供对工艺溶剂效能和流变以及相关粘滞阻力的精细控制,以实现期望的效果。图11e示出了通过其中工艺溶剂的流速被调节(例如,以与图11d中所示的类似的方式脉冲)的调节焊接工艺生产的调节焊接纱线基质的图像。配置调节焊接工艺来实现所需的粘滞阻力(在该示例中通过与工艺润湿的基质物理接触以从初始接触点扩散工艺溶剂来完成)导致沿焊接基质的长度的交替部分被轻度焊接和被高度焊接。在图11e中,图的右侧部分是轻度焊接的,并且图的右侧部分是高度焊接的。图11f示出了由经受调节焊接工艺的焊接基质制成的织物的图像。用于生产图11f中的织物的焊接基质可以通过前面所述的图9中所示的焊接工艺和设备生产。调节焊接工艺可以通过调节工艺溶剂泵送速度和粘滞阻力来实现。通过适当控制焊接工艺,实现了可变程度的受控体积固结和特定程度的焊接。最后效果是调节焊接纱线基质中的毛发量和空白空间。在该调节的焊接纱线基质被机织成织物并被染色之后,发现颜色的深度随焊接程度而变化。从图11f中可以看出令人意外的“间隔染色”或“杂色”效果。通常,在时装业中,这种效果需要将多根纱线机织成单个织物。调节纤维焊接不仅提供了上述的更短干燥时间和增强水分管理的益处,而且在这种情况下,还增加了有益于各种时尚应用的独特但可控制的颜色调节。结合调节焊接效果和预定的针迹长度和/或机织的紧密度因子进一步增强了织物颜色和质地。这是发现的可以在任何数量的传统和功能产品中使用的新结果。如上面简要提到的,焊接工艺可以被配置成控制转换为纤维素ii晶体的纤维素i晶体的量。现在参考图15a,其示出了原棉纱线基质的x射线衍射数据(xrd)(曲线a)和用过量离子液体工艺溶剂完全溶解然后重构的棉纱的x射线衍射数据(曲线b)的图示。如本文所用的,曲线b不代表根据本公开生产的“焊接基质”或“焊接纱线基质”或任何其他基质,因为整个原纱基质被变性并且天然生物聚合物结构被完全改变,除非在所附权利要求书中如此指明。在曲线a中,天然棉纤维素聚合物在纤维素i状态中被清楚地示出。在曲线b中,纤维素ii的结晶特性明显较少,该纤维素ii存在于已经被完全溶解并且其天然结构被完全破坏的棉中。表14.1示出了用于制造三种单独的焊接基质的一些关键工艺参数,其中前两行的工艺参数可以与图9中所示的焊接工艺和设备一起使用,其中第三行的工艺参数可以与图10a中所示的焊接工艺和设备一起使用。表6.1中每列标题的工艺参数与先前关于表1.1所述的相同。表14.1现在参考图15b,其提供了使用表14.1中所示的工艺参数生产的三种焊接纱线基质的xrd数据曲线,曲线a对应于表14.1的第一行,曲线b对应于表14.1的第二行,曲线c对应于表14.1的最后一行。通过对比和比较图15a和15b,显然通过图9a和10a的焊接工艺和设备利用表14.1的工艺参数生产的焊接纱线基质分别保留了棉的天然纤维素i结构,同时焊接纱线基质被可控地改性以表现出增强的性能和/或属性。天然纤维素i结构的保留可以利用各种工艺溶剂体系和如前面详细讨论的各种设备来实现。9.用于染色的焊接工艺和所得到的产品a.靛蓝染色背景靛蓝染料广泛应用于棉纺织品的处理。靛蓝分子2,2'-双(2,3-二氢-3-氧代吲哚)通常是不溶于水的,因此不直接用于染色纺织品。相反,在现有技术中使用称为隐色靛蓝(或白靛蓝)的靛蓝还原形式(其是可溶于水的)用于染色纺织品,并且在随后暴露于氧气时,该隐色靛蓝恢复为具有特征蓝色的氧化态。用于靛蓝染色的现有技术方法是非常耗水的并且依赖于大量辅助工艺化学品,例如连二亚硫酸钠(酸性亚硫酸钠)、氢氧化钠和洗涤剂(润湿和洗脱剂)。在现有技术的靛蓝染色技术中,染料只能短距离渗透进入纱线,因此需要多次通过(浸透)染色槽以建立所需的颜色强度。尽管本领域已经提出了改进染色方法的技术,但未显着降低对水的需求和对酸和/或碱溶液的需求。bianchini等人在《acs可持续化学工程(acssustainablechem.eng)》,2015,3,2303-2308中提出向染料溶液中添加2g/l的离子液体以改善织物对分散染料的吸收。该技术显示对具有一定水溶性的染料是有效地,但不适用于不溶于水的染料(例如,靛蓝)。美国专利no.7731762公开离子液体作为染料载体的用途。并不知晓该专利中公开的离子液体是否与纤维素材料进行强烈的相互作用,并且认为该离子液体是不离液(chaotropic)的。此外,该专利未公开任何具体选择的用于染色纤维产品的靛蓝染料的离子液体。美国专利no.20060090271公开了使用离子液体来部分溶解纤维素纤维的外部,并同时或者依次施加可包含染料或染料固定剂的有益剂。该公开中没有离子液体和特别适用于靛蓝染色的染料组合的具体实施方式。在如本文所定义的传统染色中,诸如分子染料的着色剂以分子水平溶解/分散在溶液中。在暴露于这种溶液时,基质(例如纱线和织物等)吸收染料并呈现染料的颜色。通过在染料和基质之间产生共价键的特殊的连接化学,染料可以是反应性的。或者,染料可以是非反应性的,并且通过分子间缔合(例如,分散、偶极-偶极、氢键,离子-偶极、离子-离子和/或其他吸引力的任何组合)简单地吸收并与基质结合。图16a示出了典型的未染色的环锭纺纱线基质90的横截面,其中示出了单独的未染色纤维基质92,未染色纱线基质90被描绘为无色的(使得它在环境中看起来是白色的)。图16b示出了在通过现有技术的靛蓝染色方法处理之后,相同的未染色纱线基质90的横截面,其中示出了染色的纱线基质90’和单独的染色纤维基质92’。如图16b所示,从染色纱线基质90’的外部到内部的大致径向方向上存在颜色梯度,使得朝向染色纱线基质90’外部的染色纤维基质92’比那些朝向染色纱线基质90’内部的着色更深。在如本文所定义的传统颜料填充中,着色剂包括但不限于着色剂的微米至纳米尺寸的颜料颗粒(例如,靛蓝),其分散在也含有粘合剂的溶液中,该粘合剂通常是聚合物粘合剂材料。在暴露于这种溶液时,粘合剂和颜料颗粒沉积在基质纤维上,并且粘合剂将颜料颗粒保持在基质上和基质内。粘合剂可以与基质反应(产生新的化学键合)或不反应(通过分子间相互作用缔合,包括但不限于上文列出的那些分子间相互作用缔合方式)。b.一般的染色和焊接工艺根据本公开的染色和焊接工艺提供令人惊讶的用于靛蓝的新颜料填充技术。具体地,染色和焊接工艺可以被配置成一种将靛蓝颜料颗粒添加到纤维素基质(例如,棉基质)的颜料填充工艺。例如,在本文公开的一种染色和焊接工艺中,该工艺方法可配置有含水工艺溶剂,该含水工艺溶剂可利用具有溶解纤维素和尿素的碱金属氢氧化物和可用于向棉纱线添加靛蓝的靛蓝颜料颗粒。可以实施染色和焊接工艺以执行颜料填充技术的关键方面。在实现这一目的的同时,避免使用目前用于商业靛蓝染色工艺(并且负责将靛蓝还原成阴离子形式)的刺激性化学品。这对工艺成本,特别是用于实现靛蓝染色的用水量具有重要影响。因为焊接工艺也可以配置成调节天然纤维基质的物理特性,所以本文所述的染色和焊接工艺还允许以前所未有的方式使用传统的染色和/或颜料填充技术来进一步调整纺织品(即织物)。此外,使用溶解生物聚合物材料(即纤维素和丝绸等)并能够溶解一定量颜料(分子和/或离子)的工艺溶剂,可以允许新的“混合”染色技术,其不仅能够将颜料颗粒与粘合剂一起添加,还能够将分子和/或离子染料物质引到纤维基质中和引入纤维基质内。这种混合技术可以包含传统染色和颜料填充技术的元素。在一种染色和焊接工艺中,靛蓝染料颗粒可以分散在工艺溶剂中,该工艺溶剂都含有溶解的聚合物(例如,纤维素粘合剂)并且还具有溶解靛蓝染料分子的额外功效。特别地,对于该混合方法,具有某些分子共溶剂添加剂的离子液体基溶剂是可调的。使用如上所述的焊接工艺,以新的和独特的方式,将工艺溶剂施加到具有适当粘滞阻力的纱线以及溶解于或悬浮于工艺溶剂的材料上,例如具有靛蓝染料(颜料颗粒和分子靛蓝物质)的纤维素粘合剂。在配置有包含离子液体的工艺溶剂的染色和焊接工艺中,可以使用分子共溶剂,如乙腈(“can”)、二甲基亚砜(“dmso”)和二甲基甲酰胺(“dmf”)等,以适用于调节溶剂对例如纤维素粘合剂和分子靛蓝染料/靛蓝颜料颗粒的功效。假设在整个染色和焊接工艺中(例如,至少在工艺溶剂施加区2、工艺温度/压强区3和/或工艺溶剂回收区4)使用适当的粘滞阻力,则整个染色和焊接工艺可以配置成产生有具所需颜色的焊接基质——任一适宜的调和、可控的颜色阴影和/或调制颜色。此外,通过添加包含额外粘合剂(例如,溶解在离子液体基工艺溶剂的纤维素)的额外工艺溶剂,可以赋予类似于此前所述的效果(至少在图9i和9j中所示并称为“壳焊接”),以调整染料在所得焊接基质内被包埋的程度,并同时调整所得焊接基质的物理性质(例如,受控体积固结、基质表面上的毛羽量、强度和其他机械性能等)。即,染色和焊接工艺可以配置成同时输送和调整所得焊接基质(例如,焊接纱线基质)的颜色,同时还调整其物理特性。以下描述一般涉及一种用于制造焊接基质的方法,其中焊接工艺可以配置成使得所得到的焊接基质也可以在被焊接同时被着色和/或被染色(本文通常称为“染色和焊接工艺”)。尽管以下描述主要集中应用于纤维素基质的靛蓝染料,除非在所附权利要求书中如此指明,本公开的范围不如此限制,并且一般概念可以应用于其他适用的着色剂和/或染色剂和/或其他基质。在染色和焊接工艺的一个方面,在溶液中包含离液性离子液体(即,能够至少部分地溶解纤维素的离子液体)与非质子溶剂的工艺溶剂系统可以将靛蓝染料带入纤维素基质中以有效染色。如本文所述,“纤维”、“纤维素纤维”、“纤维素”、“纱线”和“线”均可互换使用,除非在所附权利要求书中如此指明,否则本公开的范围扩展至所有这些形式的基于纤维素的材料。在配置用于着色和/或染色剂的焊接工艺的另一个方面,除非在所附权利要求书中如此指明,否则基质可以被无限制地配置为2d基质或3d基质。出乎意料的是,在重新制造工艺润湿的基质期间(例如,在工艺溶剂回收区4中,其中离子液体和非质子溶剂被从纤维中除去),可以完成工艺溶剂或一部分工艺溶剂的去除,使得不存在的或可忽略不计的靛蓝染料分子被去除。即,靛蓝染料分子一旦被带入纤维素纤维中,就可以由此牢固地结合到纤维素纤维上,从而去除(洗脱)工艺溶剂(在这种情况下,为离子液体和非质子溶剂)所需的去除力不足以去除结合的靛蓝染料。与现有技术相比,染色和焊接工艺还可以增加可与染色步骤同时发生的纤维改性的益处。这种纤维改性可以配置成通过焊接工艺使纱线平滑和/或强化,该焊接工艺如美国专利no.8,202,379(其通过引用整体并入本文)或者以上列出的任何共同未决申请所公开的内容。在焊接工艺中,通过焊接工艺对纤维进行染色和纤维改性,离子液体既可以将靛蓝染料带入纱线中,也可以部分溶解纤维的外层,以提高其强度和/或平滑度,和/或通过焊接工艺向纤维中添加其他功能性材料。如以上所详细描述的,针对通过焊接工艺截留功能材料(并且至少参考图4a-图4d和图5a-图5d),染色和焊接工艺可以配置为包埋具有生物聚合物基质的着色剂(例如,靛蓝染料)。这种染色和焊接工艺可以生产焊接基质,其以类似于颜料填充的方式着色,其中生物聚合物可以用作粘合剂。另外,染色和焊接工艺可以被配置成将前文所述的焊接基质的任何属性赋予经由受到各种兼容性限制(例如,化学兼容性、属性兼容性等)的染色和焊接工艺生产的焊接基质,除非在所附权利要求书中如此指明,否则不受限制。c.说明性的染色和焊接工艺将详细描述配置为用于纤维素纤维的靛蓝染色的染色和焊接工艺的各种说明性实例。然而,前述说明并不意味着以任何方式进行限制,因此,除非在所附权利要求书中如此指明,否则其具体参数不限制本公开的范围。在一种染色和焊接工艺的一个方面,靛蓝染料粉末可以悬浮并部分溶解在包含离液型离子液体溶剂的工艺溶剂中。这些溶剂包括但不限于1-乙基-3-甲基咪唑乙酸盐(“emimoac”)、1-丁基-3-甲基咪唑氯化物(“bmimcl”)、1-丙基-3-甲基咪唑乙酸盐(“pmimoac”)和如美国专利no.7,671,178(其通过整体引用并入本文)中所公开的其他已知的离液型离子液体溶剂(能够溶解天然纤维的溶剂)。然而,除非在所附权利要求书中如此指明,否则本公开的范围不受具体使用的离子液体的限制。此外,用于输送靛蓝染料和/或其他材料的工艺溶剂很少是纯的。事实上,工艺溶剂通常是离子物体与分子物体的混合物(例如,emimac+dmso+acn或lioh+尿素+水)或者甚至是完全由分子物体组成的工艺溶剂。通常,当粉末形成时,单个靛蓝颗粒尺寸越小,使用染色和焊接工艺的着色效率越高。在一种染色和着色工艺中,使用粒径为0.01-10微米的靛蓝粉末可能是有利的。在其他工艺中,使用粒径为0.1-1.0微米的靛蓝粉末可能是有利的。因此,除非在所附权利要求书中如此指明,否则在染色和焊接过程中使用的靛蓝的具体颗粒大小、物理特性和/或其他特征并不限制本发明的范围。已经发现使用非质子极性溶剂(例如,dmso、dmf等)作为使用离子液体的共溶剂(以产生工艺溶剂系统)特别有利于辅助工艺,这是由于其可以降低工艺溶剂的粘度。然而,除非在所附权利要求书中如此指明,否则其他添加剂可与离子液体一起使用而没有限制。通常,离子液体及其任何添加剂在本文中称为“工艺溶剂”,但也可称为“工艺溶剂系统”。靛蓝染料仅在某种程度上可溶于dmso和dmf。因此,在某些染色和焊接工艺中,使用离子液体和dmso或dmf的混合物直接染色的益处主要不是由于靛蓝染料在工艺溶剂中的溶解度提高。然而,在其他染色和焊接工艺中,包含dmso或dmf的工艺溶剂可能由于染色而导致焊接基质的相对较大量的着色(与颜料填充相反)。已经发现靛蓝染料随着时间的推移在emimoac中缓慢被还原,因此从特征蓝色转变为绿色色调。因此,预期在许多应用中,在初始制备的四十八小时内使用悬浮液可能是有利的。在实验中,靛蓝染料已根据以下工艺步骤成功施加于纱线。将靛蓝染料粉末(0.5-3wt%)悬浮在50:50重量比的emimoac和dmso溶液中。搅拌该混合物以产生细液悬浮液。随后,通过>50目筛过滤该悬浮液以除去未悬浮的染料颗粒,未悬浮的染料颗粒可能导致应用中的不一致或工艺设备的堵塞。该工艺溶剂被输送到喷射器以施加于纱线。当使用emimoac和dmso混合工艺溶剂时,优选的工艺溶剂与纤维的比率约为:工艺溶剂质量是与处理的纱线质量的1-6倍。在70℃-100℃的工艺温度下,焊接和同时染色的时间为5-15秒。然后可以对焊接和染色的纱线进行漂洗和重构步骤以停止焊接过程。已经发现,从纱线中去除工艺溶剂不会去除靛蓝染料。然后可以以与目前工业上相似的方式干燥和包装焊接和染色的纱线。通常,由棉纱组成的原始1d基质可以在如上所述的焊接过程中被部分溶解,具体地说,配置类似于图9a所示的焊接过程,其中靛蓝染料被包含作为工艺溶剂的一部分。工艺溶剂可包含离子液体(例如,emimoac)、共溶剂、靛蓝粉末和一些情况下的溶解纤维素。在这些实验中,发现某些共溶剂(例如,乙腈(acn)、dmso和dmf等)理想地在焊接工艺中实施,该焊接工艺被配置成在工艺温度/压强区4中具有相对短的停留时间,以便不化学性地改变靛蓝染料。在长时间暴露于靛蓝粉末的情况下,这种共溶剂可能导致靛蓝粉末的还原。相反,当与emimoac一起使用时,由于靛蓝染料不会快速被还原并且dmso(或dmf)能够溶解至少部分的靛蓝染料,所以二甲基亚砜(dmso)可以是用于其他染色和焊接工艺的有利的共溶剂。另外,在某些染色和焊接过程中,在工艺溶剂中包含一些溶解的纤维素可能是有利的。根据aatcc8,使用摩擦脱色评估仪测量染色纱线对摩擦脱色(染料的掉色)的阻止。根据该程序,纱线缠绕在刚性板上并平行于机器臂的行程安置。将干净的白色测试织物贴片与纱线摩擦总共20次(10次往复循环),并将该测试织物贴片的颜色与对照灰度标度进行比较。没有变换颜色的染色样品评级为5(优秀),而严重污染测试织物贴片的样品评级为1(非常差)。纱线样品根据如下面的实验说明中所述的各种工艺条件进行制备,随后根据aatcc8进行测试。第一说明性染色和焊接工艺在该染色和焊接过程中,使用包含67:33重量比(1m:2m)的emimoac与acn的工艺溶剂(其中加入3wt%的靛蓝粉末)焊接包括10/1环锭纺棉纱的原料基质。为了确保工艺溶剂的完全混合,将该混合物在flacktek混合器中进行双不对称离心混合。在焊接工艺中将该工艺溶剂施加到纱线上,其中纱线没有完全被溶解,但是通过部分地溶解纱线并因此将纱线纤维熔合在一起来改善纱线的性能。这里,工艺溶剂施加区2配置有保持在75℃的喷射器60(其中处理溶剂被冲击到纱线上)和保持在100℃的基质出口64(其可以构成工艺温度/压强区3的全部或一部分)。将工艺溶剂以纱线重量的三倍的施加率施加到纱线上(即,对于穿过喷射器的每10克纱线,将30克工艺溶剂泵入喷射器60中)。将纱线以一定的速率拉过焊接柱(即,工艺温度/压强区3),导致总焊接时间约为10秒。然后将纱线在70℃acn的逆流柱中重构。逆流速率大于工艺溶剂投配速率的10倍。在将该焊接纱线基质卷绕在线轴上之后,将线轴在水中漂洗,然后干燥。然后将所得焊接的纱线基质卷绕在刚性保持装置上并根据aatcc8进行测试。测试显示非常差的耐摩擦脱色性,数值评级为1.5。第二说明性染色和焊接工艺在与上述刚刚讨论的第一说明性染色和焊接工艺中使用的染色和焊接工艺非常类似的情况下,在第二说明性工艺中,使用包括3wt%的分散靛蓝粉末和0.3wt%的溶解纤维素的工艺溶剂处理原纱基质。在进行如第一说明性染色和焊接工艺所述的漂洗和干燥前,对该纱线基质进行类似的焊接和重构。根据aatcc8测试所得焊接的纱线基质。测试显示非常差的耐摩擦脱色性,数值评级为1.5。第三说明性染色和焊接工艺通过第一说明性染色和焊接工艺制成的焊接纱线基质进行第二次焊接工艺,以试图更好地将染料固定到纱线上并使摩擦脱色最小化。第二次焊接工艺使用的工艺溶剂不包含靛蓝粉末,但确实包含0.5wt%的溶解纤维素。根据在先针对第一说明性染色和焊接工艺所述配置用于第二次焊接的工艺溶剂施加区2和工艺温度/压强区3。两次焊接的纱线同样在70℃逆流acn中重构。将这种两次焊接的纱线在水中漂洗并干燥,然后进行aatcc8摩擦脱色试验。这种两次焊接的纱线的耐摩擦脱色性提高到评级2.5,但测试织物贴片也是绿色色调而不是靛蓝色。第四说明性染色和焊接工艺通过第二示例性染色和焊接工艺制造的焊接纱线基质进行第二次焊接工艺,以试图更好地将染料固定到纱线上并使摩擦脱色最小化。这里的第二次焊接工艺使用包含0.5wt%的溶解纤维素的工艺溶剂。根据在先针对第一说明性染色和焊接工艺所述配置用于第二次焊接的工艺溶剂施加区2和工艺温度/压强区3。两次焊接的纱线同样在70℃逆流acn中重构。将这种两次焊接的纱线在水中漂洗并干燥,然后进行aatcc8摩擦脱色试验。这种两次焊接的纱线的耐摩擦脱色性提高到评级2,但是测试织物贴片具有绿色色调而不是真正的靛蓝色。第五说明性染色和焊接工艺以与上述在第四说明性染色和焊接工艺中描述的相同方式,处理该焊接纱线基质,不同之处在于使用70℃的水代替使用热acn作为重构溶剂。这种两次焊接的纱线表现出适度提高的耐摩擦脱色性评级2.5;测试织物贴片仍然不是真正的靛蓝色,但是比用于测试来自第三说明性染色和焊接工艺的两次焊接的纱线基质的测试织物贴片更不绿。第六说明性染色和焊接工艺使用第四说明性染色和焊接工艺生产的两次焊接的纱线进行第三次焊接工艺,以试图更好地将染料固定到纱线上并使摩擦脱色最小化。第三次焊接工艺使用包含0.5wt%溶解纤维素的工艺溶剂。将三次焊接的纱线在70℃逆流水中重构。将这种三次焊接的纱线在水中漂洗并干燥,然后进行aatcc8摩擦脱色试验。这种三次焊接的纱线的抗摩擦性提高到3.5级;测试织物贴片仍然不是真正的靛蓝色,但是比用于测试来自第三说明性染色和焊接工艺的两次焊接的纱线基质的测试织物贴片更不绿色。第七说明性染色和焊接工艺在该染色和焊接过程中,使用由50:50重量比的emimoac与dmso组成的工艺溶剂焊接包含10/1环锭纺棉纱的原料基质,其中工艺溶剂中加入2.5wt%的靛蓝粉末和0.25wt%的纤维素。为了确保工艺溶剂的完全混合,将该混合物在flacktek混合器中进行双不对称离心混合。在天然纤维焊接工艺中将该工艺溶剂施加到纱线上,其中纱线没有完全溶解,但是通过部分地溶解纱线并因此将纱线纤维熔合在一起来改善纱线的性能。此处,处理溶剂施加区2配置有保持在75℃的喷射器60(其中处理溶剂被冲击到纱线上)和保持在100℃的基质出口64(其可以构成处理温度/压强区3的全部或一部分)。将处理溶剂以纱线重量的四倍的施加率施加到纱线上(即,对于穿过喷射器的每10克纱线,将40克工艺溶剂泵入喷射器60中)。将纱线以一定的速率拉过焊接柱(即,工艺温度/压强区3),导致总焊接时间约为10秒。然后将纱线在70℃水的逆流通道中重构。逆流速率大于工艺溶剂投配速率的10倍。在将该焊接纱线基质卷绕在线轴上之后,将线轴在水中漂洗,然后干燥。然后将焊接的纱线基质卷绕在刚性保持装置上并根据aatcc8进行测试。测试显示非常差的耐摩擦脱色性,数值评级为1。第八说明性染色和焊接工艺通过第七说明性染色和焊接工艺制造的焊接纱线基质经受第二次焊接工艺,以试图更好地将染料固定到纱线上并使摩擦脱色最小化。第二次焊接工艺使用包含50:50重量比的emimoac与dmso而不含靛蓝粉末的工艺溶剂,但其确实包括0.5wt%的溶解纤维素。两次焊接的纱线同样在70℃逆流水中重构。将这种两次焊接的纱线在水中漂洗并干燥,然后进行aatcc8摩擦脱色试验。这种两次焊接的纱线的耐摩擦脱色性提高到3级,试验织物呈现出特征性的靛蓝色。第九说明性染色和焊接工艺对纱线基质进行第二说明性染色和焊接工艺(即,包含3wt%的分散靛蓝粉末,0.3wt%的溶解棉,emimoac与acn重量比为67:33的工艺溶剂),以观察靛蓝色复原棉是否会粘附在黄色纱线基质上。得到的焊接纱线基质没有变成蓝色,并且通过漂洗可以容易地除去任何蓝色色调。第十说明性染色和焊接工艺在该染色和焊接过工艺中,染色和焊接工艺可以配置为具有多于一个的工艺溶剂施加区域2、多于一种工艺溶剂、多于一个处理温度/压强区域3和/或多于一个工艺溶剂回收区4(也可称为重构区)。因此,这种染色和焊接工艺可以配置成产生类似于先前描述的两次和/或三次焊接的纱线基质的焊接纱线基质,但由单个基质供给区1、单个工艺溶剂回收区4、单个干燥区5和/或单个焊接基质收集区7实现高效。通常,染色和焊接工艺(或其步骤)的各个区域可以彼此离散,或者一个或多个区域可以彼此邻接,使得从一个区域到下一个区域的过渡是渐进的,并且使得一个区域的特定终点和另一个区域的开始是不确定的。染色和焊接工艺可以配置成使得两种不同的工艺溶剂连续施加到基质上,从而使用两个工艺溶剂施加区2和两个工艺温度/压强区3。然而,染色和焊接工艺可以配置成仅需要一个工艺溶剂回收区4,该工艺溶剂回收区4去除全部或部分两种工艺溶剂。或者,染色和焊接工艺可以配置有两种不同的工艺溶剂和单个工艺溶剂施加区2和单个工艺温度/压强区3。在另一种染色和焊接工艺中,可以将两种不同的工艺溶剂连续施加到基质上,从而使用两个工艺溶剂施加区2和两个加工温度/压强区3,并且其中染色和焊接工艺使用两个工艺溶剂回收区4。第一工艺溶剂回收区4可以与第一工艺溶剂(并且因此与第一工艺溶剂施加区2和第一工艺温度/压强区3)相关联,并且第二工艺溶剂回收区4可以与第二工艺溶剂(并且因此与第二处理溶剂施加区2和第二处理温度/压强区3)相关联。对于每种工艺溶剂和/或染色和焊接工艺的工艺溶剂回收区4的组成、温度和流动特性等可以至少基于所得焊接基质的所需属性而不同。因此,除非在所附权利要求书中如此指明,否则这些参数不限制本公开的范围。根据本公开内容,本领域普通技术人员将理解,本公开的范围不限于两种工艺溶剂、两个工艺溶剂施加区域2和两个工艺温度/压强区域3和/或两个工艺溶剂回收区4,除非在所附权利要求书中如此指明,否则无限制地扩展至其任何数量。第十一说明性染色和焊接工艺在另一种染色和焊接工艺中,工艺溶剂可以包含氢氧化物盐的水溶液。这种染色和焊接工艺可以配置成使用图10a所示的机器和/或设备。例如,包含8wt%氢氧化锂、15wt%尿素和2.5wt%靛蓝粉末的工艺溶剂可以被施加到包括30/1环锭纺棉纱的基质上。这样的方式使得靛蓝粉末不会被还原(即,工艺溶剂仅悬浮靛蓝粉末,而不会溶解它或化学改变它)。工艺溶剂施加区2和处理温度/压强区3可以配置成使得工艺溶剂与基质的质量比为7:1。工艺溶剂施加区2和处理温度/压强区的温度可以保持在-12℃,并且可以允许工艺溶剂与基质相互作用3到4分钟,之后可以将水施加到用于回收工艺溶剂的基质,得到用靛蓝着色的焊接基质。将该焊接的纱线在水中漂洗并干燥,然后进行aatcc8摩擦脱色试验。该焊接纱的耐摩擦脱色性评级为1,试验织物呈现出靛蓝色特征。在图17a中示出了可以使用单一工艺溶剂制造的焊接纱线基质100的绘图,在图17b中示出了来自该焊接的纱线基质100的单独的高度焊接的基质纤维105。可以预期,染色和焊接工艺可以被配置成使得焊接的纱线基质100的焊接程度在其从焊接的纱线基质100的外部到内部的方向上径向维度地减小。因此,从外部移动到其内部,可以有一层或多层高度焊接的基质纤维105、适度焊接的基质纤维104、轻度焊接的基质纤维103和基质纤维102(通常靠近焊接纱线基质100的中心)。焊接纱线基质100上的焊接程度可以通过调整上述的各种工艺参数来控制。可以通过粘合剂106,将染料和/或着色剂包埋在单独的焊接基质纤维103、104、105内和/或这些焊接基质纤维103、104、105之间的区域中。粘合剂106的最佳化学组分可以从一次染色和焊接工艺变化到下一次,并且可以至少取决于基质的化学组分。在其中基质是包括棉纱的染色和焊接工艺中,已发现有利的是将粘合剂配置成包含生物聚合物,并且如果生物聚合物包含纤维素则特别有利。粘合剂106可以通过将粘合剂106溶解在适当的溶剂中而被施加到焊接纱线基质100上,然后可以将该溶剂施加到基质或焊接基质上。在一种染色和焊接工艺中,溶剂可以是其中具有溶解纤维素的工艺溶剂,使得20在工艺溶剂回收区4(例如,重构区)中,粘合剂106沉积在焊接基质上和/或沉积在焊接基质内。现在参考图17b,单独的颜料颗粒109被显示在单独的焊接基质纤维103、104、105的外部以及包埋在粘合剂106内。除了在从焊接纱线基质100的外部到其内部的径向方向上移动的各个焊接基质纤维103、104和105之间的颜色梯度之外,在各个焊接基质纤维103、104和105内可以从各个焊接基质纤维103、104和105的外部沿径向方向移动到其内部的方向存在颜色梯度。如图17b所示,与单独的焊接基质纤维103、104和105接合的颜料颗粒109的浓度可以在其外表面附近最大。通常,颜料颗粒109的一部分可以被包埋在焊接基质纤维103、104和105内,其第二部分可以被包埋在焊接的基质纤维103、104和105之间,并且其第三部分可以包埋在粘合剂106中。预期位于单个基质纤维103、104、105上的径向最远端位置的颜料颗粒109(其中单独的基质纤维103、104和105位于焊接的纱线基质100的径向最远端位置处)可以表示与其他颜料颗粒109相比相对较低的色牢度。图18a示出了可以使用多种工艺溶剂制造的焊接纱线基质100的绘图。在图18b中示出了来自该焊接的纱线基质100的单独的高度焊接的基质纤维105。同样,预期染色和焊接工艺可以被配置为使得焊接的纱线基质100的焊接程度在其从焊接的纱线基质100的外部到内部的方向上径向维度地减小。因此,从外部移动到其内部,可以有一层或多层高度焊接的基质纤维105、适度焊接的基质纤维104、轻度焊接的基质纤维103和基质纤维102(通常靠近焊接纱线基质100的中心)。焊接纱线基质100上的焊接程度可以通过调整上述的各种工艺参数来控制。与图17a中的焊接纱线基质100一样,图18a中的染料和/或着色剂可以通过粘合剂106被包埋在单独的焊接基质纤维103、104和105内和/或这些焊接基质纤维103、104和105之间的区域中。粘合剂106的最佳化学组分可以从一次染色和焊接工艺变化到下一次,并且可以至少取决于基质的化学组分。在其中基质是包括棉纱的染色和焊接工艺中,已发现有利的是将粘合剂配置成包含生物聚合物,并且如果生物聚合物包含纤维素则特别有利。可以通过将粘合剂106溶解在合适的溶剂中将粘合剂106施加到基质上,然后可以将该溶剂被施加到基质或焊接基质上。粘合剂106可以在与染料和/或着色剂相同的步骤中施加到基质上(例如,通过将靛蓝粉末与工艺溶剂混合)。在一种染色和焊接工艺中,溶剂可以是其中具有溶解的纤维素的工艺溶剂,使得在工艺溶剂回收区4(例如,重构区)中,粘合剂106沉积在焊接基质上和/或沉积在焊接基质内。图18a所示的焊接纱线基质100还可包括位于其径向外部的粘合剂壳108。粘合剂壳108可以被施加到焊接纱线基质100上(其已经将染料和/或着色剂和/或粘合剂106施加到其上),可以通过施加一种或多种工艺溶剂将染料和/或着色剂和/或粘合剂106施加到基质上。在一种染色和焊接工艺中,可以通过将粘合剂106溶解在适当的溶剂中来施加粘合剂壳108,然后可以将该溶剂施加到基质或焊接的基质纱线基质100上。通常,已经发现,对于一些染色和焊接工艺,当施加粘合剂壳108时,焊接的纱线基质100的色牢度可能有利于从工艺溶剂中省略任何染料和/或着色剂。现在参考18b,单独的颜料颗粒109被示出存在于单独的焊接基质纤维103、104和105的外部以及被包埋在粘合剂106内。其中没有任何颜料颗粒109的粘合剂壳108可以位于焊接的纱线基质100外部的周围。可以预期,相对于现有技术,这种粘合剂壳108可以增加这种焊接纱线基质100的色牢度。除了在从焊接的纱线基质的外部到其内部的径向方向上移动的各个焊接基质纤维103、104和105之间的颜色梯度之外,在各个焊接的基质纤维103、104和105内可以存在颜色梯度(从各个焊接基质光纤103、104和105的外部沿径向移动到其内部)。如图18b所示,与单独的焊接基质纤维103、104和105接合的颜料颗粒109的浓度可以在其外表面附近最大。在一些染色和焊接工艺中,粘合剂106和粘合剂壳108的化学组分可以是相似或相同的(例如,纤维素聚合物)。然而,在其他染色和焊接工艺中,粘合剂106和粘合剂壳108可具有不同的化学组分,该化学组分可至少取决于颜料颗粒和基质等。从图17a可以预期,如果通过使用用于施加工艺溶剂的喷射器60以生产来自图17a的焊接的纱线基质100,则可以以类似于图16a所示的方式配置喷射器60。类似地,可以使用用于施加工艺溶剂的喷射器60以生产如图18a所示的焊接的纱线基质100。然而,可以预期,由于图18a所示的被配置为生产焊接的纱线基质100的染色和焊接工艺可以使用两种分离的工艺溶剂(例如,一种具有染色和/或着色剂以用于第一次施加,而第二种不具有染料和/或着色剂以用于随后施加,以施加到粘合剂壳108),这样的喷射器60可以配置有多于一个的工艺溶剂输入62和应用接口63。然而,除非在所附权利要求书中如此指明,否则可以使用用于施加一种或多种工艺溶剂的其他结构和/或方法而不脱离本申请的精神或范围。图19a至图19c描绘了通过焊接工艺或染色和焊接工艺生产的几种可能的焊接纱线基质的横截面。简单来说,在参考图19a至图19c时使用的术语“焊接工艺”包括但不限于染色和焊接工艺以及上述的焊接工艺。图19a示出了均匀焊接的纱线基质。如本文所用,术语“均匀焊接”用于表示在焊接纱线基质的整个横截面上的空间上一致的受控体积固结。图19b示出了壳焊接的纱线基质。对比于均匀焊接的纱线基质,壳焊接的纱线基质可以是其中聚合物溶胀和活动的焊接工艺的结果,使得给定基质的最外层纤维实现紧密的分子级焊接相互作用和效果。因此,可能存在纤维焊接基质的环状梯度,其不同于基质中的芯纤维(该芯纤维可以在很大程度上不受焊接过程的干扰)。图19c示出了芯焊接的纱线基质。在芯焊接基质(其也可以根据本文公开的焊接工艺生产)中,最内部纤维的生物聚合物可以溶胀和活动,使得焊接基质的芯呈现出紧密的分子水平相互作用的梯度,但是外环纤维主要留在其原生状态。在图19a至图19c中,较深的灰色阴影旨在表示纤维之间相对较大的分子水平相互作用。值得注意的是,基质的均匀程度、壳或焊接芯对焊接基质的物理性质具有重要的影响和后果。例如,均匀焊接的纱线基质可显示出显著降低的毛羽,同时具有增加的模量(其至少可以通过如至少表2.2和表3.2等所示的,将强度/韧度除以伸长率来计算)。例如,通过染色和焊接工艺生产的焊接基质可以具有比其原纱基质对应物大100%的模量,同时与其原纱基质对应物相比毛羽减少约30%至99%(这是通过乌斯特(uster)毛羽指数测定的)。相比之下,因为存在未焊接的纤维芯并且相对于其他纱线和/或焊接纱线可以滑动基质,所以壳焊接的纱线基质可以显示出显著降低的毛羽,但是没有像均匀焊接的基质那样大的模量增加。相反,芯焊接的纱线基质可以表现出增加的模量,但同时保持所需的毛羽量。在均匀、壳或核心焊接基质属性之间选择或甚至调整的能力是生产具有优化的织物性能的焊接基质纱线的关键方面。通过使用通过焊接纱线基质的空间控制的体积固结优化的焊接纱线基质,可以由含有天然纤维的纱线构成令人惊讶的新织物。焊接工艺可以配置成通过使用施加方法适当控制工艺溶剂的功效和流变学的组合来生产均匀焊接的纱线基质,其中施加方法包括在基质通过工艺溶剂施加区2、工艺温度/压强区3和工艺溶剂回收区4期间,可能在各个适当的点处发生的任何粘滞阻力的溶剂的量。获得一致焊接结果的程度也可以是工艺条件的函数,包括但不限于温度以及施加温度的方法(即,辐射或非辐射热传递或其组合),以及工艺溶剂回收区4中的大气压强、大气成分、工艺溶剂回收的类型和方法(例如,重构溶剂类型的选择、温度和流动特性等),以及用于从基质上去除重构溶剂的干燥工艺的类型和方法。再一次参考图19b和19c(其分别描绘了壳焊接的纱线基质和芯焊接的纱线基质),焊接工艺可以被配置成通过仔细操纵和控制焊接工艺参数来生产这些可选的焊接基质。此外,如前文详细描述的,由于关键过程变量是实时调整的,因此调整的纤维焊接工艺允许至少在均匀、壳和/或芯焊接的结果中调整基质。一般而言,壳焊接可以通过(不限于)工艺溶剂组分(其影响溶剂功效、流变学或两者)、工艺溶剂施加温度和压强、工艺温度/压强区3的停留时间、包括传热方法的温度控制方法、工艺溶剂回收区4(包括但不限于重构溶剂组合物、流动特性和温度等)的配置和/或用于去除重构溶剂的方法等的任何组合,空间地限定纱线外部的焊接条件来实现。例如,壳焊接可以通过增加溶剂粘度来实现,使得工艺溶剂主要沉积在纱线基质的外部,并且可以调整工艺溶剂施加区2和/或工艺温度/压强区3的持续时间和温度以限制基质吸收工艺溶剂的程度,并且有效地使纤维基质中的生物聚合物溶胀和活动。特别地,可以将相对小(0.02wt%至1wt%)量的增溶的生物聚合物添加到工艺溶剂中以实现壳焊接不同程度和/或厚度的效果。可以通过所有上述条件和/或工艺参数(包括但不限于粘滞阻力条件的变化)的替换来实现芯焊接。例如,可以使用适当的工艺溶剂输送系统和条件来调整工艺溶剂的施加,工艺溶剂输送系统限制所施加的工艺溶剂的量并且该条件允许例如工艺溶剂在焊接发生前的适当时长浸入基质的芯。具体在这种情况下,配制工艺溶剂并分别控制工艺溶剂施加区2和/或工艺温度/压强区3的温度可能是有利的,使得在温度达到适当范围之前不能实现焊接条件。在另一个实例中,可以将焊接阻滞剂(例如,水和水蒸气等)施加到工艺润湿基质(在工艺溶剂施加区2的末端和/或在工艺温度/压强区4中),以(通过扩散)改变工艺润湿基质外部的工艺溶剂组合物从而影响整个基质横截面的焊接程度。即,焊接延迟剂扩散到邻近工艺润湿基质外部的工艺溶剂中可延迟和/或停止在该位置处的焊接,同时焊接仍可在工艺润湿基质的更内部位置处发生。尽管图17a至图19c中所示的焊接纱线示出了其中每个单独的焊接基质纤维103、104和105的离散边界,可以预期用于生产该焊接纱线基质100的焊接工艺或染色和焊接工艺实际上可以使相邻焊接基质纤维103、104和105之间的边界混合在一起。即,各个焊接基质纤维103、104和105的生物聚合物可以被溶胀和活动,使得其各自的边界不再存在。因此,如前文所详细讨论的,在焊接纱线基质100中,相邻的焊接基质纤维103、104和105可以被焊接在一起。配置成至少部分染色基质并且利用粘合剂106将一种或多种颜料颗粒109至少部分地接合到基质的染色和焊接工艺,可以被称为如前文简要描述的混合染色和焊接工艺。预期这种染色和焊接工艺可以配置有包含dmso或dmf的工艺溶剂,其中工艺溶剂可以同时溶胀和活动生物聚合物并溶解所需的染料和/或着色剂。包含dmso或dmf的工艺溶剂可以提供靛蓝染料在工艺溶剂中所需的溶解度,使得部分基质在传统意义上被染色。此外,预期在这种染色和焊接工艺中,工艺溶剂中的染料和/或着色剂的量可以使得工艺溶剂超过该特定染料和/或着色剂的饱和点。即,工艺溶剂的染料和/或着色剂完全饱和,使得一部分染料和/或着色剂可以悬浮在完全饱和的工艺溶剂中。在另一种染色和焊接工艺中,靛蓝染料可以完全溶解在工艺溶剂中。在这种染色和焊接工艺中,所得到的焊接基质不会展现包埋在粘合剂106内的可辨别的颜料颗粒109。即,焊接基质可以仅仅是具有染色属性的,使得在每个单独的焊接基质纤维103、104和105以及每个焊接纱线基质100的外部上具有均匀的颜色。在如此配置的染色和焊接工艺中,在工艺溶剂回收区4中使用的重构溶剂可以保留少于溶解在工艺溶剂中的靛蓝染料量的10%。更具体地,重构溶剂可以保留少于溶解在工艺溶剂中的靛蓝染料量的5%。同样,染色和焊接工艺可以被配置成将任何在先公开的属性赋予焊接基质100。预期通过这种方法生产的焊接基质100可表现出相对高的耐摩擦脱色性。染色和焊接工艺总结可以使用染色和焊接工艺将靛蓝粉末固定到棉纱基质上。这种靛蓝粉末可以通过染色和焊接工艺粘合到棉纱基质上,并且基质相对于工艺溶剂的溶解度可能是在所得焊接基质中保留颜料的关键。使用染色和焊接工艺未明显染色纱线的事实表明,颜料不仅仅粘附在纱线基质的表面上。无论溶解的纤维素是否在用于染色和焊接工艺的工艺溶剂中,都可以通过摩擦从焊接的纱线基质的表面(机械地)磨掉靛蓝粉末。使用包含溶解纤维素的无色工艺溶剂来施加后续工艺溶剂,可以有效地锁定靛蓝粉末染料并减小摩擦脱色(参见下表15.1)。在某些染色和焊接工艺中,由于即使靛蓝长时间暴露于共溶剂dmso也不会化学还原靛蓝并在纱线中产生绿色调,因此dmso可能是优选的焊接共溶剂。表15.1通常,用于染色和焊接工艺的给定工艺溶剂中的靛蓝粉末的最佳重量百分比可以随着应用的不同而不同,并且其中溶解的纤维素的重量百分比(或其他结合)也可以不同。除非在所附权利要求书中如此指明,否则没有限制的试剂。在一些染色和焊接工艺中,工艺溶剂中靛蓝粉末的最佳重量百分比可以在0.25和8.5之间,并且溶解的纤维素的最佳重量百分比可以在0.01和1.5之间。在其他染色和焊接工艺中,工艺溶剂中靛蓝粉末的最佳重量百分比可以在1.0和4.0之间,并且溶解的纤维素的最佳重量百分比可以在0.1和1.0之间。因此,除非在所附权利要求书中如此指明,否则工艺溶剂中靛蓝粉末的重量百分比或其中溶解的纤维素的重量百分比并不限制本公开的范围。d.重构溶剂考虑如上所述,对于某些染色和焊接工艺,由于acn可能导致靛蓝的化学变化并在长时间暴露的情况下在焊接的纱线基质中产生绿色色调,所以acn可能不是理想的重构溶剂。通常,使用水作为重构溶剂而不会导致类似的颜色变化,但是水可能表现出其他不希望的效果,例如高阻力。将纱线拉过工艺溶剂回收区4(可以称为重构区)可以在纱线上产生可能超过其断裂强度的高阻力。在一种染色和焊接工艺中,当使用水作为重构溶剂(拖过1/4英寸pfa管)时,7英尺长的重构区导致纱线经受高达80gf的阻力。在对比实验中,向水中添加肥皂(0.5%重量的墨菲油皂(murphyoilsoap))将阻力减小至约55gf。使用纯acn作为重构溶剂将阻力降低至约45gf,同时使用纯乙酸乙酯作为重构溶剂将阻力减小至约35gf。然而,在某些染色和焊接工艺中,纯乙酸乙酯对于从纱线中除去离子液体可能相对无效。因此,包含约5wt%乙酸乙酯的水的重构溶剂对于某些染色和焊接工艺是理想的,因为这样的重构溶剂在降低阻力方面几乎与纯乙酸乙酯同样有效而且同时保持水的重构性质。e.益处和应用利用根据本公开配置的方法染色的纱线可以表现出优于通过传统方法生产的纱线的各种益处。以根据本公开配置的方法焊接到纱线中的靛蓝染料具有较小的“摩擦脱色”倾向(即,通过随后的洗涤除去和/或由于摩擦或其他物理接触而被除去)。根据本发明生产的纱线可以配置成表现出与焊接外部相关的有益物理属性,包括但不限于:改善的强度、改善的光滑度(较少的毛羽)、减少的干燥时间和更好的针织性能。颜色保持和纱线物理属性的综合优点导致改进的织物至少可以在牛仔布工业中广泛使用。对于每千克染色的纤维,商业染色工艺消耗大约125升水。根据本公开配置的制造工艺可以大大减少染色工艺对水的需求。此外,这种制造过程的漂洗和重构步骤可以设计成回收大于98%的离子液体,这可以降低同时焊接和染色过程的成本和对环境的影响。同时焊接和染色纱线的另一个好处是染料的存在可以确保焊接纱线的一致性。尽管没有染料的焊接是已知的并且具有机械益处,但是没有简单的检测手段,焊接过程可能是不一致的。使用包括染料的工艺溶剂产生纱线,使焊接过程中的任何不一致性可通过颜色的变化容易地检测到。10.纤维焊接的空间控制紧接在下面提供了几个定义。这些定义绝不限于前面描述中的任何一个的范围,并且仅适用于前述描述。如果本公开全文中的任何定义涵盖重叠的主题,那么在解释该部分时应使用为特定部分提供的定义。因此,应使用本第10节中提供的定义来解释本节。一般而言,原始纱线基质或线基质(以下统称为“原始纱线基质”)可以被近似为圆形的横截面形状(假定原始纱线基质是单端、非合股的原始纱线基质),如图20中描述的。这样的纱线可以被近似为两个离散的部分。“纱线芯”可以被定义为具有半径大约等于整个纱线的一半半径的圆形面积,其中纱线芯和整个纱线可以是同心的。“纱线壳”可以被定义为围绕并与纱线芯近似同心的整个纱线的剩余部分(通常可以成形为环面)。使用该惯例,纱线壳的径向维度可以大约等于纱线芯的径向维度,但是除非在所附权利要求中如此指示,否则本公开的范围不限于此。此外,在某些应用中,纱线芯与纱线壳之间的边界可能是模糊和/或难以确定的。在不同的应用中,纱线芯的半径可以不同地被定义,并且在某种程度上可以是任意的。例如,在一种应用中,“纱线芯”可以被定义为具有大约等于整个纱线的三分之一半径的半径。现在参考图21,通常可以针对任何给定的关注区域来近似焊接的程度(即,单根纤维从其原生状态被改性的程度和/或相邻纤维之间的熔合程度)。在图21中,由虚线限定的方框区域中示出了每种情况下的关注区域,该虚线示出了这些关注区域的横截面面积。此外,焊接程度以阴影示出,其中较暗的阴影表示关注区域内的纤维之间的相对较高程度的焊接。图21最左端的情况0表示没有焊接,其中原生纤维没有以任何方式被改性或融合。情况1(在情况0的最右边)表示软焊接,其中单根纤维可以与相邻纤维轻微融合在一起,以引起一些体积固结,但是纤维不会以永久方式来融合。在软焊接基质中,机械磨损或其它机械力(例如,搅动、剪切等)可能导致关注区域中的纤维彼此分离,并恢复到与原始基质更相似的关注区域(即案例0)。情况2(在情况1的最右边)表示关注区域中的中等焊接,其中单根纤维以更永久的方式彼此融合,通常难以反转。此外,情况2比情况1表现出更多的体积固结。情况3(在情况2的最右边)表示关注区域中的硬焊接,其中单根纤维以最大的体积固结融合,但没有完全溶解。如情况3中描述的硬焊接即使在剧烈机械力(例如,磨损、搅动、剪切等)的情况下也可能极其难以反转。情况4(在情况3的最右边,并在图21的最右边)表示糖果涂层焊接。在糖果涂层焊接中,可溶解的聚合物可能溶解在焊接工艺中使用的工艺溶剂中。一般而言,在糖果涂层焊接中,由于这样的工艺溶剂的粘度,可溶解的聚合物可主要沉积在基质的外部部分上。因此,对于原始纱线基质,大部分可溶解的聚合物可沉积在纱线壳上。但是,可以通过在工艺溶剂应用区内操纵工艺溶剂的流变学和粘性阻力,将焊接方法配置为将可溶解的聚合物合并到基质相对更多的内部部分中。使用本文先前定义的纱线芯和纱线壳作为关注区域,图22a-22e提供了在这些关注区域内具有特定焊接程度的各种焊接纱线基质的横截面的绘图。具体参考图22a,均匀焊接的纱线的绘图示出了在纱线芯处的焊接程度与在纱线壳处的焊接程度相同。使用先前关于图21描述的焊接程度的术语,可将软焊接的均匀焊接的纱线称为1,1-焊接的纱线,其中第一个数字表示纱线芯的焊接程度和第二个数字表示纱线壳的焊接程度。因此,中等焊接的均匀焊接的纱线可以被称为2,2-焊接的纱线,并且硬焊接的均匀焊接的纱线可以被称为3,3-焊接的纱线。现在参考图22b,壳焊接纱线的绘图示出了在纱线壳处的焊接程度大于在纱线芯处的焊接程度。因此,0,2-焊接的纱线可以被认为是壳焊接的纱线,也可以被认为是1,3-焊接的纱线、2,3-焊接的纱线、0,3-焊接的纱线、1,2-焊接的纱线等。一般而言,任何在纱线壳处的焊接程度大于在纱线芯处的焊接程度的焊接的纱线都可以被认为是壳焊接的纱线。现在参考图22c,芯焊接的纱线的绘图示出了在纱线芯处的焊接程度大于在纱线壳处的焊接程度。因此,可以将2,0-焊接的纱线认为是芯焊接的纱线,也可以将其认为3,1-焊接的纱线、2,1-焊接的纱线、1,0-焊接的纱线、3,2-焊接的纱线等。一般而言,任何在纱线芯处的焊接程度大于在纱线壳处的焊接程度的焊接的纱线都可以被认为是芯部焊接的纱线。图22d中描述了焊接类型/程度的另一方面,其示出了具有糖果涂层的均匀焊接的纱线。一般而言,可以将糖果涂层围绕纱线壳外部的全部或一部分来定位。具有糖果涂层的焊接纱线可以在表示纱线壳的焊接程度的数字之后用数字“4”来指定(即,命名惯例中的第二个数字)。例如,软焊接且具有糖果涂层的均匀焊接的纱线可以被称为1,1,4-焊接的纱线。硬焊接且具有糖果涂层的均匀焊接的纱线可以被称为3,3,4-焊接的纱线,依此类推。现在参考图22e,具有糖果涂层的壳焊接的纱线的绘图示出了在纱线壳处的焊接程度大于在纱线芯处的焊接程度,并且可以将糖果涂层围绕纱壳的外部来定位。因此,可以将0,2,4-焊接的纱线认为是具有糖果涂层的壳焊接的纱线。类似地,1,3,4-焊接的纱线、0,1,4-焊接的纱线、2,3,4-焊接的纱线等都可以被认为是具有糖果涂层的壳焊接的纱线。如以上先前讨论的,并且如关于图11a-11d讨论的,焊接工艺可以被配置为调节的焊接工艺。调节的类型可以从一种焊接工艺到下一种焊接工艺而变化。但是,通过图示的方式,图23提供了由一种调节的焊接工艺生产的焊接纱线基质的描绘。在此,焊接的纱线基质由2,1-焊接(即,芯焊接)的第一部分和1,3-焊接(即,壳焊接)的第二部分组成,在第一部分和第二部分之间具有通常逐渐的过渡。在其它配置中,部分之间的过渡可以比图23中所示的过渡更突然和/或不同。此外,沿着焊接的纱线基质的长度可以存在多于两个部分的焊接纱线基质,并且除非在所附权利要求书中如此指示,否则部分之间的图案/顺序可以无限制地变化。即,调节不必是简单的二进制重复模式,而是对于具有长度可以大于或小于其它部分的各个部分可以更复杂,而没有限制,除非在所附权利要求书中如此指示。除非在所附权利要求书中如此指示,否则可经由应用和/或工艺溶剂的量、粘性阻力、温度等来实现调节而没有限制。此外,可以被调节的焊接基质属性可以是任何本文公开的属性,包括但不限于直径、毛羽、耐磨性、颜色、挠曲模量、焊接程度、糖衣涂层的存在、功能材料的存在、形状或它们的组合而没有限制,除非在所附权利要求书中如此指示。为了进一步说明,图24提供了由另一种调节的焊接工艺生产的焊接纱线基质的绘图。在该说明性示例中,可沿着其长度调节焊接纱线基质的横截面形状和/或质地以及焊接的类型。在一些配置中,沿着焊接纱线基质的长度进行调节焊接纱线基质的横截面形状可固有地导致其质地的调节。在其它配置中,可以结合纱线的横截面形状(例如,毛羽)以调节焊接纱线基质的质地的方式来调节焊接的纱线基质的其它属性。如图24中所示,焊接的纱线基质可以由2,0-焊接(芯焊接)的第一部分,并且该第一部分具有通常为圆形的横截面形状,以及3,3-焊接(均匀地焊接)的第二部分,并且该第二部分具有通常为卵形的横截面形状组成,在该两个部分之间具有通常逐渐的过渡。如先前所讨论的,从焊接纱线基质的一个部分到其另一个部分的变化的量和/或类型不限于图24中所示,除非在所附权利要求书中如此指示。实际上,给定本文列出的变量的数量,对于给定的长度,焊接纱线基质可能存在几乎无限的排列。图25中所示的曲线图示出了三个变量轴,这些变量可以针对给定的焊接工艺进行操纵,以产生具有某些属性的焊接纱线基质。这些变量中的每一个彼此独立,使得焊接工艺可以被配置为产生沿着焊接纱线基质的长度以调节或非调节方式的具有三个变量的任意组合的焊接纱线基质。图26中所示的曲线图为将另一个用于另外自变量功能材料的轴添加到先前讨论的关于图25的那些轴上。从本公开中,本领域技术人员将理解可以经由特定配置中的焊接工艺来生产的不同焊接基质的大量组合。可以预期的是,可以经由调节或非调节的焊接工艺来实现这些各种焊接的基质属性而没有限制,除非在所附权利要求书中如此指示。此外,预期可以使用图9a中所示的设备或图10a中所示的设备来生产具有一种或多种这些属性(以调节或非调节的方式)的焊接基质。但是,除非在所附权利要求书中如此指示,否则可以使用其它设备来生产与本公开一致的焊接纱线基质,而没有限制。图27a-27d中示出了用剪刀切割的各种焊接纱线基质的扫描电子显微镜图像。一般而言,可以使用图9a中所示或图10a中所示的设备来生产这些焊接的纱线基质。但是,除非在所附权利要求书中如此指明,否则可以使用其它设备来生产与本公开一致的焊接纱线基质,而没有限制。例如,可以使用类似于图9a中所示的设备来生产图27a-27d中所示的焊接纱线基质,其中可以将基质拉过配置为相对小直径管的焊接柱,使得基质的外表面与焊接柱的内部发生特定量的物理接触(例如,摩擦,这可能是本文先前定义的粘性阻力的一部分),以产生具有期望属性的焊接纱线基质(例如,相对少的头发、相对光滑的表面等)。现在具体参考图27a,其中示出了2,3-焊接的纱线(该焊接的纱线构成壳焊接的纱线)。可以使用由重量比为70:30的emimoac和dmso组成的工艺溶剂,从10/1环锭纺纱线的原始纱线基质开始来生产该焊接的纱线。可以将工艺溶剂和焊接柱的温度设置为90℃,并将纱线基质在焊接柱中的停留时间设置为大约11秒(例如,通过大约2.4m焊接柱的拉速为13m/min)。焊接柱中的工艺溶剂的质量流速可以大约为基质的纱线基质质量流速的3.5倍。现在具体参考图27b,其中示出了2,3-焊接的纱线(该焊接的纱线构成壳焊接的纱线)。可以使用由重量比为64:36的emimoac和acn组成的工艺溶剂,从10/1环锭纺纱线的原始纱线基质开始来生产该焊接的纱线。可以将工艺溶剂和焊接柱的温度设置为90℃,并将纱线基质在焊接柱中的停留时间设置为大约11秒(例如,通过大约2.4m焊接柱的拉速为13m/min)。焊接塔中工艺溶剂的质量流速可以大约为基质的纱线基质质量流速的6.0倍。现在具体参考图27c,其中示出了0,1-焊接的纱线(该焊接的纱线构成壳焊接的纱线)。可以使用由重量百分比为55%的氢氧化四丁基铵(tbah)的水溶液组成的工艺溶剂,从10/1环锭纺纱线的原始基质开始来生产该焊接的纱线。可以将工艺溶剂和焊接柱的温度设定为65℃,并且将纱线基质在焊接柱中的停留时间设定为大约10秒。现在具体参见图27d,其中示出了1,2-焊接的纱线(该焊接的纱线构成壳焊接的纱线)。可以使用由重量百分比为55%的氢氧化四丁基铵(tbah)的水溶液组成的工艺溶剂,从10/1环锭纺纱线的原始纱基质开始来生产该焊接纱。可以将工艺溶剂和焊接柱的温度设定为70℃,并且将纱线基质在焊接柱中的停留时间设定为大约14秒。空间调节的其它考虑如图28中所示,其中相对较高程度的焊接由相对较暗的颜色表示,均匀焊接、壳焊接和芯焊接的纱线可以在其截面面积中具有不同焊接的不各个部分(如以上先前描述的)。一般而言,焊接的程度朝着图28中所示的描述中心而增加,其中垂直圆圈表示均匀焊接的形态,其中焊接程度通常是一致的,或甚至在遍及横截面面积的整个部分上也是如此。右下的圆圈表示芯焊接的形态,其中在纱线的外围部分上的焊接程度低于不在外围处的纱线的一部分上的焊接程度。最后,左下的圆圈表示壳焊接的形态,其中在纱线的外围部分上的焊接程度高于不在外围处的纱线的一部分上的焊接程度。在所有圆圈中,增加的暗度表示焊接程度的增加,如由图28中的箭头所示。现在参考图29a和图29b,在沿着垂直于原始丝线的纵向轴线的平面切割原始丝线之后,从图29a中的侧面和图29b中的端部示出了未处理的原始丝线。图29a和图29b两者均按比例示出,其中切割前原始纱的直径大约为240微米,而切割后原始纱线的直径大约为515微米。因此,已经观察到在沿着垂直于原始丝线纵向轴线的平面切割原始纱线时,原始纱线的直径增加大于100%。图29a和图29b中所示的原始纱线的直径增加大约为115%。相反,焊接纱线在沿着垂直于其纵轴的平面被切割之后的直径增加要低得多。现在参考图29c和图29d,图29c和图29d提供了在沿着垂直于其纵轴的平面被切割之后的焊接纱线的侧视图及其端视图(即,类似于图29a和图29b中所示的原始纱线视图的焊接纱线的视图),观察到的焊接纱线直径的增长远低于原始纱线的直径的增长。图29c和29d中所示的焊接纱线是用相对低程度的焊接进行壳焊接的。图29c和29d两者均按比例示出,其中切割前的焊接纱线的直径大约为192微米,而切割后的焊接纱线的直径大约为363微米,这相当于直径增加了大约89%。再次,图29c和图29d中所示的在焊接纱线上的焊接度相对较低,并且这意在表示处于或接近在焊接纱线中将观察到的直径增加的上限阈值的情况。在以这种方式对原始纱线和焊接纱线进行反复实验和分析之后,已经发现焊接纱线的观察到的直径增加小于100%,而原始纱线观察到的直径增加大于100%。但是,除非在所附权利要求书中另外指示,否则对于焊接纱线而言小于100%的特定量或对于原始纱线而言大于100%的量决不限制本公开的范围。举例来说,图30b提供了三种壳焊接的焊接纱线的端视图,其中焊接程度从图的左侧到右侧增加,如由其中的箭头所示。在图30a中示出了原始纱线的类似视图用于直接比较。将图30a与图30b以及图30b中的各根纱线相互对比,很容易看出,随着焊接程度的增加,当沿着垂直于其纵轴的平面切割纱线时观察到的直径增加将减少。此外,将图30a与图30b以及图30b中的各根纱线相互对比,很容易看出,随着焊接程度的增加,纱线横截面面积中的开放空间量将减少,这导致了纤维体积比的增加,如下文将详细描述。除非另有说明,如本文所使用的,“纤维体积比”是指纤维在整个关注空间中所占空间的百分比(其中本文示例的关注空间通常是纱线的横截面面积,而没有限制,除非在所附权利要求书中指示),除非在所附权利要求书中另有指示,否则它可以与其它参考文献中使用的“纱线堆积密度”同义,而没有限制。可以预期的是,原始纱线的横截面视图沿着其长度提供了该原始纱线的相对准确的表示,并且未调节的焊接纱线的横截面视图沿着其长度提供了该焊接纱线的相对准确的表示。此外,可以预期的是,已调节的焊接纱线的横截面视图沿着该已调节的焊接纱线的长度提供了相对准确的对应部分的表示。现在参考图31a和图31b,图31a提供了在沿着垂直于纱线的纵轴的平面切割之后的焊接纱线的端视图(横截面),以及图31b提供了其上叠加有两个同心圆的更详细的视图。如图31b中所示,焊接纱线的横截面可以分成至少两个部分,其中图31b示出了围绕焊接纱线外围的外部部分(这可以被认为是壳)和内部部分(这可以被认为是芯)。再次,将这两个部分进行对比可以清楚地看出,外部部分的焊接程度大于内部部分的焊接程度,这是因为外部部分中的单根纤维之间的开放空间少于内部部分中的开放空间(其中可以通过相对较暗的阴影来标识开放空间)。再次,这表明了焊接程度与纤维体积比成正比,如下文将进一步详细描述。现在参考图32,其提供了图31a和图31b中所示的焊接纱线的横截面视图的一系列图像,可以计算横截面面积的给定部分的纤维体积比。左上的图像表示了转换成灰度的焊接纱线的横截面视图。右上的图像表示建立了纱线的外部轮廓(即外围)之后的相同视图。调整对比度,并添加同心环(基于横截面的外部外围)以导致右下的图像。同心环的形状和/或配置可以取决于纱线在沿着其长度的给定位置处的横截面形状而变化,因此决不限于本公开的范围,除非所附权利要求书中另有指示。对于此示例,圆形同心环仅用于说明目的以及用于清楚地呈现。此时,可以计算出每个环的面积,并且可以将二进制阈值应用于每个环,使得可以将像素标记为空的空间或纤维,其中可以将较暗的像素标记为空的空间,可以将较亮的像素标记为纤维。关于像素是否构成空的空间或纤维的暗度的阈值可以取决于特定应用而变化,因此决不限于本公开的范围。接下来,可以将给定环中的纤维像素数除以该环内的像素总数,以计算该环的纤维体积比。用于样本的这些计算结果示出于图32的左下图像中。在图32中所示的纱线中,计算出在纱线中心处的纤维体积比为79%,最外环的纤维体积比为95%。即,计算出外部部分的纤维体积比比内部部分的纤维体积比大大约20%。但是,除非在所附权利要求书中另外指示,否则其它焊接的纱线(壳或芯焊接的形态)可以在两个相邻部分的纤维体积比之间具有较小或较大的差异,而没有限制。例如,在一个应用中,纤维体积比差异可能高达5%,在另一个应用中高达10%、在另一个应用中高达15%、在另一个应用中高达25%、在另一个应用中高达30%、在另一个应用中高达35%、在另一个应用中高达40%、在另一个应用中高达45%、在另一个应用中高达50%、在另一个应用中高达55%、在另一个应用中高达60%、在另一个应用中高达65%、在另一个应用中高达70%、在另一个应用中高达75%、在另一个应用中高达80%、在另一个应用中高达85%、在另一个应用中高达90%、在另一个应用中高达95%和另在一个应用中高达100%以及介于两者之间的任何点,而不受限制,除非在所附权利要求书中另有指示。如先前提到的,纤维体积比与焊接程度成正比,其中相对较高程度的焊接对应于相对较高的纤维体积比。因此,除非在权利要求书中另有指示,否则配置焊接工艺以导致在焊接纱线的外部部分(即,壳焊接)上相对较高程度的焊接可以导致在该部分上较高的纤维体积比,而没有限制。类似地,除非在所附权利要求书中另外指示,否则配置焊接工艺以导致在焊接纱线(即,芯焊接纱线)的内部部分上相对较高程度的焊接可以导致在该部分上较高的纤维体积比,而没有限制。但是,对于许多应用,在横截面面积的几何中心相邻的横截面面积的给定部分中,纤维体积比大于75%(在一些应用中至少为79%或更大),指示在该部分纱线内至少存在某种程度的焊接(如下面关于芯焊接形态的图36a和图36b更详细地讨论),在给定部分中纤维体积比为85%或更大指示在该部分中增加程度的焊接,在给定部分中的纤维体积比为90%或更大指示更进一步程度的焊接,在给定部分中的纤维体积比为95%或更大指示更进一步程度的焊接,依此类推,而不受限制,除非所附权利要求书中另有指示。对于其它应用,在纱线横截面面积的给定外部部分中纤维体积比大于50%(例如,向内扩展的外部部分形成横截面面积的外围,其量使得该外部部分占高达80%的横截面面积)指示在该部分纱线内至少存在某种程度的焊接(如下面关于图34a和图34b的更详细地讨论),在给定部分中纤维体积比为55%或更大指示该部分中的增加程度的焊接,在该部分中纤维体积比为60%或更大、纤维体积比为65%或更大、纤维体积比为70%或更大、纤维体积比为75%或更大、纤维体积比为80%或更大、纤维体积比为85%或更大、纤维体积比为90%或更大、或纤维体积比为95%或更大分别指示更进一步程度的焊接等,而没有限制,除非所附权利要求书中另有指示。对于焊接纱线的给定部分,纤维体积比的特定值在30%和100%之间(这将构成完全的纤维固结,而在各根纤维之间没有空的空间)决不限制本公开的范围,并且可以预期的是在纱线横截面面积的某些外部部分中纤维体积比大于30%,而在邻近纱线几何中心的横截面面积中某些部分附近纤维体积比大于75%(在一些应用中为79%或更高)是至少一定焊接程度的证据,其中较高的纤维体积比表示相对较高的焊接程度。图33中示出了焊接程度与纤维体积比之间的相关性的图示,其中图33的右侧部分表示针对图32中所示的横截面面积计算出的数据点,以及图33的左侧部分提供了相对程度的焊接的比例。在比例尺中,“0”表示没有焊接(即,原始纱线)和“3”表示相对较高程度的焊接,而“1”和“2”表示中等焊接程度(对于“1”可以是低焊接或软焊接,对于“2”可以是中等或中度焊接)。但是,除非在所附权利要求书中另有指示,否则该“0”至“3”的特定比例绝不限于本公开的范围。除非在所附权利要求中另有指示,否则可以使用更多的等级或更少的等级来传达相对程度的焊接(例如,从“0”到“5”的比例)。仍然参考图33,虚线表示原始纱线的纤维体积比作为距纱线横截面面积的几何中心的距离的函数。根据图33,可以基于可以用原始纱线实现的最高纤维体积比来确定可以被认为具有某种焊接证据的一部分纱线与可以被认为是原始(即,没有焊接的证据)的一部分纱线之间的阈值。即,该阈值以下的面积可以表示原始未处理的纱线,而该阈值以上的面积可以表示至少某种程度的焊接,其相对较高的程度由该阈值以上的距离表示。从纱线的几何中心向外,该阈值降低。纤维体积比(在图33中表示为分数而不是百分比)可以在从阈值向上的方向上增加,其中“0”表示在该特定部分中没有纤维(即,完全没有纤维存在的空的空间),而“1”表示纤维体积比为100%(即,没有空的空间存在)。因为从中导出了用于图33的数据的纱线是壳焊接的,因此焊接的程度(因此,纤维体积比)从横截面面积的中心向外朝向其外围增加,这与在由虚线所示的原始纱线中观察到的相反。为了进行此分析,将纱线的横截面面积分为五个部分(在该情况下,五个环的外部边界为横截面面积的半径的20%、40%、60%、80%和100%),但是可以使用更少或更大的粒度(例如,更少的环、更多的环),而没有限制,除非在所附权利要求书中另有指示。因此,构成第一部分和第二部分(例如,芯和/或壳)或第一、第二和第三部分(例如,芯、中间部分和/或壳)的焊接纱线的横截面面积的百分比,可不同于焊接纱线的一种应用,并因此决不限于本公开。在一种应用中,与横截面面积的外围相邻的第一部分可以构成高达0.2%的横截面面积,在另一个应用中高达0.4%的横截面面积、在另一个应用中高达0.6%的横截面面积、在另一个应用中高达0.8%的横截面面积、在另一个应用中高达1.0%的横截面面积、在另一个应用中高达1.5%的横截面面积、在另一个应用中高达2.0%的横截面面积、在另一个应用中高达2.5%的横截面面积、在另一个应用中高达5%的横截面面积、在另一个应用中高达10%的横截面面积、在另一个应用中高达15%的横截面面积、在另一个应用中高达20%的横截面面积、在另一个应用中高达25%的横截面面积、在另一个应用中高达30%的横截面面积、在另一个应用中高达35%的横截面面积、在另一个应用中高达40%的横截面面积、在另一个应用中高达45%的横截面面积、在另一个应用中高达50%的横截面面积、在另一个应用中高达55%的横截面面积、在另一个应用中高达60%的横截面面积、在另一个应用中高达65%的横截面面积、在另一个应用中高达70%的横截面面积、在另一个应用中高达75%的横截面面积、在另一个应用中高达80%的横截面面积、在另一个应用中高达85%的横截面面积以及介于两者之间的任何点,而不受限制,除非在所附权利要求书中另有指示。此外,虽然本文公开和讨论的许多示例都使用了横截面面积通常为圆形的纱线,但是本公开的范围不限于此,而是扩展到具有任何横截面形状的焊接纱线而没有限制,除非在所附权利要求书中另外指示(例如,椭圆形、不规则形状等)。该分析可以应用于纱线的横截面视图中的任何关注的区域。例如,在纱线的横截面形状是不规则的应用中(通常大多数纱线将是现实中的,但是可以由其它几何形状来近似),可以将第一部分定义为从纱线的外部外围向内扩展一定的量(壳),并且可以将第二部分定义为从满足第一部分(芯)的纱线的几何中心向外扩展,其中第一部分构成了一定百分比的纱线的总横截面面积而其余部分则构成了第二部分。在另一个示例中,除非在所附权利要求书中另有指示,否则第三部分可以位于第一部分与第二部分之间,以此类推而没有限制。另外,从构成第一部分的纱线的外围向内的距离可以围绕该外围是均匀的,或者可以是不均匀的,使得相邻部分边界之间的距离取决于部分内的特定位置而变化,而不受限制,除非在所附权利要求书中另有指示。现在参考图34a和图34b,图34a示出了来自图32的纱线的横截面,其上叠加有先前描述的同心环,并且图34b提供了标准化为平滑函数的焊接程度(和因此的纤维体积比)的图示,该函数对应于上面讨论并在图32和图33中所示的经验数据。图34b中的虚线表示原始纱线的纤维体积比作为距纱线横截面面积的几何中心的距离的函数。再次,在壳焊接的形态中,焊接程度(和纤维体积比)可以会随着沿纱线的横截面面积径向向外移动而增加。如果纱线横截面的几何中心未进行焊接(即,未经处理的原始纤维),那么表示焊接程度作为距纱线几何中心的距离的函数的曲线可以从焊接程度比例尺上的“0”处开始(如图38a和图38b中所示,将在下面进行详细描述)。但是,如果在纱线的横截面的几何中心处或其相邻处存在至少某种程度的焊接,那么可以预期的是,该曲线可以在焊接比例尺上的“0”以上开始。指示至少某种程度的焊接的纤维体积比的值可以取决于距给定纱线的横截面面积的几何中心的距离而变化。由于原始纱线表现出类似于由图34b中的虚线所示的纤维体积比梯度,因此可以以相对较低的纤维体积比,在纱线的外部部分(可能构成壳的部分)中检测到焊接。例如,在图34a中所示的横截面的最外环中的纤维体积比(构成在表示纱线横截面的圆的半径为0.8和1.0之间的面积)大于30%可指示该部分(即,壳)中的至少某种程度的焊接。在图34a中所示的下一个向内环处的纤维体积比(构成在表示纱线横截面的圆半径为0.6和0.8之间的面积)大于40%可以指示该部分中的至少某种程度的焊接等而没有限制,除非在所附权利要求书中另有指示。现在参考图35b,其提供了芯焊接的两种焊接纱线的端视图,其中焊接程度从图的左侧到右侧而增加,如由其中的箭头所示,图35a中示出了原始纱线的类似视图用于直接比较。将图35a与图35b以及图35b中的各根纱线相互对比,很容易看出,随着焊接程度的增加,当沿着垂直于其纵轴的平面切割纱线时观察到的直径增加以类似于上文关于图30a和图30b描述的方式减小。此外,将图35a与图35b以及图35b中的各根纱线相互对比,很容易看出,随着焊接程度的增加,纱线横截面面积中的开放空间量减少,这导致了如先前描述的纤维体积比的增加。但是,对于诸如图35b中所示的那些芯焊接纱线,与焊接纱线的横截面面积的几何中心相邻的焊接程度(以及因此,纤维体积比)高于与焊接纱线的外围相邻的横截面面积的一部分处的焊接程度(和纤维体积比)。现在参考图36a和图36b,图36a示出了来自图35b的纱线的横截面,其上叠加有先前描述的同心环,并且图36b提供了标准化为平滑函数的焊接程度(和因此地纤维体积比)的图示,该函数对应于可以经由图像分析收集的经验数据,如以上关于图32和图33先前讨论的。图36b中的虚线表示原始纱线的纤维体积比作为距纱线横截面面积的几何中心的距离的函数。再次,在芯焊接的形态中,焊接程度(和纤维体积比)可能会随着沿纱线的横截面面积径向向外移动而减少。如果与纱线的外围相邻的横截面面积的一部分未焊接(即未处理的原始纤维),那么表示焊接程度作为距纱线几何中心的距离的函数的曲线可能会终止于如图36b(以及下面将详细描述的图39a和39b)中所示的焊接程度比例上的“0”处,并且在横截面面积的外围具有与原始纱线相似的纤维体积比。但是,如果在相邻纱线外围的纱线横截面面积的一部分处或其相邻处存在至少某种程度的焊接,那么可以预期的是,该曲线可以在焊接比例尺上的“0”以上结束。如先前讨论的,指示至少某种程度的焊接的纤维体积比的值可以取决于距给定纱线的横截面面积的几何中心的距离而变化。由于原始纱线表现出类似于由图36b中的虚线所示的纤维体积比梯度,因此可以以比先前讨论的那些用于与横截面的外围相邻的纤维体积比相对更高的纤维体积比,在与纱线几何中心相邻的纱线的部分(可能构成芯的部分)中检测到焊接。例如,在图36a中所示的横截面的最内环中的纤维体积比(构成在几何中心到表示纱线横截面的圆的半径的0.2处的圆)为75%或更大(在一些应用中为79%或更大)可以指示该部分(即,芯)中的至少某种程度的焊接。在图36a中所示的下一个向外环处的纤维体积比(构成在表示纱线横截面的圆半径为0.2和0.4之间的面积)为大于70%可以指示该部分中的至少某种程度的焊接。在图36a中所示的下一个向外环处的纤维体积比(构成在表示纱线横截面的圆半径为0.4和0.6之间的面积)为大于55%可以指示该部分中的至少某种程度的焊接等而没有限制,除非在所附权利要求书中另有指示。图37a-39b中示出了描述对于三种不同形态的焊接程度/纤维体积比作为距纱线几何中心距离的函数的曲线,以及对于每种形态的焊接纱线的两种程度的焊接。但是,这些曲线仅用于说明目的,并不代表所有可能的情况,因此决不限制本公开的范围,除非在所附权利要求书中另有指示。在图37a和图37b中示出了表示两种均匀焊接的纱线的两条曲线,其中图37a表示具有相对较高程度的焊接的均匀焊接的纱线,并且图37b表示具有相对较低程度的焊接的均匀焊接的纱线。如图所示,跨均匀焊接的纱线的横截面面积的纤维体积比(和焊接程度)可以基本恒定,这由配置为直线的曲线来表示。此外,与具有相对较低纤维体积比(和相对较低程度的焊接)的均匀焊接纱线相比,表示具有较高纤维体积比(和相对较高程度的焊接)的均匀焊接纱线的直线在y轴上的定位更靠上。再次,与图37b的焊接纱线相比,这指示了图37a的焊接纱线的相对较高的焊接程度和相对较高的纤维体积比两者。在图38a和图38b中示出了表示三种壳焊接纱线的三条曲线,其中图38a表示与纱线的横截面的更多内部部分相比,在与纱线的横截面的外围相邻的纱线的一部分处具有相对较高的纤维体积比(和焊接程度)的壳焊接纱线。在图38b中标记为“b2”的曲线表示与图38a中示出的壳焊接纱线的横截面的对应部分(即,壳)相比,在与纱线横截面的外围相邻的纱线的一部分(即,壳)处具有相对较低的纤维体积比(和焊接程度)的壳焊接纱线。即,与由图38b中的曲线b2表示的纱线的壳部分相比,由图38a表示的纱线的壳部分被更高度地焊接,因此由图38a表示的纱线的壳部分表现出比由图38b中的曲线b2表示的纱线的壳部分的纤维体积比更高的纤维体积比。但是,在图38a中构成纱线壳的相对面积大约等于由图38b中的曲线b2描述的构成纱线的壳的面积。在图38b中标记为“b1”的曲线表示与由图38b的曲线b2表示的壳焊接纱线的横截面的对应部分(即,壳)相比,在与纱线的横截面的外围相邻的纱线的一部分(即,壳)处具有相对较高的纤维体积比(和焊接程度)的壳焊接纱线。即,与由图38b中的曲线b2表示的纱线的壳部分相比,由图38b的曲线b1表示的纱线的壳部分被更高度地焊接,因此由图38b的曲线b1表示的纱线的壳部分表现出比由图38b中的曲线b2表示的纱线的壳部分的纤维体积比更高的纤维体积比。但是,与由图38b中的曲线b2描述的构成纱线壳的面积相比,由图38b的曲线b1表示的构成纱线壳的相对面积相对较小(和被限制于纱线的横截面面积的更外围部分)。因为可以将图38a和图38b中的曲线描述的所有三种纱线认为是壳焊接的,因此与该特定纱线横截面的更多内部部分相比,在与该纱线的横截面的外围相邻的每根纱线的一部分处的纤维体积比(和焊接程度)更高。因此,如图38a和图38b两者中所示,纤维体积比(和焊接程度)可以在壳焊接形态中随着从纱线的横截面的几何中心移动到其外围而增加。此外,表示具有相对较高程度的焊接的壳焊接纱线的曲线的右端(即,在纱线横截面的外围处)比表示具有相对较低程度的焊接的壳焊接纱线的曲线的右端在y轴上定位更靠上,这表明与图38b的曲线b2中的焊接纱线相比,对于图38a的焊接纱线具有更高程度的焊接和更高的纤维体积比。但是,由图38a中的曲线描述的壳焊接纱线和由图38b中的曲线描述的壳焊接纱线两者都可能具有原始的内部部分,使得在横截面面积的几何中心处没有焊接的证据,或者壳焊接纱线中的任何一种都可以在其横截面面积的几何中心处具有某种程度的焊接(虽然小于在与外围相邻的部分处的焊接程度),而没有限制,除非在所附权利要求书中另有指示。由于原始纱线具有从纱线的几何中心向外减小的纤维体积比,因此具有壳焊接形态的纱线可能会特别受关注,因为这些形态可以允许与纱线横截面面积相邻的纤维体积比比在横截面面积的相对更多的内部部分处的纤维体积比更高,这与现有技术中发现的纤维体积比梯度相反。例如,焊接工艺可以被配置为生产具有壳焊接形态的纱线,该纱线具有在纱线(即,壳)的横截面面积的第一部分中纤维体积比为40%或更大,其中第一该部分被定义为从纱线的横截面面积的外围向内扩展,使得第一部分构成高达2.5%的整个横截面面积,或者在另一个应用中高达5.0%、或高达10%、或高达15%、或高达20%、或高达25%、或高达30%、或高达35%、或高达40%、或高达45%、或高达50%、或高达55%、或高达60%、或高达65%、或高达70%、或高达75%、或高达80%、或高达85%或介于两者之间的任何值,而没有限制,除非在所附权利要求书中另外指示。此外,可以调节该第一部分中的焊接程度,使得纤维体积比可以为55%或更大、60%或更大、65%或更大、70%或更大、75%或更大、80%或更大、85%或更大、90%或更大以及95%或更大以用于横截面面积的百分比中的任何一个,而没有限制,除非在所附权利要求书中另外指示。对于壳焊接形态,随着构成壳的纱线的总横截面面积的百分比增加,指示至少某种程度的焊接的纤维体积比通常会增加。例如,当壳构成至少36%的纱线的横截面面积时,纤维体积比大于30%(或在某些情况下为25%或更大)可以指示至少进行了某种焊接。当壳构成至少64%的纱线横截面面积时,纤维体积比大于40%可以指示至少进行了某种焊接。当芯构成至少84%的纱线的横截面面积时,纤维体积比大于55%可以指示至少进行了某种焊接。但是,这些值仅用于说明目的,除非在所附权利要求书中另有指示,否则决不是限制性的。在图39a和图39b中示出了表示三种芯焊接纱线的三条曲线,其中图39a表示与纱线的横截面的更多外围部分相比,在与纱线的横截面的几何中心相邻的纱线的一部分处具有相对较高的纤维体积比(和焊接程度)的芯焊接纱线。在图39b中标记为“b2”的曲线表示与图39a中示出的芯焊接纱线的横截面的对应部分相比,在与纱线横截面的几何中心相邻的纱线的一部分处具有相对较低的纤维体积比(和焊接度)的芯焊接纱线。即,与由图39b中的曲线b2表示的纱线的芯部分相比,由图39a表示的纱线的芯部分被更高度地焊接,因此由图39a表示的纱线的芯部分表现出比由图39b中的曲线b2表示的纱线的芯部分的纤维体积比更高的纤维体积比。在图39b中标记为“b1”的曲线表示与由图39b的曲线b2表示的芯线焊接纱线横截面的对应部分(即,芯)相比,在与纱线的横截面几何中心相邻的纱线的一部分(即,芯)处的具有相对较高的纤维体积比(和焊接程度)的芯焊接纱线。即,与由图38b的曲线b2表示的纱线的芯部分相比,由图39b的曲线b1表示的纱线的芯部分表现出比由图39b中的曲线b2表示的纱线的芯部分的纤维体积比更高的纤维体积比。但是,与由图39b中的曲线b2描述的构成纱线的芯的面积相比,由图39b的曲线b1表示的构成纱线的芯的相对面积相对较小(和被限制于纱线的横截面面积的更内部部分)。但是,由于可以将图39a和图39b中的曲线描述的所有三种纱线认为是芯焊接的,因此与该特定纱线横截面的更多外围部分相比,在与该纱线的横截面的几何中心相邻的每根纱线的一部分处的纤维体积比(和焊接程度)更高。因此,如图39a和图39b两者中所示,纤维体积比(和焊接程度)可以在芯焊接形态中随着从纱线的横截面的几何中心移动到其外围而减小。此外,表示具有较高程度的焊接的芯焊接纱线的曲线的左端(即,在纱线横截面的几何中心处)比表示在纱线的几何中心处具有相对较低程度的焊接的芯焊接纱线的曲线的左端在y轴定位上更靠上,这表明与图39b的曲线b2中焊接纱线相比,对于图39a的焊接纱线具有更高程度的焊接和更高的纤维体积比。但是,由图39a中的曲线描述的芯焊接纱线和由图39b中的曲线描述的芯焊接纱线两者都可能具有原始的外围部分,使得在与横截面面积的外围相邻的部分处没有焊接的证据,或者芯焊接纱线中的任一种都可以在与其横截面面积相邻的部分处具有某种程度的焊接(虽然小于在与其几何中心相邻的部分处的焊接程度),而没有限制,除非在所附权利要求书中另有指示。如以上讨论的,原始纱线具有从纱线的几何中心向外减小的纤维体积比。原始纱线的纤维体积比通常会从其几何中心向外大约在纱线横截面面积半径的0.5处急剧下降(圆的简单几何关系表明,0.5的半径约占纱线总横截面面积的25%)。因此,具有芯焊接形态的纱线可能是特别关注的,因为这些形态可以允许在纱线的横截面面积的较大部分上相对较高的纤维体积比。例如,焊接工艺可以被配置为生产具有芯焊接形态的纱线,该纱线在纱线(即,芯)的横截面面积的第二部分中具有至少75%的纤维体积比,其中第二该部分被定义为从纱线的几何中心向外扩展,使得第一部分构成高达2.5%的整个横截面面积,或者在另一个应用中高达5.0%、或者高达10%、或高达15%、或高达20%、或高达25%、或高达30%、或高达35%、或高达40%、或高达45%、或高达50%、或高达55%、或高达60%、或高达65%、或高达70%、或高达75%、或高达80%、或高达85%、或高达90%、或高达95%,或高达97.5%,或高达99%或介于两者之间的任何值,而没有限制,除非在所附权利要求书中另有指示。此外,可以调节该第二部分中的焊接程度,使得纤维体积比可以为55%或更大、60%或更大、65%或更大、70%或更大、75%或更大、80%或更大、85%或更大、90%或更大,以及95%或更大以用于横截面面积百分比中的任何一个,而没有限制,除非在所附权利要求书中另外指示。对于芯焊接形态,随着构成芯的纱线的总横截面面积的百分比增加,指示至少某种程度的焊接的纤维体积比通常会减小。例如,当芯部构成至少4%的纱线的横截面面积时,纤维体积比大于75%(或在某些情况下为79%或更大)可以指示至少进行了某种焊接。当芯构成至少16%的纱线的横截面面积时,纤维体积比大于75%可以指示至少进行了某种焊接。当芯构成至少36%的纱线的横截面面积时,纤维体积比大于55%可以指示至少进行了某种焊接。当芯构成至少64%的纱线的横截面面积时,纤维体积比大于40%可以指示至少进行了某种焊接。但是,这些值仅用于说明目的,除非在所附权利要求书中另有指示,否则决不是限制性的。一般而言,可以配置经由本文公开的焊接工艺生产的纱线,使得焊接纱线的化学组分与对应的原始基质的化学组分基本相同。在许多应用中,化学组分可以是生物聚合物,并且具体地可以是纤维素。这样的化学组分上的一致性以及相对高的纤维体积比是可能的,因为在焊接的纱线中,给定生物聚合物(例如,纤维素、丝绸、如上文公开的其它生物聚合物)中分子间缔合的网络可以被重新组织并扩展到存在于各个纤维之间(有效地去除空间并增加每单位面积纤维的密度),使得原生材料用作粘合材料。例如,在由原始棉纱线基质制成的焊接纱线中,纤维素纤维可以经由分子间力基本上相互粘附,如上文先前关于焊接工艺详细描述的,而无需外部粘合材料、胶水等。曲线的特定形状、斜率、切线、拐点、相对极值、构型等表示焊接程度/纤维体积比作为距纱线横截面几何中心(或沿该曲线的任何部分和/点)的距离的函数,可以从一根焊接纱线到下一根焊接纱线而变化,因此决不限制本公开的范围,除非在所附权利要求书中另有指示。例如,芯焊接纱线的曲线可以与壳焊接纱线的曲线完全不同。如以上关于调节焊接方法的先前讨论的,焊接方法可以被配置为生产其中纱线的一个或多个特性沿着其长度变化的纱线。例如,连续的焊接纱线可以具有芯焊接的第一长度、壳焊接的第二长度以及原始的第三长度。此外,沿着各种形态的长度的焊接程度可以变化。因此,焊接形态、焊接图案、特定形态内的焊接程度、表现出特定形态或焊接程度的纱线长度和/或其组合等的调节决不限制本发明的范围,除非在所附权利要求书中另外指示。以上先前详细描述的相同的焊接工艺和设备可以用于通过操纵焊接工艺的某些工艺参数来生产壳焊接或芯焊接的纱线基质。例如,为了实现壳焊接形态,可以选择工艺控制参数以将工艺溶剂渗透的程度限制到仅纱线的周边面积。这可以通过限制纱线在溶剂应用区中的时间并通过限制任何可能将溶剂驱入纱线中心的纱线移动来实现。相反,可以通过允许足够的时间使溶剂完全渗透到纱线的芯中并有选择地吹散可能存在于纱线周围的溶剂,来实现芯焊接的形态。虽然本文描述和公开的焊接工艺(以及除非在所附权利要求书中如此指明的焊接和染色工艺)可以被配置成利用由天然纤维组成的基质,但是本公开的范围、任何离散的工艺步骤和/或其参数、和/或与其一起使用的任何设备不限于此,并且扩展到其任何有益和/或有利的用途,除非在所附权利要求书中如此指明,否则不受限制。用于构造特定工艺的设备和/或其组成的材料将根据其具体应用而变化,但是可以预期聚合物、合成材料、金属、金属合金、天然材料和/或其组合可以是在某些应用中特别有用。因此,除非在所附权利要求书中如此指明,否则在不偏离本公开的精神和范围的情况下,上述元件可以由本领域技术人员已知或以后开发的合于本公开的具体应用的任何材料构成。已经描述了各种工艺和设备的优选方面,本领域技术人员无疑将想到本公开的其他特征,如在本文所示的实施例和/或方面中的许多修改和替代,其全部都可以在不脱离本公开的精神和范围的情况下被实现。因此,本文描述和图示的方法和实施例仅用于说明目的,并且本公开的范围扩展到用于提供本公开的各种益处和/或特征的所有工艺、设备和/或结构,除非在所附权利要求书中如此指明。虽然已经结合优选方面和具体示例描述了根据本公开的焊接工艺、染色和焊接工艺、工艺步骤、其组成、其设备和焊接基质,但是并不意欲将范围限于所阐述的特定实施例和/或方面,因为本文中的实施例和/或方面在所有方面都旨在是说明性的而不是限制性的。因此,除非在所附权利要求书中如此指明,否则本文图示和描述的工艺和实施例不限制本公开的范围。尽管多张附图被绘制成精确比例,但是本文提供的任何维度仅用于说明目的,并且决不限制本公开的范围,除非在所附权利要求书中如此指明。应当注意,焊接工艺、其设备和/或装备,和/或由此生产的焊接基质不限于本文所图示和描述的特定实施例,而是根据本公开的发明特征的范围由本文的权利要求书限定。在不脱离本公开的精神和范围的情况下,本领域技术人员将想到对所描述的实施例的修改和替代。焊接工艺、染色和焊接工艺、工艺步骤、基质和/或焊接基质的各种特征、组分、功能、优点、方面、配置、工艺步骤、工艺参数等中的任何一个可以单独使用或根据特征、组分、功能、优点、方面、配置、工艺步骤、工艺参数等的兼容性被相互组合使用。因此,本公开存在无限种变形。除非在所附权利要求书中如此指明,否则一个特征、组分、功能、方面、配置、工艺步骤、工艺参数等的修改和/或替换不以任何方式限制本公开的范围。应当理解,本公开扩展到所提及的一个或多个单独特征的所有替代性组合,从文本和/或附图、和/或内在地公开中是显而易见的。所有这些不同的组合构成了本公开和/或其组分的各种替代方面。本文描述的实施例解释了用于实践本文公开的设备、方法和/或组分的已知的最佳模式,并且将使本领域的其他技术人员能够使用它们。权利要求应被解释为包括现有技术允许的范围内的替代实施例。除非在权利要求书中另有明确说明,决不旨在将本文所述的任何工艺或方法解释为要求以特定顺序执行其步骤。因此,在方法权利要求实际上没有叙述其步骤要遵循的顺序的情况下,或者在权利要求书或说明书中没有另外具体说明这些步骤要被限制为特定的顺序时,决不旨在在任何方面表示顺序。这适用于任何可能的非明确的解释基础,包括但不限于:关于步骤或操作流程安排的逻辑问题;从语法组织或标点符号中得出的简单含义;说明书中描述的实施例的数量或类型。为了帮助专利局和根据本申请发布的任何专利的任何读者解释本申请所附的权利要求,申请人希望注意到,他们不希望所附权利要求或权利要求要素中的任何一项来援引35u.s.c.112(f),除非在特定权利要求中明确地使用了“用于…的装置”或“用于…的步骤”的词语。用于生产焊接基质的方法、工艺和设备的实施例列表1.一种焊接纱线,包括:a.沿着所述焊接纱线的平面横截面的第一部分;以及,b.沿着所述焊接纱线的所述径向横截面的第二部分,其中所述第一部分的焊接程度不同于所述第二部分的焊接程度。2.根据实施例1所述的焊接纱线,并且具有单独的或在其中组合的所公开的所有特征和结构,其中所述焊接纱线被进一步限定为通常地圆柱形。3.根据实施例1或2所述的焊接纱线,并且具有单独的或在其中组合的所公开的所有特征和结构,其中所述第一部分和所述第二部分被进一步限定为沿着所述纱线的径向横截面通常地圆形。4.根据实施例1、2或3所述的焊接纱线,并且具有单独的或在其中组合的所公开的所有特征和结构,其中所述第一部分的纤维体积比大于75%,并且其中,所述第二部分的纤维体积比不大于95%。5.根据实施例1、2、3或4所述的焊接纱线,并且具有单独的或在其中组合的所公开的所有特征和结构,其中所述第一部分的纤维体积比为至少79%。6.根据实施例1、2、3、4或5所述的焊接纱线,并且具有单独的或在其中组合的所公开的所有特征和结构,其中所述第一部分被进一步限定为在所述焊接纱线的半径的2.5%和75%之间。7.根据实施例1、2、3、4、5或6所述的焊接纱线,并且具有单独的或在其中组合的所公开的所有特征和结构,其中所述第一部分被进一步限定为在所述焊接纱线的半径的25%和50%之间。8.根据实施例1、2、3、4、5、6或7所述的焊接纱线,并且具有单独的或在其中组合的所公开的所有特征和结构,其中限定所述平面横截面的平面相对于所述焊接纱线的纵轴被垂直定向。9.根据实施例1、2、3、4、5、6、7或8所述的焊接纱线,并且具有单独的或在其中组合的所公开的所有特征和结构,其中所述第一部分从所述平面横截面的外围向内扩展关于所述外围相等的量。10.根据实施例1、2、3、4、5、6、7、8或9所述的焊接纱线,并且具有单独的或在其中组合的所公开的所有特征和结构,其中所述焊接纱线被进一步限定为由纤维素基质料制成。11.根据实施例1、2、3、4、5、6、7、8、9或10所述的焊接纱线,并且具有单独的或在其中组合的所公开的所有特征和结构,其中所述第一部分的纤维体积比大于所述第二部分的纤维体积比。12.根据实施例1、2、3、4、5、6、7、8、9、10或11所述的焊接纱线,并且具有单独的或在其中组合的所公开的所有特征和结构,其中所述焊接纱线进一步包括第三部分,其中所述第三部分被定位于所述第一部分和所述第二部分之间,并且其中所述第三部分的焊接程度不同于所述第二部分的所述焊接程度和所述第一部分的所述焊接程度两者。13.根据实施例1、2、3、4、5、6、7、8、9、10、11和12所述的焊接纱线,并且具有单独的或在其中组合的所公开的所有特征和结构,其中所述第一部分的纤维体积比为至少80%,并且其中所述第二部分的纤维体积比不大于95%。14.根据实施例1、2、3、4、5、6、7、8、9、10、11、12和13所述的焊接纱线,并且具有单独的或在其中组合的所公开的所有特征和结构,其中所述第一部分的纤维体积比为至少80%,其中所述第一部分被进一步限定为包括高达5%的所述焊接纱线的所述平面横截面的表面积。15.根据实施例1、2、3、4、5、6、7、8、9、10、11、12、13和14所述的焊接纱线,并且具有单独的或在其中组合的所公开的所有特征和结构,其中所述第一部分的纤维体积比为至少80%,其中所述第一部分被进一步限定为包括高达10%的所述焊接纱线的所述平面横截面的表面积。16.根据实施例1、2、3、4、5、6、7、8、9、10、11、12、13、14和15所述的焊接纱线,并且具有单独的或在其中组合的所公开的所有特征和结构,其中所述第一部分的纤维体积比为至少80%,其中所述第一部分被进一步限定为包括高达15%的所述焊接纱线的所述平面横截面的表面积。17.根据实施例1、2、3、4、5、6、7、8、9、10、11、12、13、14、15和16所述的焊接纱线,并且具有单独的或在其中组合的所公开的所有特征和结构,其中所述第一部分的纤维体积比为至少80%,其中所述第一部分被进一步限定为包括高达20%的所述焊接纱线的所述平面横截面的表面积。18.根据实施例1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16和17所述的焊接纱线,并且具有单独的或在其中组合的所公开的所有特征和结构,其中所述第一部分的纤维体积比为至少80%,其中所述第一部分被进一步限定为包括高达25%的所述焊接纱线的所述平面横截面的表面积。19.根据实施例1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17和18所述的焊接纱线,并且具有单独的或在其中组合的所公开的所有特征和结构,其中所述第一部分的纤维体积比为至少80%,其中所述第一部分被进一步限定为包括高达30%的所述焊接纱线的所述平面横截面的表面积。20.根据实施例1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18和19所述的焊接纱线,并且具有单独的或在其中组合的所公开的所有特征和结构,其中所述第一部分的纤维体积比为至少80%,其中所述第一部分被进一步限定为包括高达35%的所述焊接纱线的所述平面横截面的表面积。21.根据实施例1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19和20所述的焊接纱线,并且具有单独的或在其中组合的所公开的所有特征和结构,其中所述第一部分被进一步限定为包括高达40%的所述焊接纱线的所述平面横截面的表面积。22.根据实施例1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20和21所述的焊接纱线,并且具有单独的或在其中组合的所公开的所有特征和结构,其中所述焊接纱线的所述平面横截面被进一步限定为通常地椭圆形。23.根据实施例1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21和22所述的焊接纱线,并且具有单独的或在其中组合的所公开的所有特征和结构,其中所述第一部分未被焊接。24.根据实施例1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22和23所述的焊接纱线,并且具有单独的或在其中组合的所公开的所有特征和结构,其中所述第二部分未被焊接。25.根据实施例1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23和24所述的焊接纱线,并且具有单独的或在其中组合的所公开的所有特征和结构,其中所述第二部分被进一步限定为具有至少79%的纤维体积比。26.一种纱线,包括:a.沿着所述纱线的横截面的第一部分;b.沿着所述纱线的所述横截面的第二部分,其中所述第一部分的纤维体积比不同于所述第二部分的纤维体积比。27.根据实施例26所述的纱线,并且具有单独的或在其中组合的所公开的所有特征和结构,其中所述第一部分的所述纤维体积比比所述第二部分的所述纤维体积比至少大10%。28.根据实施例26或27所述的纱线,并且具有单独的或在其中组合的所公开的所有特征和结构,其中所述第二部分被进一步限定为被焊接。29.根据实施例26、27或28所述的纱线,并且具有单独的或在其中组合的所公开的所有特征和结构,其中所述第一部分被进一步限定为被焊接。30.根据实施例26、27、28或29所述的纱线,并且具有单独的或在其中组合的所公开的所有特征和结构,其中所述第一部分的所述纤维体积比为至少79%。31.根据实施例26、27、28、29或30所述的纱线,并且具有单独的或在其中组合的所公开的所有特征和结构,其中所述第二部分的所述纤维体积比为至少79%。32.根据实施例26、27、28、29、30或31所述的纱线,并且具有单独的或在其中组合的所公开的所有特征和结构,其中所述纱线唯一地由生物聚合物材料形成。33.根据实施例26、27、28、29、30、31或32所述的纱线,并且具有单独的或在其中组合的所公开的所有特征和结构,进一步包括粘合材料,所述粘合材料具有与所述第一部分的化学组分和所述第二部分的化学组分基本相同的化学组分,并且其中所述化学组分为生物聚合物。34.根据实施例26、27、28、29、30、31、32或33所述的纱线,并且具有单独的或在其中组合的所公开的所有特征和结构,其中所述生物聚合物被进一步限定为纤维素。35.根据实施例26、27、28、29、30、31、32、33或34所述的纱线,并且具有单独的或在其中组合的所公开的所有特征和结构,其中所述结合材料被进一步限定为位于所述第一部分中。36.根据实施例26、27、28、29、30、31、32、33、34或35所述的纱线,并且具有单独的或在其中组合的所公开的所有特征和结构,其中所述结合材料被进一步限定为位于所述第二部分中。37.根据实施例26、27、28、29、30、31、32、33、34、35或36所述的纱线,并且具有单独的或在其中组合的所公开的所有特征和结构,其中限定所述平面横截面的平面相对于所述焊接纱线的纵轴被垂直定向。38.一种焊接纱线,包括:a.从所述焊接纱线的外部外围向内扩展的第一部分;b.从所述焊接纱线的几何中心向外扩展的第二部分,其中所述第二部分在所述第一部分的向内边界处终止,其中所述第一部分的焊接程度不同于所述第二部分的焊接程度。39.根据实施例38所述的焊接线,并且具有单独的或在其中组合的所公开的所有特征和结构,其中所述第一部分从所述外部外围向内扩展的量关于所述外部外围基本均匀。40.根据实施例38或39所述的焊接纱线,并且具有单独的或在其中组合的所公开的所有特征和结构,其中所述焊接纱线由生物聚合物制成。41.根据实施例38、39或40所述的焊接纱线,并且具有单独的或在其中组合的所公开的所有特征和结构,其中所述生物聚合物是纤维素。42.一种纱线,包括:a.从所述纱线的外部外围向内扩展的第一部分,其中所述第一部分从所述外部外围向内扩展的量关于所述外部外围基本均匀。b.从所述纱线的几何中心向外扩展的第二部分,其中所述第二部分在所述第一部分的向内边界处终止,其中所述第一部分的纤维体积比不同于所述第二部分的纤维体积比。43.根据实施例42所述的纱线,并且具有单独的或在其中组合的所公开的所有特征和结构,其中所述第一部分从所述外部外围向内扩展的量关于所述外部外围基本均匀。44.根据实施例42所述的纱线,并且具有单独的或在其中组合的所公开的所有特征和结构,其中所述第一部分的所述纤维体积比比所述第二部分的所述纤维体积比至少大10%。45.根据实施例42所述的纱线,并且具有单独的或在其中组合的所公开的所有特征和结构,其中所述第二部分被进一步限定为被焊接。46.根据实施例42所述的纱线,并且具有单独的或在其中组合的所公开的所有特征和结构,进一步包括粘合材料,所述粘合材料具有与所述第一部分的化学组分和所述第二部分的化学组分基本相同的化学组分,并且其中所述化学组分为生物聚合物。47.一种纱线,其特征在于,当沿着相对于所述焊接纱线的纵轴垂直定向的平面切割所述纱线时,所述纱线的横截面面积增加小于100%,并且其中所述纱线的化学组分在整个所述纱线中是均匀的。48.根据实施例47所述的纱线,并且具有单独的或在其中组合的所公开的所有特征和结构,其中当沿着所述平面切割所述纱线时,所述纱线的所述横截面面积增加小于50%。49.根据实施例47所述的纱线,并且具有单独的或在其中组合的所公开的所有特征和结构,其中所述化学组分被进一步限定为生物聚合物。50.一种纱线,其中多个单根纤维的纤维体积比从所述纱线的横截面面积的几何中心到所述横截面面积的外围增加。51.一种焊接纱线,包括:a.从所述焊接纱线的外部外围向内扩展的第一部分;b.从所述焊接纱线的几何中心向外扩展的第二部分,其中所述第二部分在所述第一部分的向内边界处终止,使得所述第一部分相对于所述第二部分被定位于外部,其中所述第一部分的焊接程度不同于所述第二部分的焊接程度。52.根据实施例51所述的焊接纱线,并且具有单独的或在其中组合的所公开的所有特征和结构,其中所述第一部分构成壳,其中所述第一部分构成至少36%的所述焊接线的横截面面积,并且其中所述第一部分的纤维体积比为25%或更大。53.根据实施例51所述的焊接纱线,并且具有单独的或在其中组合的所公开的所有特征和结构,其中所述第一部分构成壳,其中所述第一部分构成至少33%的所述焊接线的横截面面积,并且其中所述第一部分的纤维体积比为25%或更大。54.根据实施例51所述的焊接纱线,并且具有单独的或在其中组合的所公开的所有特征和结构,其中所述第一部分构成壳,其中所述第一部分构成至少30%的所述焊接线的横截面面积,并且其中所述第一部分的纤维体积比为25%或更大。55.根据实施例51所述的焊接纱线,并且具有单独的或在其中组合的所公开的所有特征和结构,其中所述第一部分构成壳,其中所述第一部分构成至少25%的所述焊接线的横截面面积,并且其中所述第一部分的纤维体积比为25%或更大。56.根据实施例51所述的焊接纱线,并且具有单独的或在其中组合的所公开的所有特征和结构,其中所述第一部分构成壳,其中所述第一部分构成至少20%的所述焊接线的横截面面积,并且其中所述第一部分的纤维体积比为25%或更大。57.根据实施例51所述的焊接纱线,并且具有单独的或在其中组合的所公开的所有特征和结构,其中所述第一部分构成壳,其中所述第一部分构成至少15%的所述焊接线的横截面面积,并且其中所述第一部分的纤维体积比为25%或更大。58.根据实施例51所述的焊接纱线,并且具有单独的或在其中组合的所公开的所有特征和结构,其中所述第一部分构成壳,其中所述第一部分构成至少10%的所述焊接线的横截面面积,并且其中所述第一部分的纤维体积比为25%或更大。59.根据实施例51所述的焊接纱线,并且具有单独的或在其中组合的所公开的所有特征和结构,其中所述第一部分构成壳,其中所述第一部分构成至少64%的所述焊接线的横截面面积,并且其中所述第一部分的纤维体积比为40%或更大。60.根据实施例51所述的焊接纱线,并且具有单独的或在其中组合的所公开的所有特征和结构,其中所述第一部分构成壳,其中所述第一部分构成至少60%的所述焊接线的横截面面积,并且其中所述第一部分的纤维体积比为40%或更大。61.根据实施例51所述的焊接纱线,并且具有单独的或在其中组合的所公开的所有特征和结构,其中所述第一部分构成壳,其中所述第一部分构成至少55%的所述焊接线的横截面面积,并且其中所述第一部分的纤维体积比为40%或更大。62.根据实施例51所述的焊接纱线,并且具有单独的或在其中组合的所公开的所有特征和结构,其中所述第一部分构成壳,其中所述第一部分构成至少50%的所述焊接线的横截面面积,并且其中所述第一部分的纤维体积比为40%或更大。63.根据实施例51所述的焊接纱线,并且具有单独的或在其中组合的所公开的所有特征和结构,其中所述第一部分构成壳,其中所述第一部分构成至少45%的所述焊接线的横截面面积,并且其中所述第一部分的纤维体积比为40%或更大。64.根据实施例51所述的焊接纱线,并且具有单独的或在其中组合的所公开的所有特征和结构,其中所述第一部分构成壳,其中所述第一部分构成至少40%的所述焊接线的横截面面积,并且其中所述第一部分的纤维体积比为40%或更大。65.根据实施例51所述的焊接纱线,并且具有单独的或在其中组合的所公开的所有特征和结构,其中所述第一部分构成壳,其中所述第一部分构成至少84%的所述焊接线的横截面面积,并且其中所述第一部分的纤维体积比为55%或更大。66.根据实施例51所述的焊接纱线,并且具有单独的或在其中组合的所公开的所有特征和结构,其中所述第一部分构成壳,其中所述第一部分构成至少80%的所述焊接线的横截面面积,并且其中所述第一部分的纤维体积比为55%或更大。67.根据实施例51所述的焊接纱线,并且具有单独的或在其中组合的所公开的所有特征和结构,其中所述第一部分构成壳,其中所述第一部分构成至少75%的所述焊接线的横截面面积,并且其中所述第一部分的纤维体积比为55%或更大。68.根据实施例51所述的焊接纱线,并且具有单独的或在其中组合的所公开的所有特征和结构,其中所述第一部分构成壳,其中所述第一部分构成至少70%的所述焊接线的横截面面积,并且其中所述第一部分的纤维体积比为55%或更大。69.根据实施例51所述的焊接纱线,并且具有单独的或在其中组合的所公开的所有特征和结构,其中所述第一部分构成壳,其中所述第一部分构成至少65%的所述焊接线的横截面面积,并且其中所述第一部分的纤维体积比为55%或更大。70.根据实施例51所述的焊接纱线,并且具有单独的或在其中组合的所公开的所有特征和结构,其中所述第二部分构成芯,其中所述第二部分构成至少4%的所述焊接纱线的横截面面积,并且其中所述第二部分的纤维体积比为75%或更大。71.根据实施例51所述的焊接纱线,并且具有单独的或在其中组合的所公开的所有特征和结构,其中所述第二部分构成芯,其中所述第二部分构成至少4%的所述焊接纱线的横截面面积,并且其中所述第二部分的纤维体积比为79%或更大。72.根据实施例51所述的焊接纱线,并且具有单独的或在其中组合的所公开的所有特征和结构,其中所述第二部分构成芯,其中所述第二部分构成至少8%的所述焊接纱线的横截面面积,并且其中所述第二部分的纤维体积比为75%或更大。73.根据实施例51所述的焊接纱线,并且具有单独的或在其中组合的所公开的所有特征和结构,其中所述第二部分构成芯,其中所述第二部分构成至少12%的所述焊接纱线的横截面面积,并且其中所述第二部分的纤维体积比为75%或更大。74.根据实施例51所述的焊接纱线,并且具有单独的或在其中组合的所公开的所有特征和结构,其中所述第二部分构成芯,其中所述第二部分构成至少16%的所述焊接纱线的横截面面积,并且其中所述第二部分的纤维体积比为75%或更大。75.根据实施例51所述的焊接纱线,并且具有单独的或在其中组合的所公开的所有特征和结构,其中所述第二部分构成芯,其中所述第二部分构成至少20%的所述焊接纱线的横截面面积,并且其中所述第二部分的纤维体积比为75%或更大。76.根据实施例51所述的焊接纱线,并且具有单独的或在其中组合的所公开的所有特征和结构,其中所述第二部分构成芯,其中所述第二部分构成至少25%的所述焊接纱线的横截面面积,并且其中所述第二部分的纤维体积比为70%或更大。77.根据实施例51所述的焊接纱线,并且具有单独的或在其中组合的所公开的所有特征和结构,其中所述第二部分构成芯,其中所述第二部分构成至少30%的所述焊接纱线的横截面面积,并且其中所述第二部分的纤维体积比为65%或更大。78.根据实施例51所述的焊接纱线,并且具有单独的或在其中组合的所公开的所有特征和结构,其中所述第二部分构成芯,其中所述第二部分构成至少36%的所述焊接纱线的横截面面积,并且其中所述第二部分的纤维体积比为55%或更大。79.根据实施例51所述的焊接纱线,并且具有单独的或在其中组合的所公开的所有特征和结构,其中所述第二部分构成芯,其中所述第二部分构成至少40%的所述焊接纱线的横截面面积,并且其中所述第二部分的纤维体积比为55%或更大。80.根据实施例51所述的焊接纱线,并且具有单独的或在其中组合的所公开的所有特征和结构,其中所述第二部分构成芯,其中所述第二部分构成至少45%的所述焊接纱线的横截面面积,并且其中所述第二部分的纤维体积比为55%或更大。81.根据实施例51所述的焊接纱线,并且具有单独的或在其中组合的所公开的所有特征和结构,其中所述第二部分构成芯,其中所述第二部分构成至少50%的所述焊接纱线的横截面面积,并且其中所述第二部分的纤维体积比为55%或更大。82.根据实施例51所述的焊接纱线,并且具有单独的或在其中组合的所公开的所有特征和结构,其中所述第二部分构成芯,其中所述第二部分构成至少50%的所述焊接纱线的横截面面积,并且其中所述第二部分的纤维体积比为50%或更大。83.根据实施例51所述的焊接纱线,并且具有单独的或在其中组合的所公开的所有特征和结构,其中所述第二部分构成芯,其中所述第二部分构成至少55%的所述焊接纱线的横截面面积,并且其中所述第二部分的纤维体积比为50%或更大。84.根据实施例51所述的焊接纱线,并且具有单独的或在其中组合的所公开的所有特征和结构,其中所述第二部分构成芯,其中所述第二部分构成至少60%的所述焊接纱线的横截面面积,并且其中所述第二部分的纤维体积比为45%或更大。85.根据实施例51所述的焊接纱线,并且具有单独的或在其中组合的所公开的所有特征和结构,其中所述第二部分构成芯,其中所述第二部分构成至少65%的所述焊接纱线的横截面面积,并且其中所述第二部分的纤维体积比为40%或更大。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1