伽马校正方法和电路以及图像处理设备和显示设备的制作方法

文档序号:2618388阅读:287来源:国知局
专利名称:伽马校正方法和电路以及图像处理设备和显示设备的制作方法
技术领域
本发明涉及一种伽马校正(gamma correction)方法、程序及设备,使用该伽马校正方法、程序及设备的图像处理方法,以及显示设备。
背景技术
诸如阴极射线管(CRT)、液晶显示器(LCD)和等离子体显示板(PDP)的各种显示设备具有为每种显示器类型所特有的固有伽马特性和色度特性。
显示器的伽马特性是显示器输入信号电平和输出亮度之间的关系。另一方面,色度特性指示各个显示器的三基色或更多基色(例如RGB+白色)的色度。因为在显示器中一般使用三基色RGB,因此色度特性一般指示RGB色度。
这些特性取决于显示设备的类型,因此在CRT、LCD和PDP各个系统中,伽马特性在很大程度上不同,并且色度特性也不同。
另一方面,诸如电视信号和sRGB的输入图像信号的伽马特性(信号电平与由此显示的亮度之间的关系)和色度特性是通过预定规范确定的。因此,执行伽马校正处理和色彩空间色彩空间转换处理,以便在视频信号和显示设备之间实现伽马特性和色度特性的匹配。
考虑CRT上的显示,电视信号通常受到与CRT伽马特性相匹配的伽马校正和色度转换。因此,在大多数使用CRT的电视接收机中,CRT侧不需要专门的伽马校正处理。然而,对于LCD或PDP上的电视信号显示,必须至少实施一般意义上的伽马校正(将视频信号的伽马特性转换为显示设备的伽马特性的处理),以维持高图像质量。伽马特性的差异要大于色度特性。因为伽马特性的差异涉及伪轮廓的产生以及中间色调的色味(color taste)转换,因此如果不通过执行一般意义上的伽马校正来获得匹配,则图像质量将显著地恶化。
在此,一般意义上的伽马校正被假定为,为利用用于将线性色调-亮度特性转换为非线性特性的“伽马校正(狭义上的)”以及用于将非线性色调-亮度特性转换为线性特性的“逆伽马校正”,来使视频信号和显示设备的伽马特性匹配所需的一系列处理。此后,在本说明书中,狭义上的伽马校正被表示为“正伽马校正”,而一般意义上的伽马校正被直接表示为“伽马校正”。
而且,为了准确地重现遵照sRGB规范产生的图像和图片(换句话说,为实现相应的彩色重现),在逆伽马校正之后还需要色彩空间转换。更具体地说,需要对输入的RGB信号执行3×3矩阵运算,如Tajima的“Color Image Reproduction(彩色图像重现)”(pp.33-39,公式3.11)(参考文献3)中所公开的。
然而,在利用数字处理执行逆伽马校正处理的情况下,输出位数必须大于输入位数,以保持其精度。如果输出位数不足,则由于量化误差将造成图像质量恶化(例如伪轮廓)。
另一方面,当输出位数增加时,逆伽马校正电路的电路规模以及后一级中设置的运算电路将随位数(比特数)而变大,导致显示设备制造成本变高的问题。
而且,为了进行相应的彩色重现,在完成逆伽马校正之后需要执行色彩空间转换。在该情况下,当逆伽马校正时产生的输出位数增加时,色彩空间转换电路的电路规模也将增大。
作为用于解决位数增加问题的背景技术,JP 10-126648(参考文献1)公开了“Input Signal Level Application Type GammaCorrection Circuit in Liquid Crystal Display Apparatus(液晶显示设备中的输入信号电平应用型伽马校正电路)”。参考文献1涉及一种在转换处理中使用较少位数而不造成图像质量恶化的伽马校正电路。
参考文献1中描述的液晶显示设备中输入信号电平应用型伽马校正电路具有这样一种结构,该结构包括分别位于数字伽马校正电路之前和之后的模数(AD)转换器和数模(DA)转换器,并且另外包括位于AD转换器之前和DA转换器之后的可变增益控制放大器。
这些可变增益控制放大器的放大度具有互补关系。参考文献1通过根据模拟输入信号的电平来改变放大度,很好地改善了暗区的色调特性。因此,在不增加位数的情况下实现了高精度伽马校正。
作为其它背景技术,例如在美国专利No.5,528,741(参考文献2)中描述了利用浮点数来指示显示设备的色调信号的例子。
然而,参考文献1基于输入信号是模拟信号的事实。因此,当输入信号是数字信号时,进一步需要DA转换器,这同样使电路变复杂。电视信号(高清晰度电视(HDTV)等)和图像信号(sRGB)几乎是作为数字信号被输入的,经常执行数字图像信号处理。因此,优选地采用一种能够在不使用AD转换器和DA转换器的情况下、实现足够精度的逆伽马校正的数字逆伽马校正处理电路。
参考文献2公开了一种有效地将浮点表示的像素值转换为一字节整数值的方法。在计算机图形学应用中,更为方便的是,在像素值计算处理中使用浮点表示。然而,因为几乎所有显示设备都把用于像素显示的像素数据(像素值)处理为整数,因此如果不把浮点表示的像素数据转换为整数表示,则显示是不可能的。
因此,在参考文献2中,浮点表示的数据被转换为整数表示。而且,在转换为整数表示的同时,也执行伽马校正。然而,该结构实现了简化的伽马校正处理,但是仍然包括在伽马校正之后位数增加的未解决问题。因此,在伽马校正之后执行某些算术运算的情况下,不能实现后一级电路的精度提高和规模减小。

发明内容
考虑到上述问题而提出了本发明,因此本发明的目的是,提供一种用于实现输入信号伽马特性和显示设备伽马特性之间的匹配的伽马校正电路,以及用于以足够的精度执行伽马校正处理或逆伽马校正处理,同时控制运算电路自己及其后一级中设置的电路的规模的伽马校正方法,而且也有可能提供一种伽马校正程序及设备,使用该伽马校正方法、程序及设备的图像处理方法,以及显示设备。
为实现上述目的,作为第一方面,本发明提供一种伽马校正方法,该伽马校正方法包括逆伽马校正处理,用于输入具有非线性色调-亮度特性的X比特色调输入信号Tin值,并输出具有被转换为线性特性的色调-亮度特性的Y比特(X<Y)色调信号Tout;以及格式转换处理,用于输入Tout,并且当用常数A、N比特信号Tn指示的指数和M比特信号Tm指示的尾数将Tout表示成A^Tn×Tm时,输出由一组最接近Tout的Tn和Tm形成的(N+M)比特色调输出信号,其中,常数A的值为2的自然数次幂,M满足关系式M≤Y-N,当A等于2时N的最小值为2,当A大于2时N的最小值为1,并且根据常数A和M确定的N的最大值是使得相对于所有Tin值,一组Tn和Tm值都变成一组不同值的最大值。
根据本发明,能够提供一种用于实现输入信号伽马特性和显示设备伽马特性之间的匹配的伽马校正电路,以及用于以足够的精度执行伽马校正处理或逆伽马校正处理,同时控制运算电路自己及其后一级中设置的电路的规模的伽马校正方法,而且也提供一种伽马校正程序及设备,使用该伽马校正方法、程序及设备的图像处理方法,以及显示设备。


图1A和1B利用数字线显示了逆伽马校正之前和之后的信号值与所分配的色调之间的关系图。
图2显示了本发明所适用的伽马校正方法的处理。
图3显示了当存在一对最接近Tout的Tout’时用于防止色调退化(recess)的方法。
图4显示了M、N值和输出信号精度之间的关系;图5显示了用于说明从伽马校正方法中的逆伽马校正处理的输入-输出表得到适当的M、N值的方法的输入-输出表。
图6显示了本发明第一实施例的液晶显示设备的结构。
图7显示了第一实施例的液晶显示设备的数字逆伽马校正电路的结构。
图8显示了第一实施例的液晶显示设备的色彩空间转换电路的结构。
图9显示了第一实施例的液晶显示设备的正伽马校正电路的结构。
图10显示了第一实施例的液晶显示设备的正伽马校正电路中设置的LUT的结构。
图11显示了使用不同于液晶的显示系统的显示设备的结构。
图12显示了本发明第二实施例的液晶显示设备的结构。
图13显示了第二实施例的液晶显示设备的数字逆伽马校正电路的结构。
图14显示了第二实施例的液晶显示设备的色彩空间色彩空间转换电路的结构。
图15显示了本发明第三实施例的液晶显示设备的结构。
图16显示了第三实施例的液晶显示设备的数字逆伽马校正电路的结构。
图17显示了第三实施例的液晶显示设备的亮度-对比度校正电路的结构。
图18显示了本发明第四实施例的液晶显示设备的结构。
图19显示了源驱动器-信号发生器中DAC的输入-输出电压和基准色调信号发生器的输出电压之间的关系。
图20显示了当Tn为3(“11”)时源驱动器-信号发生器中DAC的输入-输出电压和基准色调信号发生器的输出电压之间的关系。
图21显示了当Tn为2(“11”)时源驱动器-信号发生器中DAC的输入-输出电压和基准色调信号发生器的输出电压之间的关系。
具体实施例方式
诸如sRGB、scRGB的标准图像信号以及电视图像信号一般受到伽马校正。已受到正伽马校正的图像信号的色调值具有相对于亮度的非线性特性
(色调值)=(亮度)^(1/γ)如上所说明的,为了进行相应的彩色重现,需要3×3矩阵运算。然而,当直接对已经过正伽马校正的信号执行矩阵运算时,包括大量互补颜色如青色、品红和黄色以及中间色调的图像的色调将发生变化。
因此,在执行矩阵运算之前,必须执行逆伽马校正,以便提供相对于亮度的线性色调值。
然而,因为输入位数(比特数)被设置为大于输出位数,以便执行数字逆伽马校正,所以后一级的矩阵运算电路规模变大了。
如上所说明的,逆伽马校正所需的位数增加导致了允许电路规模增大、以实现相应彩色重现的原因。
因此,在本发明中,必须获得逆伽马校正处理之后的色调精度,同时通过用不同于背景技术的方法表示图像信号的色调值来控制电路规模的增大。更具体地说,用基于浮点表示的方法来表示色调值。
现在将说明利用该方法的色调表示定义。在常规方法中,利用8位二进制数将8位色调表示为0至255的色调。另一方面,本方法以类似浮点表示的2^Tn×Tm形式,来表示色调。在此,Tn是被称为浮点表示中的指数的数,而Tm是被称为浮点表示中的尾数的数。
与普通浮点表示的不同之处在于,不需要使比尾数的最高有效位高一位数的位加“1”。在普通浮点表示的情况下,确定要使比尾数的最高有效位高一位数的位加“1”,以使用Tn和Tm组合(2^1×38=2^2×19)表示相同值变得不可能。
然而,在本方法中采用一种不使比尾数的最高有效位高一位数的位加“1”的直接表示。然而,只要可能,就将最高有效位设置为“1”。
例如,在2^2×19的情况下,因为尾数(19十进制数=010011二进制数)的最高有效位为“0”,将它表示为2^1×38,使得最高有效位变为“1”。此外,2^0×19被表示为原样,这是因为尾数的最高有效位是0,但是没有比0小的指数。
例如,在色调被表示为2^Tn×Tm的情况下,有可能得到0=2^0×0≤2^Tn×Tm≤2^3×63=504并且当把Tn的定义域设置为0至3(2比特),同时把Tm的定义域设置为0至63(6比特)时,用8比特来表示0至504的值。
对于诸如逆伽马校正的升幂运算,采用这种色调表示方法尤其有效。而且,通过在基于浮点表示的逆伽马校正之后引入色调,可以减小3×3矩阵运算和正伽马校正的电路规模。
用基于浮点表示的方法进行色调表示的优势现在将说明本方法色调表示的优势。在逆伽马校正中,基于浮点表示的方法能够以比普通色调表示方法高的精度,更有效地分配色调。图1A和1B利用数字线显示了逆伽马校正之前和之后的信号值与所分配的色调之间的关系。为了简化说明,输入取为三(3)比特,而输出取为六(6)比特(在基于浮点表示的方法中,指数为两(2)比特且尾数为四(4)比特)。伽马值为一般使用的2.2。
当执行逆伽马校正时,输入值被转换为比校正之前小的值。如中间级中的数字线所示,逆伽马校正之后的值被赋给现有表示和浮点表示的色调之一。在最下一级的数字线中,用垂直线来指示,可以用基于现有六(6)比特表示和六(6)比特浮点表示的方法表示的数字。
在现有表示的情况下,当前进到较暗的色调一侧时,逆伽马校正之后的输入值所赋予的数字之间存在的可以被表示的数字数目变少了。这一事实暗示,当色调较暗并且要在后一级中执行的矩阵运算的运算精度变得较低时,容易产生量化误差。
另一方面,在本方法中,逆伽马校正之后的输入值所赋予的数字之间存在的要被表示的数字数目几乎相同,而与色调的暗度无关。这一事实暗示,量化误差变小并且要在后一级中执行的矩阵运算的运算精度变高了。
更具体地说,当在诸如逆伽马校正的(输出)=(输入)^Q运算中Q值等于或大于一(1)时,基于浮点表示的方法的运算精度变高了。
此外,因为根据用于得到L*a*b彩色显示系统(CIE 1976)的L*的公式,人的视觉特性显示出等于亮度1/3次方的线性亮度特性,因此在执行逆伽马校正时需要提高暗色调的精度。换句话说,因为量化误差直接显现为色差,因此与现有表示相比,可以通过降低浮点表示中的暗色调量化误差,来减小这种色差。
如上所说明的,也可以从视觉特性的观点来理解,在完整表示方面,本方法更优选,因为色差变小了。
也有可能通过根据所需的运算精度将指数和尾数减少到两(2)比特和三(3)比特来使电路规模变小,该两(2)比特和三(3)比特分别是通过减去1比特而得到的。
背景技术
中引入的参考文献2公开了一种将浮点表示的像素值转换为一字节像素值的伽马校正方法。如上所说明的,确实存在这样一种伽马校正处理,其中用浮点表示值给出输入,来输出整数。然而,参考文献2中的浮点表示输入数据是利用计算机图形学领域中的运算来产生的,并且假定在对浮点表示进行转换之后,不对利用普通数字照相机和扫描仪等获得的整数值数据进行处理。本发明的特征在于用于将整数表示值转换为基于浮点表示的方法中的值的转换方法。因此,参考文献2不能实现作为本发明目的的“后一级中的运算电路精度提高和电路规模减小”。
以上说明了基于浮点表示的方法的优势。然而,不一定能够通过引入上述结构来获得本发明的效果。即,需要根据实际逆伽马校正的输入-输出表,来适当地设置A^Tn×Tm表示方法中的A、Tn和Tm值的范围。不能利用参考文献2中说明的浮点表示中的期望A、Tn和Tm值获得本发明的效果。
以下将说明设置这些值的方法。
图2显示了本发明所适用的逆伽马校正方法的流程。该逆伽马校正方法把X比特信号用作输入信号,而把N+M比特信号用作输出信号。
该逆伽马校正方法包括逆伽马校正处理,用于输入X比特色调输入信号Tin值、并输出Y比特(X<Y)色调信号Tout;格式转换处理,用于输入Y比特色调信号Tout,并输出当用常数A、N比特的指数Tn和M比特的尾数Tm将色调信号Tout表示成A^Tn×Tm时,变得与Tout最接近的Tn和Tm;以及用于产生由N比特Tn和M比特Tm组成的输出信号的处理。
在该逆伽马校正方法中,输入X比特色调输入信号Tin(步骤S1)。色调输入信号受到逆伽马校正(步骤S2)。在此,在逆伽马校正处理中,具有非线性色调-亮度特性的Tin被转换为线性,然后被输出,作为Tout。
在此,因为色调输入信号Tin是遵照例如sRGB标准被发送的,因此足以获得用于将Tin的色调-亮度特性转换为基于这种标准的线性特性的Tout。假定,利用其中诸如输入值Tin与输出值Tout常用查找表(LUT)的转换表被存储在存储器中的结构,来执行逆伽马校正处理。总之,执行逆伽马校正处理,以便将Tin的非线性特性转换为线性特性。
在通过逆伽马校正处理获得的Y比特信号Tout中,Y通常大于X(步骤S3)。其原因在于,如上所述,在逆伽马校正处理中,如果输出比特数不大于输入比特数,则精度将降低。
此后,在格式转换处理中转换Tout信号(步骤S4、S5)。在格式转换处理中,Tout值被转换为N比特信号Tn和M比特信号Tm。
首先,在格式转换处理1中获得可以用公式A^Tn×Tm表示的值中最接近Tout的Tout’值(步骤S4)。当存在两个最接近Tout的Tout’值时,换句话说,当Tout±α两个值都可以被表示为A^Tn×Tm时,可以将Tout+α和Tout-α中任何一个值用作Tout’。然而,优选地确定选择所用值的规则。其原因是,当如图3所示设置关系式Tout(x)+β=Tout’(X)、Tout’(X)+β=Tout(X+1)、Tout(X+1)+β=Tout’(X+1)、Tout’(X+1)+β=Tout(X+2)时,如果把Tout(X)+β=Tout’(X)用作与Tout(X)相对应的值并且把Tout(X+1)-β=Tout’(X+1)用作与Tout(X+1)相对应的值,则产生了色调退化(recess)。然而,当把Tout(X)+β=Tout’(X)用作与Tout(X)相对应的值并把Tout(X+1)+β=Tout’(X+1)用作与Tout(X+1)相对应的值时,则即使在这种情况下也从不产生色调退化。
在此,常数A必须是2的自然数次幂。当把A设置为2的自然数幂时,可以不使用乘法器电路而仅仅利用数据移位来执行A^Tn和Tm的乘法。如果A不是2的自然数幂,则不能减小逆伽马校正电路的后一级中的运算电路规模,失去了采用浮点表示的优点。例如,当试图在尾数被定义为六(6)比特,A被定义为3比特的情况下执行3^2×33+3^1×25加法时,需要执行3^2×33=3^1×(3×33)的乘法,以获得第一项的Tn值和第二项的Tn值之间的匹配。而且,在尾数Tm(99+25=124)的加法之后,需要执行除法(124/3),以便再次将尾数的尾数设置为六(6)比特。如上所述,因为加法需要乘法和除法,因此不能获得当采用浮点表示时可获得的效果。
此外,所希望的是,M值等于或小于Y-N。其原因在于,伽马校正处理经常用于维持精度,并且LUT的电路规模可以通过采用本发明的逆伽马校正电路来维持或减小。为了减小后一级电路的电路规模,至少尾数的位数必须小于最初整数表示的位数,即要求关系式M<Y。
此外,当A为2时、要求N值等于或大于2,并且当A大于2时要求N值等于或大于1。其原因在于,如果当A为2时N值取为1,则A^Tn值仅取1或2,并且可以通过将Tm设置为M+1比特来实现该一(1)位数据移位。此外,当A等于或大于4时,即使Tm被设置为M+1比特,也不能实现A^Tn的两(2)比特数据移位。因此,采用N=1是合理的。
在此,N值不足以取最大值。可以从Tout’值得到N的最大值。当N变大时,必须从关系式Y≥M+N中减去M值。当N值变大时,可以表示的色调动态范围变得更宽,但是因为M值变小了,因此精度降低了。当精度降低时,不能从其它Tin值得到相同的Tout’值。在显示的时候,这被认为是色调退化(recess)问题,并且变得远离本发明的主题。因此,从以上说明来看,假如利用预设的常数A和尾数的位数M,对于所有Tin值,一组Tn和Tm值都变成一组不同值,则不可能使用比最大N值大的值。
从以上说明来看,A、M和N值受到限制,并且可以在格式转换处理2中根据这些值来获得Tn和Tm值(步骤S5)。在此,这样设置Tn和Tm值,使得Tm值变得尽可能的大。其原因在于,当Tm值变大时,色调的精度总体上提高了。
图4所示为,在M值增大(当M=m2>m1时)且N值增大(当N=n2>n1时)的情况下相对于M=m1且N=n1时的色调-精度特性的色调-精度特性变化示意图,其中水平轴表示色调且垂直轴表示精度(当值越大、精度越高)。首先,将说明作为参考的M=m1且N=n1时的色调-精度特性。在该情况下,因为在色调值较小的范围内浮点数不能被移位至小于0(当N=0),因此当色调值减小时,它被Tm值所覆盖,从而精度降低。当色调变得较高时,可以最大限度地使用Tm的精度。因此,精度变为常数(M位数)。接下来,当N值增大时(当N=n2>n1),浮点数在更宽的色调范围内被移位。因此,除色调只取小值的范围以外,精度变得几乎为常数。然而,因为M值不变(M=m1),因此色调值取较大值时的精度和N=n1时的精度相同。同时,当M值增大时(当M=m2>m1),对于所有色调值、精度都提高(m1-m2)位数。因此,优选地,使Tm值优先地大于Tn值。
然而,如果当色调较低时要求运算精度,则优选地提高相对于较低色调的运算精度,同时根据所需的精度将Tn值设置为某一值。
最后,所获得的Tn和Tm被输出作为输出信号(步骤S6)。
可以通过仅仅用一个LUT总结这些步骤,用单个处理来执行这些步骤。
利用上述结构,因为Y≥M+N,所以与现有结构相比,可以减小逆伽马校正处理所需的LUT规模。此外,因为Y>M,因此可以减小在逆伽马校正处理的后一级(对应于相应的彩色重现处理)中执行乘法时的乘法器电路运算规模。此外,这些处理产生了几乎等于或高于用于提供Y比特输出的现有结构的精度。即,利用本发明的逆伽马校正,图像质量从不恶化。
反之,在正伽马校正的情况下,从以上说明,可以通过把具有线性色调-亮度精度的Y比特(M+N≤Y)色调信号Tout表示为带有Tn和Tm的Tout=A^Tn×Tm(A为常数),然后将Tout转换成具有非线性色调-亮度特性的X比特(X<Y)色调信号Tin,来减小正伽马校正处理所需的LUT规模。
以上说明了用于提供本发明效果的A、M和N值的范围。接下来,将研究逆伽马校正处理的适当M和N值。
在该例子中,为方便说明,将A值设置为2。然而,即使A取其它值(2的自然数次幂),也可以通过利用与下述相同的方法改变值,来得到适当的M和N值。
从逆伽马校正处理中所获得的Tout值,可以得到适当的M和N值。以下将说明图5中X=6且Y=10情况下,逆伽马校正处理中所获得的输入-输出特性的例子。图5所示为,在X=6且Y=10的条件下,尾数的位数M被设置为5和6时,格式转换处理的输出Tn和Tm之间的比较结果表。通过用单调增函数来表示利用逆伽马校正处理获得的输入-输出特性,以便消除色调反转(固有信号的亮度和暗度的关系反转的现象)的产生。
首先,研究Tin值中最暗色调(最小值)附近的Tout值。因为在逆伽马校正处理中Tout值被转换成小于输入值的值,因此具有较小值的Tin的精度降低了,如图1所示。因此,当Tin在从0至大约3的范围内变化时,从Tout来判断逆伽马校正处理所需的精度(即,逆伽马校正处理的输出位数Y)。在图5中,因为Tout值的取值为0、1、2和4,并且最小差为1,因此当使用其它输入值时,决不取相同值(即决不产生色调退化(recess))。因此,如同可以估计的,(Y)值可以取10值。
接下来,这样设置M和N值,使得通过对从所有Tin值得到的Tout执行转换而获得的Tm值的相邻色调之差,变得等于一(1)或更大。更具体地说,研究与最高有效位为一(1)的最小Tout之差。当Y=10时,Tout最高有效位第一次变为一(1)(即变得等于或大于2^9=512)的Tout值等于520(1000001000),如图5所示,并且Tout增大,如546(1000100010)、571(1000111011)和598(1001010110)。在该情况下,当M值等于5时,从这些Tout值得到的Tm值分别变为10000、10001、10001和10010。在该情况下,Tout=546的Tm和Tout=571的Tm变为10001,相同的值连续,从而产生了色调退化(recess)。同时,当M值等于六(6)时,从这些Tout值得到的Tm值分别变为100000、100010、100011和100101,与各个Tout值相对应的Tm值变得不同。因此,当从暗色调直到亮色调、精度都相等时,适当的M值为六(6),并且必须将Tn值设置为从0直到4。为了在M=6、A=2且Y=10的条件下将Y比特(10比特)数据表示为A^Tn×Tm,要求使用使2^Tn×63≈2^10-1成立的Tn。因为当Tout等于546(1000100010)时Tm等于10010,所以可以被表示为A^Tn×Tm且最接近546的值等于544(=2^4×34),并且要求Tn的取值直到4。
此外,也要求满足关系式Tn=2^(2^N-1)≥2^(Y-M),这是因为通过从最初Y比特数据中去除M比特较高有效位而得到的剩余Y-M比特的数据移位是用N来表示。当对N求解时,可以得到N≥log(1+Y-M)/log2结果。因此,当M值被确定时,可以得到作为等于或大于log(1+Y-M)/log2的最小整数值的N值。在以上例子中,因为log(1+10-6)/log2=2.322,因此N值变为3作为最小值。
另外,增大M或N值,以获得更高的精度。例如,因为亮色调的精度主要由M确定,因此足以增大M值。另外,因为暗色调的精度也与M和N值相关,因此足以增大M或N值。
利用上述方法,可以用逆伽马校正处理的值来设置适当的M和N值。
以下将说明基于上述原理的本发明优选实施例。
第一实施例现在将说明本发明的第一优选实施例。图6显示了该第一实施例的液晶显示设备的结构。该液晶显示设备装备有图像处理器1和液晶显示器12。该液晶显示设备将数字图像信号(例如RGB信号,每一种颜色六比特)作为输入信号输入到图像处理器1,在图像处理器1中执行各种操作之后、将数字图像信号输出到液晶显示器12,根据数字图像信号来确定液晶显示器12的像素的透射率,并根据这种数字图像信号来显示图像。
在此,以每一种颜色6比特的色调表示,来表示图像处理器的输入-输出信号,但是位数不限于六(6)比特。
图像处理器1是一种用于通过根据液晶显示器12的色度特性转换图像信号,来执行相应彩色重现的功能单元。图像处理器1包括逆伽马校正电路2、色彩空间转换电路3和正伽马校正电路4。单独为每种色素(color element)提供逆伽马校正电路2和正伽马校正电路4。输入到图像处理器1的数字图像信号受到逆伽马校正电路2、色彩空间转换电路3和正伽马校正电路4中的顺序操作处理,并且正伽马校正电路4的输出作为输出信号被发送给源驱动器与控制信号发生器34中的DA转换器(未显示)。
液晶显示器12包括扫描驱动器33、源驱动器与控制信号发生器34及像素矩阵38。
像素矩阵38包括多条扫描线31、多条信号线32、多个像素35、多个辅助电容器36及薄膜晶体管(TFT)37。每条扫描线31和每条信号线32相互交叉,并且通过TFT 37在扫描线31和信号线32的每个交叉点设置一个像素35。每个像素35都与辅助电容器36并联。
扫描驱动器33控制要分别输入到多条扫描线31的信号。源驱动器与控制信号发生器34控制要分别输入到多条信号线32的信号。
在此,以下将说明从把数字图像信号输入到液晶显示设备、直到在液晶显示器12上显示图像的处理。图像处理器1通过对输入数字信号执行操作处理,来输出数字信号。输出图像信号和显示控制信号(未显示)被发送给扫描驱动器33和源驱动器与控制信号发生器34。源驱动器与控制信号发生器34根据液晶显示器12的像素35的施加电压-亮度特性,以及从输入图像信号的伽马特性得到的转换特性,对数字图像信号执行DA转换。被转换为模拟信号的信号被应用于与被扫描驱动器33通过TFT 37选择性地施加ON电压的扫描线31连接的像素35,然后通过被转换为亮度,被输出为图像信号。
图7显示了逆伽马校正电路2的详细结构。该逆伽马校正电路2由指数查找表(LUT)21和尾数LUT 22构成。指数LUT 21和尾数LUT22接收相同的数字信号作为输入信号。在这些指数LUT 21和尾数LUT22中,参考LUT来获得依据输入信号的值,然后该值作为输出数字信号被输出。指数LUT 21的输出是三(3)比特值(指数信号),尾数LUT 22的输出是六(6)比特值(尾数信号)。分别从指数LUT 21和尾数LUT 22输出的信号被发送给色彩空间转换电路3。
在此,指数LUT和尾数LUT被形成为单独结构,但是也有可能仅仅提供一个九(9)比特输出的LUT,其中六(6)比特输出被提供给尾数,而剩余三(3)比特被提供给指数。
图8显示了色彩空间转换电路3的详细结构。色彩空间转换电路3由以下组成九个乘法器电路,用于RGB尾数信号和三个常数(axy(x,y=1,2,3))的乘法;数据移位器23,用于根据RGB指数信号对相应乘法结果执行数据移位;六(6)个加法器,用于把数据移位结果加起来;以及信号转换器24,用于再次将加法结果分成指数和尾数。显然,从所示的结构来看,色彩空间转换电路3执行3×3矩阵运算。
图9显示了正伽马校正电路4的结构。正伽马校正电路4由二维LUT 25构成,其中指数信号和尾数信号分别被定义为次级二维排列中的行数和列数。正伽马校正电路4参考该二维LUT 25,来获得依据输入指数信号和输入尾数信号的值,然后将该值作为输出信号(六(6)比特)输出。
接下来,将说明该实施例的液晶显示设备的操作以及所达到的效果。
在图6的图像处理电路中,通过采用基于浮点数系统的色调表示作为逆伽马校正电路2的输出,可以在不降低精度的情况下减小后一级中的色彩空间转换电路3的电路规模。现在将沿着图像信号的流程,来详细说明每个电路的操作。
图7所示的逆伽马校正电路2利用LUT执行逆伽马校正,而且将色调表示方法转换成基于浮点表示的方法。
在对六(6)比特信号执行逆伽马校正的情况下,如果校正后的输出被设置为10比特或更大(2^(9-1)=512色调或更多),则用普通色调表示(定点)不能维持精度,但是利用基于浮点表示的方法,可以通过将输出设置为三(3)比特指数(仅仅是十进制数的0至4)+六(6)比特尾数,来获得等于或大于以定点法显示的10位(2^4×63=1008色调)的值。也就是,因为可以将普通表示法所需的十比特减少到九(9)比特(=3+6),因此与用于对定点法表示的信号执行逆伽马校正的电路相比,逆伽马校正电路2的结构尺寸可以减小。
在每个乘法电路的后一级中,和普通矩阵运算电路不同,图8所示的利用基于浮点表示的方法来表示色调的矩阵运算电路(色彩空间转换电路3)装备有一种用于根据指数值来使数据移位的电路。当输入信号的指数被定义为Xa、尾数被定义为Xb时(X=R、G、B),用以下公式(1)来表示从把信号输入到色彩空间转换电路3,直到信号转换器24中处理的处理。
Rout=2^Ra×(Rb×a11)+2^Ga×(Gb×a12)+2^Ba×(Bb×a13),Gout=2^Ra×(Rb×a21)+2^Ga×(Gb×a22)+2^Ba×(Bb×a23),Bout=2^Ra×(Rb×a31)+2^Ga×(Gb×a32)+2^Ba×(Bb×a33)(1)在数据移位器23中,通过Xa位移位,执行2^Xa次公式(1)中的运算(X=R、G、B)。然后,该运算输出通过被信号转换器24转换为指数和尾数而被输出。因为数据移位器23执行指数运算,因此可以简化乘法处理。因此,当数据移位器23所执行的指数运算例如是2的升幂运算,如4^Ra倍和8^Rb倍,可以获得本发明的效果。
在此,因为尾数的位数等于输入位数,所以可以显著减小乘法器电路的电路规模。在普通结构中,10比特×6比特运算被执行,但是该运算被转换为六(6)比特×六(6)比特运算,导致电路规模减小大约40%。而且,因为数据移位器23和信号转换器24的电路规模不太大,所以电路结构可以比普通结构减小约30%。
接下来,利用其中指数值和尾数值分别被设置为xy轴的二维LUT(二维LUT 25),来执行基于浮点表示的正伽马校正。图10显示了正伽马校正电路的LUT结构,其中输入由三(3)比特指数(仅使用0至4)+六(6)比特尾数构成,而输出由六(6)比特构成。因为指数值的范围是0至4,而尾数值的范围是0至63,所以LUT所需的比特数达到1920比特(=5×64×6比特)。然而,当指数值等于或大于一(1),并且尾数最高有效位为0时,使指数值减一(1)并使尾数值加倍。因此,不一定需要为指数和尾数的所有组合都保存LUT(不需要图10中双重框所包围的域(指数值等于或大于一(1)且尾数最高有效位为0的域))。
如图10所示,当指数等于“0”时,尾数取“0至63”中的任何值,而当指数等于“1至4”时,尾数取“32至63”中的任何值。因为在任何情况下输出都是六(6)比特,所以正伽马校正电路4的规模可以变成如下所述。
当指数等于“0”时,尾数可以取“0至63”值,即2^6种值。因为对于各个值输出都是六(6)比特,所以需要2^6×6比特的存储器。同时,当指数等于“1至4”时,尾数可以取“32至63”值,即2^5种值。因为对于各个值输出都是六(6)比特,所以需要2^5×6×4比特的存储器。即,对于每种颜色都需要(2^6×6)比特+(2^5×6×4)比特的存储器。在RGB彩色图像的情况下,对于每种色素都需要与上述一样多的位数(然而,假定RGB每种色素的输入-输出位数是相同的)。因此,LUT所需的位数表示如下。
输入3+6比特——>输出六(6)比特(2^6×6+2^5×6×4)×3(RGB)=152×3比特在背景技术的情况下,正伽马校正电路将10比特输入信号转换为6比特输出信号,因此所需的位数是2^10×6×3=6144×3比特。因此,在本发明中可以大大减小电路规模。
在此,可以通过应用基于浮点表示的方法,来减小后一级中的矩阵运算电路(加法器电路、乘法器电路)和正伽马校正电路(LUT)的电路规模。
利用上述效果,有可能提供一种通过应用数字伽马校正电路来减小电路规模的图像处理设备和显示设备。
在以上结构中,逆伽马校正电路由逆转换电路和格式转换电路相结合而组成。该实施例不限于此,当逆伽马校正电路和格式转换电路被单独形式时,也可以获得本发明的效果。
在以上说明中,数字色调的位数被设置为六(6)位,但是本发明不限于此,当这种数字色调位数被设置为期望的位数,例如八(8)比特时,也可以获得相同的效果。
此外,在本发明中,液晶显示器被用作显示器,但是本发明不限于此。即使当如图11所示使用其它显示设备(PDP、使用电致发光元件的显示器、或液晶投影仪等),也可以获得类似的效果。
第二实施例以下将说明本发明的第二实施例。
图12显示了第二实施例的液晶显示设备的结构。该液晶显示设备几乎与第一实施例的液晶显示设备的图像处理器1相同,但是逆伽马校正电路2A、色彩空间转换电路3A和正伽马校正电路4的结构与第一实施例的液晶显示设备不同。除相对于两(2)比特+六(6)比特输入数据而输出六(6)比特数据以外,正伽马校正电路4与第一实施例一样。
图13显示了逆伽马校正电路2A的结构。逆伽马校正电路2A包括指数LUT 21A和尾数LUT 22。尾数LUT 22类似于第一实施例的液晶显示设备的尾数LUT。指数LUT 21A不同于第一实施例的指数LUT之处在于,对于每种颜色,两(2)比特值被输出到六(6)比特输入图像信号。和第一实施例一样,相同的信号被输入到指数LUT 21A和尾数LUT 22。
在第一实施例中,作为指数LUT 21输出的三(3)比特值被直接用作色调表示的指数。同时,在该第二实施例中,指数LUT 21A的输出不直接用作色调表示的指数,并基于输出值将它编码为(赋给)其它值(例如0、2、3、4代替0、1、2、3)。即,指数LUT 21A的输出项数等于指数LUT 21A的输出值可以取的值的数目,并且指数LUT 21A的输出被赋给由按照不等差从初项递增的、等于或大于0的整数所形成的序列的任何一项的值。
通过进行编码,可以将大于LUT 21A输出的最大值“3”的值设置为Ra,使得当指数LUT 21A的两(2)比特输出为0时,Ra=0,当该输出为1时,Ra=2,当该输出为2时,Ra=3,以及当该输出为3时,Ra=4。当Ra为1时,尾数部分输出值发生改变,使得Ra变为2(2^1×18=2^2×9)。
通过执行这种编码,可以在更宽的动态范围内实现色调表示,同时指数LUT 21A的输出位数受到控制。因为输出位数受到控制,因此可以减小指数LUT 21A的电路规模。
被赋给其它值的指数数据被发送给色彩空间转换电路3A。图14显示了色彩空间转换电路3A的结构。该电路几乎和第一实施例的液晶显示设备的色彩空间转换电路3相同,除了数据移位器23A代替数据移位器23。数据移位器23A执行与指数LUT 21A中的编码相对应的解密(使被转换为其它值的LUT 21A输出值复位到初始值)。当用于该解码的电路的规模足够小时,也可以减小总电路规模。换句话说,当用于转换被赋给其它值的指数LUT 21A输出值的电路的规模小于通过把输出值赋给其它值而减小的LUT 21A的电路规模时,也可以减小总电路规模。
利用上述结构,可以减小位于逆伽马校正电路后一级中的色彩空间转换电路(矩阵运算电路(加法器电路和乘法器电路))和正伽马校正电路(LUT)的电路规模。
另外,通过应该该数字伽马校正电路,也可以减小图像处理设备和显示设备的电路规模。
第三实施例以下将说明本发明的第三实施例。
在第一和第二实施例中,图像处理电路被设置在数字伽马校正电路的后一级中,用于相应彩色重现。在该实施例中,将说明这样一种结构,其中用于与相应彩色重现不同的目的的图像处理电路被设置在逆伽马校正电路的后一级中。
图15显示了第三实施例的液晶显示设备的结构。该液晶显示设备几乎与第一实施例的液晶显示设备相同,其不同之处仅仅在于,逆伽马校正电路2B代替逆伽马校正电路2,同时亮度-对比度校正电路5代替色彩空间转换电路3。
图16显示了逆伽马校正电路2B的结构。和第一实施例的逆伽马校正电路2一样,相同的图像信号被输入到指数LUT 21B和尾数LUT22B两者。指数LUT 21B相对于六(6)比特输入信号输出三(3)指数信号,而尾数LUT 22B相对于六(6)比特输入信号输出六(6)比特尾数。
输入到图像处理电路1的RGB图像信号在逆伽马校正电路2B中被分成指数和尾数,并作为指数信号和尾数信号被输出。
在逆伽马校正电路2B中,可以执行伽马值1的逆伽马校正。在利用不同于一(1)的伽马值执行逆伽马校正的情况下,足以使用与第一和第二实施例中类似的LUT,作为指数LUT 21B和尾数LUT 22B。同时,当利用伽马值1执行逆伽马校正时,足以利用与以上所述类似的方法,使用LUT将输入信号转换为浮点系统的色调表示。
如图16所示,在逆伽马校正电路2B中,因为输入位数为六(6)比特,指数输出位数为三(3)比特,并且尾数输出位数为六(6)比特,因此执行转换,以便以不致于允许指数部分的最大值象在上述各个实施例的情况下一样增大太多的程度,获得足够的精度。即,当输入信号等于色调信号最大值63时,指数等于3,且尾数等于63,2^3×63=504。当输入信号为1时,指数等于0,且尾数等于8,这是因为504/63=8=2^0×8。
逆伽马校正电路2B输出的信号然后被输入到亮度-对比度校正电路5。如图17所示,当输入到亮度-对比度校正电路5的信号的指数为a、且尾数为b时,执行以下处理。
(输出)=2^a×(b×c1)+c0在数据移位器23B中,利用a的位移位执行2a次以上公式运算。然后,该运算输出再次被信号转换器24转换成指数和尾数,以便输出。
在此,当c1值被设置为1且c0值被设置为0时,它等效于这一步什么也没做。当c1值被设置为1或更大时,可以获得更高对比度的图像,并且当c1被设置为1或更小时,可以获得更低对比度的图像。此外,c0表示补偿,并且当c0取大于0的值时,可以增大图像亮度。此外,通过改变c0和c1组合,可以实现期望的对比度-亮度校正。
当输入色调值小时,当与普通色调表示相比,分别相对于指数和尾数执行色调表示,亮度-对比度校正电路5中的运算精度变得更高。因此,即使当逆伽马校正的后一级电路为了不同于相应彩色重现的目的而执行图像处理,也能够在不增大运算电路(加法器电路、乘法器电路)和正伽马校正电路(LUT)的电路规模的情况下,实现更高精度的运算。
此外,该数字伽马校正电路的应用使得能够减小图像处理设备和显示设备的电路规模。
第四实施例以下将说明本发明的第四实施例。
在上述各个实施例中,利用图像处理电路的伽马校正电路中的数字处理,来执行伽马校正处理。在该实施例中,将说明一种在DA转换器中执行正伽马校正处理的结构。
图18显示了该实施例的液晶显示设备的结构。该液晶显示设备包括图像处理器1、选择器6、基准色调电压发生器7和液晶显示器12。
选择器6顺序地从色彩空间转换电路3所输入的多组指数信号和尾数信号中选择一组,然后输出该选定的一组。
基准色调电压发生器7输出多个用于DAC转换的基准电压。
该实施例的液晶显示设备利用源驱动器与控制信号发生器34中的转换器(DAC)和基准色调电压发生器7,来执行在第一实施例的液晶显示设备中利用正伽马校正电路4执行的处理(正伽马校正)。
选择器6的输出信号中的指数信号被输出到基准色调电压发生器7,并且尾数信号被输出到源驱动器与控制信号发生器34内的DAC。
图18中所示的结构通过对选择器6所选择的RGB并行信号执行串行转换,来执行正伽马校正,但是也有可能采用该结构,来与单独包括分别用于RGB每种颜色的基准色调信号发生器7和DAC的结构并行地执行处理。
基准色调电压发生器7输出与输入指数信号相对应的期望基准色调电压V1至V9,并将这些电压发送到源驱动器与控制信号发生器34中的DAC。在该DAC中,尾数信号的基准色调值D1至D9分别作为输入数字信号被输入时的输出电压,被设置为基准色调电压V1至V9。即,当输入尾数信号为D1时,V1作为DAC的输出被输出,并且当输入尾数信号为D2时,V2被输出。如果假定D1<D2<…<D9,则当D1和D2之间的色调被输入到DAC时,通过把这种色调夹在中间的两个基准色调电压V1和V2的线性插值所获得的电压被输出。图19显示了该DAC的输入-输出特性。虚线表示期望的输入-输出特性(适合于液晶显示器12的伽马特性的输入-输出特性),而实线表示DAC的输入-输出特性。如图所示,DAC的输入-输出特性近似于利用多段从期望输入-输出特性获得的特性。当确定显示设备时,可以唯一地确定该输入-输出特性。
在此,将说明一种用于确定基准色调电压发生器7中的基准色调电压的方法。基准色调电压发生器7能够产生和输入指数信号可以取的值的数目一样多的多组基准色调电压V1至V9。例如,当指数信号为两(2)比特时,可以产生四(=22)组电压V1至V9。以下将参考图20和20来说明一个例子。
例如,假定作为图18中选择器6输出值的指数信号Tn和尾数信号Tm分别为两(2)比特和六(6)比特(指数为两(2)比特且尾数为六(6)比特),并且色调值被表示为2^Tn×Tm(即,A=2)。此外,当设置Tn=″11(十进制数的3)″时,假定基准色调电压发生器7所产生的一组基准色调电压为V1M、V2M、…、V9M。假定与该电压值相对应的尾数信号值为D1M、D2M、…、D9M,同时以下也假定D1M=″000000″、D5M=″011111″、D8M=″111110″、D9M=″111111″。在该情况下,与V5M输出电压相对应的色调值变为2^Tn×D5M=2^3×31=248(参考图20)。
在此,当Tn=″10(十进制数的2)″时,多组基准色调电压V1M2、V2M2、…、V9M2被设置如下。例如,因为V1M2所对应的色调值为2^Tn×D1M=2^2×0=0,所以可以得到V1M2=V1M(因为2^3×0=0)。此外,因为V8M2所对应的色调值为2^Tn×D8M=2^2×62=248,所以可得到V8M2=V5M(因为2^3×31=248)(参考图21)。如上所述,基于当Tn=″11″时获得的V1M至V9M,来设置当Tn为其它值时的V1至V9。换句话说,首先获得当Tn取最大值时的基准色调信号,然后根据这种基准色调信号,来获得当Tn取不同于最大值的值时的基准色调信号。
在以上例子中,考虑了尾数信号的九个基准色调值(D1至D9)。然而,尾数信号的基准色调值数目决不限于此。
在图19中,要求D1取尾数信号的最小值,而要求D9取尾数信号的最大值,以便根据正伽马校正的特性来转换所有尾数信号。此外,作为线性插值方法,它被认为利用电阻串来获得部分电阻电压。
从以上说明来看,显然是利用基准色调信号发生器7的输出(基准色调电压),来确定DAC中转换之后的电压。
在此,将说明从把数字图像信号输入到图像处理器1,直到在液晶显示器12上显示图像的处理。在DAC中,根据液晶显示器12的像素35的施加电压-亮度特性以及从输入图像信号的伽马特性获得的转换特性,对从图像处理器1输出的信号执行DA转换。
基准色调信号发生器7产生用于DAC执行转换的基准色调电压V1至V9,然后将其输出到DAC。在此,利用转换特性和指数信号来设置基准色调电压V1至V9。然后,在DAC中被转换为模拟信号的信号通过源驱动器与控制信号发生器34和TFT 37,被应用于像素35。该模拟信号被转换为亮度信号,然后用于产生图像。
更具体地说,如图18所示,选择器6输出的指数信号被发送给基准色调信号发生器7。基准色调信号发生器7接收该指数信号,产生提供2^(指数信号)倍输入信号色调的基准电压,然后将这种基准电压输出到DAC。因为基准色调信号发生器7产生了提供2^(指数信号)倍输入信号色调的基准色调信号,因此虽然尾数信号被输入到DAC,但是输出模拟信号变为2^(指数信号)×(尾数信号),然后被输出。
利用上述结构,可以在不对被分成指数和尾数的信号进行数字合成的情况下,利用基准色调信号发生器7和DAC来实现正伽马校正。而且,证明了当把DAC的精度维持在六(6)比特时,通过利用指数调制基准色调信号,可以更高精度地执行转换。
利用上述结构,与上述各个实施例的情况一样,可以通过将色调信号分成指数和尾数,来执行高精度的运算。
此外,通过应该该数字伽马校正电路,可以减小图像处理设备和显示设备的电路规模。
上述每个实施例都是本发明优选实施例的例子,本发明决不限于此。例如,在每个实施例中主要说明了液晶显示设备,但是本发明决不限于此,此外本发明也适合于使用PDP和有机电致发光的显示设备。
此外,在上述每个实施例中图像处理器1被形成为电路,但是也有可能通过软件处理将计算机用作图像处理器1。在该情况下,逆伽马校正器和正伽马校正器被形成在用于执行逆伽马校正程序和正伽马校正程序的运算设备(中央处理器(CPU)等)内,以便执行类似于每个实施例中的处理。逆伽马校正和正伽马校正自然都可以利用软件处理来实现,并且这些校正中的任何一种校正都可以利用软件处理来实现。另外,也有可能利用包括要在逆伽马校正和正伽马校正之间执行的处理(色彩空间转换处理、亮度-对比度校正处理等)的软件处理,来执行这些校正。
此外,也有可能在可能的范围内组合关于各实施例的结构。如上所述,本发明允许各种更改。
先前的实施例描述用于使本领域技术人员能够实施和使用本发明。而且,这些实施例的各种更改对于本领域技术人员将是显而易见的,并且可以在不用本发明教导的情况下,将在此定义的一般原则和特定例子应用于其它实施例。因此,本发明不限于在此描述的实施例,而是应符合权利要求及等效要求的限制所定义的最广范围。
进一步,本发明人的意图是,即使在诉讼期间修改权利要求也保留所要求的本发明的所有等效物。
权利要求
1.一种伽马校正方法,包括输入具有非线性色调-亮度特性的X比特色调输入信号Tin值,并输出具有被转换为线性特性的色调-亮度特性的Y比特(X<Y)色调信号Tout,由此实现逆伽马校正;以及输入所述Tout,并且当用常数A、N比特信号Tn指示的指数和M比特信号Tm指示的尾数将所述Tout表示成A^Tn×Tm时,输出由一组最接近所述Tout的Tn和Tm形成的(N+M)比特色调输出信号,由此实现格式转换;其中A为2的自然数次幂,M满足关系式M≤Y-N,当A等于2时,N的最小值为2,当A大于2时,N的最小值为1,以及根据A和M确定的N的最大值是使得相对于所有Tin值,一组Tn和Tm值都变成一组不同值的最大值。
2.根据权利要求1所述的伽马校正方法,其中,Tn具有一个被编码为由按照不等差从初值递增的等于或大于0的N个整数组成的序列的元素的预定值。
3.根据权利要求1所述的伽马校正方法,其中,A=2,M=Y-Z’,并且N被设置为等于或大于1+logZ’/log2的最小整数值,当用于输入所述Tin值并输出所述Tout值的逆伽马校正表被预先确定时,在被减少Z位较低有效位之后的Tout值被设置为Tz的条件下,在相对于所有Tout值获得的Tz值中,只提取最高有效位值为1的那些Tz值,并且使所有提取的Tz值的不同值的Z值中的最大值被设置为Z’。
4.一种伽马校正方法,包括输入包括N比特信号Tn和M比特信号Tm的(N+M)比特信号,作为输入信号,并输出用常数A、N比特指数Tn和M比特尾数Tm表示成Tout=ATn×Tm的、具有线性色调-亮度特性的Y比特色调信号Tout,由此实现格式转换;以及输入Tout值,并输出具有被非线性转换的色调-亮度特性的X比特(X<Y)色调信号Tin,由此实现伽马校正处理,其中A为2的自然数次幂,M满足关系式M≤Y-N,当A等于2时,所述N的最小值为2,当A大于2时,所述N的最小值为1,以及根据A和M确定的N的最大值是使得相对于所有Tin值,一组Tn和Tm值都变成一组不同值的最大值。
5.根据权利要求1所述的伽马校正方法,其中,利用仅仅一个查找表来执行所述逆伽马校正和所述格式转换。
6.一种图像处理方法,包括在根据权利要求1所述的伽马校正之后,执行色彩空间转换处理。
7.一种图像处理方法,包括在根据权利要求1所述的伽马校正方法之后,执行亮度-对比度校正处理。
8.一种用于控制计算机执行伽马校正处理的伽马校正程序,所述伽马校正处理包括输入具有非线性色调-亮度特性的X比特色调输入信号Tin值,并输出具有被转换为线性特性的色调-亮度特性的Y比特(X<Y)色调信号Tout,由此实现逆伽马校正;以及输入Tout,并且当用常数A、N比特信号Tn指示的指数和M比特信号Tm指示的尾数将Tout表示成A^Tn×Tm时,输出由一组最接近Tout的Tn和Tm形成的(N+M)比特色调输出信号,由此实现格式转换;其中A为2的自然数次幂,M满足关系式M≤Y-N,当A等于2时,N的最小值为2,当A大于2时,N的最小值为1,以及根据A和M确定的N的最大值是使得相对于所有Tin值,一组Tn和Tm值都变成一组不同值的最大值。
9.根据权利要求8所述的伽马校正程序,其中Tn取一个被编码为由按照不等差从初值递增的等于或大于0的N个整数组成的序列的元素的预定值。
10.根据权利要求8所述的伽马校正程序,其中,所述伽马校正程序控制所述计算机执行以下设置A=2,M=Y-Z’,并且N为等于或大于1+logZ’/log2的最小整数值,当用于输入所述Tin值并输出所述Tout值的逆伽马校正表被预先确定时,在被减少Z位较低有效位之后的Tout值被设置为Tz的条件下,在相对于所有Tout值获得的Tz值中,只提取最高有效位值为1的那些Tz值,并且使所有提取的Tz值的不同值的Z值中的最大值被设置为Z’。
11.一种用于控制计算机执行以下处理的伽马校正程序,包括格式转换处理,用于输入包括N比特信号Tn和M比特信号Tm的(N+M)比特信号,作为输入信号,并输出用常数A、所述Tn指示的N比特信号和所述Tm指示的M比特尾数表示成Tout=ATn×Tm的、具有线性色调-亮度特性的Y比特色调信号Tout;以及伽马校正处理,用于输入所述Tout值,并输出具有被非线性转换的色调-亮度特性的X比特(X<Y)色调信号Tin,其中所述常数A的值为2的自然数次幂,所述M满足关系式M≤Y-N,当A等于2时,所述N的最小值为2,当A大于2时,所述N的最小值为1,以及根据所述常数A和所述M确定的所述N的最大值是使得相对于所有Tin值,一组Tn和Tm值都变成一组不同值的最大值。
12.一种伽马校正电路,包括用于输入具有非线性色调-亮度特性的X比特色调输入信号Tin值,并输出具有被转换为线性特性的色调-亮度特性的Y比特(X<Y)色调信号Tout,由此实现逆伽马校正的电路;以及用于输入所述Tout,并且当用常数A、N比特信号Tn指示的指数和M比特信号Tm指示的尾数将所述Tout表示成ATn×Tm时,输出由一组最接近所述Tout的Tn和Tm形成的(N+M)比特色调输出信号,由此实现格式转换的电路;其中A为2的自然数次幂,M满足关系式M≤Y-N,当A等于2时,N的最小值为2,当A大于2时,N的最小值为1,以及根据A和M确定的N的最大值是使得相对于所有Tin值,一组Tn和Tm值都变成一组不同值的最大值。
13.根据权利要求12所述的伽马校正电路,其进一步包括用于将所述Tn编码为由按照不等差从初项递增的等于或大于0的N个整数组成的序列的元素的预定值的装置。
14.根据权利要求12所述的伽马校正电路,其中,A=2、M=Y-Z’,并且N被设置为等于或大于1+logZ’/log2的最小整数值,当用于输入所述Tin值并输出所述Tout值的逆伽马校正表被预先确定时,在被减少Z位较低有效位之后的Tout值被设置为Tz的条件下,在相对于所有Tout值获得的Tz值中,只提取最高有效位值为1的那些Tz值,并且使所有提取的Tz值的不同值的Z值中的最大值被设置为Z’。
15.根据权利要求12所述的伽马校正电路,其中,所述色调输出被输入到加法器电路、乘法器电路和查找表电路中至少任何一个电路。
16.根据权利要求15所述的伽马校正电路,其中,所述色调输出被输入到用于根据显示设备的色度特性来执行色彩空间转换处理的电路。
17.根据权利要求15所述的伽马校正电路,其中,所述色调输出被输入到用于根据显示设备的亮度-对比度特性来执行亮度-对比度转换处理的电路。
18.一种伽马校正电路,包括格式转换电路,用于输入包括N比特信号Tn和M比特信号Tm的(N+M)比特信号,作为输入信号,并输出用常数A、所述Tn指示的N比特指数和所述Tm指示的M比特尾数表示成Tout=ATn×Tm的、具有线性色调-亮度特性的Y比特色调信号Tout;以及伽马校正电路,用于输入Tout值,并输出具有被非线性转换的色调-亮度特性的X比特(X<Y)色调信号Tin,其中所述常数A的值为2的自然数次幂,所述M满足关系式M≤Y-N,当A等于2时,所述N的最小值为2,当A大于2时,所述N的最小值为1,以及根据所述常数A和所述M确定的所述N的最大值是使得相对于所有Tin值,一组Tn和Tm值都变成一组不同值的最大值。
19.根据权利要求12所述的伽马校正电路,其中,利用仅仅一个查找表来实现所述逆伽马校正电路和所述格式转换电路。
20.一种包括根据权利要求12所述的伽马校正电路的图像处理设备。
21.一种用于输出模拟电压以确定显示设备色调的图像处理设备,包括数模转换器,用于对包括N比特信号和M比特信号的输入信号中的M比特输入信号执行数模转换;以及基准电压发生器,用于输出用于所述数模转换器中数模转换的基准电压,其中,提供所述N比特信号指示的指数Tn和所述M比特信号指示的尾数Tm,以便利用常数A把具有线性色调-亮度特性的Y比特色调信号Tout表示为Tout=ATn×Tm,所述A的值为2的自然数次幂,以及所述基准电压发生器根据所述N比特信号来产生所述基准电压。
22.一种显示设备,包括显示装置;以及根据权利要求20所述的图像处理设备。
23.根据权利要求22所述的显示设备,其中,所述显示装置是液晶显示器。
全文摘要
一种伽马校正方法,包括逆伽马校正处理,用于输入具有非线性色调-亮度特性的X比特色调输入信号Tin值,并输出具有被转换为线性特性的色调-亮度特性的Y比特(X<Y)色调信号Tout;以及格式转换处理,用于输入Tout,并且当用常数A、N比特信号Tn指示的指数和M比特信号Tm指示的尾数将Tout表示成A^Tn×Tm时,输出由一组最接近Tout的Tn和Tm形成的(N+M)比特色调输出信号。
文档编号G09G3/20GK1755791SQ20051010419
公开日2006年4月5日 申请日期2005年9月29日 优先权日2004年9月30日
发明者宫坂大吾 申请人:日本电气株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1