用于深拉法的标签膜的制作方法

文档序号:2610616阅读:243来源:国知局
专利名称:用于深拉法的标签膜的制作方法
技术领域
本发明涉及双轴取向的聚丙烯薄膜作为深拉过程中的模内标签的用途。
背景技术
标签膜包括广泛且技术上复杂的领域。区分为各种不同的贴标签技术,它们在工艺条件方面根本不同且必然对标签材料提出不同的技术要求。所有贴标签法的共同之处在于,必须获得视觉上吸引人的贴标签的容器作为最终产品,其中必须确保在贴标签的容器上的良好粘合。
在贴标签法中,应用极其多样的技术以施加标签。区分为自粘标签、绕贴式(Rundum)标签、收缩标签、模内标签、补丁(Patch)标签等等。在所有这些不同的贴标签法中均可以使用由热塑性塑料制成的薄膜作为标签。
模内贴标签方面也区分为各种不同的技术,在其中应用各种不同的方法条件。所有模内贴标签法的共同之处在于,标签参与容器的实际成型工艺并在此期间施加。但是,为此使用极其多样的成型方法,例如注塑法、吹塑法和深拉法。
在注塑法中,将标签放入注塑模具中并在其背面注射熔体液态的塑料。标签由于高温高压而与注塑部件接合并成为注塑件的一个整体的不可剥离的组成部分。例如,根据该方法制备冰激凌杯或人造黄油杯的杯子和盖子。
为此,将单个标签从一堆中取出或从一卷上裁切,并放入注塑模具中。将模具设计成在标签背面注射熔体流且薄膜正面紧贴在注塑模具壁上。在注射过程中,热熔体与标签接合。在注射之后,打开模具,推出带标签的注塑件并冷却。在产品中,标签必须无褶皱地并以视觉上无缺陷的方式粘贴在容器上。
在注射过程中,注射压力为300至600巴。可用塑料具有大约40克/10分钟的熔体流动指数。注射温度随所用塑料而定。在一些情况下,额外将模具冷却以避免注塑件与模具粘合。
在深拉过程中,将大约200微米厚的未取向的厚塑料片材,通常是流延PP或PS(聚苯乙烯),在相应的模具中加热并借助真空或冲压工具拉伸或压制。在这种情况下,也将单个标签放入模具中,并且其在模塑过程中与实际容器接合。应用明显较低的温度,使得标签在容器上的粘合可能是一个关键因素。即使在这些低加工温度下也必须确保良好的粘合作用。这种方法的加工速度比注塑中的低。
在容器或空心体的吹塑中,直接模内贴标签也是可行的。在这种方法中,通过环形模头垂直向下挤出熔体软管。垂直分开的模具移动到互撞并将该软管封入,该软管在此在下端被夹紧。在上端导入吹气芯棒,通过它形成模塑件的开口。经由吹气芯棒向热熔体软管中输入空气,使得它膨胀并紧贴到模具内壁上。在这种情况下,标签必须与熔体软管的粘性塑料接合。随后将模具打开并在模塑成型的开口处切除超出部分。推出已模塑成型的和贴标签的容器并冷却。
在这种吹塑法中,熔体软管吹胀过程中的压力大约为4-15巴,且温度明显低于注塑中的温度。塑料材料具有比在注塑时更低的MFI,以形成尺寸稳定的熔体软管并因此在冷却过程中与注塑所用的低粘稠材料表现不同。
原则上,由热塑性塑料制成的薄膜也可在深拉法中用于在模塑成型过程中将容器贴标签。为此,该薄膜必须具有所选的性能状况,以确保标签膜和深拉模塑体在深拉过程中平滑地并且无气泡地彼此紧贴,并彼此接合。
标签在容器上的粘合经常是有瑕疵的,因为在深拉过程中使用比注塑或吹塑法中相对更低的温度和压力。此外,与吹塑类似地,在标签和容器之间出现空气夹入物,这损害了贴标签容器的外观以及粘合作用两者。因此,用于深拉应用的标签配备有特殊粘合层,其确保了在容器上的良好粘合。为此使用共挤出的低密封性覆盖层或特殊粘合剂层。
例如在WO 02/45956中描述了这类薄膜。这种薄膜的覆盖层相对于多种多样的材料具有改进的粘合性。覆盖层含有由烯烃和不饱和羧酸或它们的酯形成的共聚物或三元共聚物作为主要组分。据描述,该薄膜由于改进的粘合作用而也可用作深拉过程中的标签。
EP 0 865 909描述了“微孔化”膜用于标签的用途。该薄膜含有β-成核剂,通过该成核剂在熔体膜冷却时产生在前体薄膜中提高比例的β-结晶聚丙烯。在前体薄膜拉伸时,产生“微孔”。据描述,薄膜具有良好的可印刷性。
WO 03/091316描述了双轴取向微孔膜的用途,该膜含有丙烯聚合物和至少一种β-成核剂且其微孔性是通过在薄膜拉伸过程中β-结晶聚丙烯的转化而产生的。据描述,该膜可有利地用作吹塑过程中的标签。

发明内容
本发明的目的是提供可在深拉法中使用并且相对于容器具有良好的粘合性且没有任何空气夹入物的标签膜。
通过使用具有微孔层的双轴取向薄膜以在深拉过程中将容器贴标签而实现了本发明的该目的,该微孔层含有聚丙烯和β-成核剂且其微孔性是通过在薄膜拉伸过程中β-结晶聚丙烯的转化而产生的。
已经发现,具有微孔层的薄膜可优异地在深拉过程中作为标签使用,且如果这种微孔性是由β-成核剂间接产生的,则在深拉法的特殊方法条件下不会出现任何气泡或空气夹入物。由此产生的这些结构与常规的含空泡的薄膜明显不同。
图2a和2b以横截面(2a)和俯视图(2b)显示由热塑性聚合物和不相容填料制成的含空泡的层的典型结构。由于引发空泡的粒子的不相容性,在拉伸过程中在粒子表面和聚合物基体之间出现裂纹,并产生闭合的空气填充的空腔,其被称作空泡。这些空泡分布在整个层上并降低了薄膜或层的密度。但是,这些薄膜仍然总是表现出良好的对于例如水蒸汽的阻隔作用,因为空泡是闭合的且该结构整体上是不渗透的。
与此相反,本发明的多孔层是透气的并表现出如从

图1a(俯视图)和1b(横截面)中可以看出的那样的开孔网状结构。这种结构不是由不相容填料,而是根据技术上完全不同的方法形成的。微孔层含有聚丙烯和β-成核剂。将聚丙烯与β-成核剂的这种混合物首先如在薄膜制备中通常的那样在挤出机中熔融并通过宽缝模头以熔体膜形式挤出到冷却辊上。β-成核剂促进β-结晶聚丙烯在熔体膜冷却过程中结晶,从而形成含有高比例β-结晶聚丙烯的未拉伸前体薄膜。可以在该前体薄膜的拉伸过程中选择温度和拉伸条件以使β-微晶转化成更热稳定的聚丙烯α微晶。
因为β-微晶的密度较低,所以这种转化伴随着该区域中的体积收缩,与拉伸过程有关地导致类似于撕裂的网络的特征性多孔结构。该薄膜外表上看起来为白色且不透明,即使不存在颜料或填料时也如此。
这两种方法本身均是现有技术中已知的。已经令人惊奇地发现,具有多孔层的薄膜在深拉法中用作标签膜时没有桔皮效应和气泡生成,且相对于容器具有令人惊奇地良好的粘合性。具有含空泡的层的不透明薄膜作为深拉法中的标签时产生不希望的桔皮效应和气泡生成。令人惊奇地,与由聚丙烯制成的具有含空泡的结构的薄膜相比,具有微孔层的薄膜的粘合性显著改进。特别地非常令人惊奇地,该微孔层的原纤化特殊结构对深拉过程中的粘合强度具有积极影响。根据本领域的公知常识,粘合性主要由与容器接触的层的聚合物的性能决定,例如,聚合物的较低熔点或改性有助于改进的粘合性。
现在将更详细描述微孔层(下文也称作层)的组成。微孔层含有丙烯均聚物和/或丙烯嵌段共聚物,任选地附加含有其它聚烯烃,和至少一种β-成核剂,以及任选地,附加含有常规添加剂,例如稳定剂、中和剂、润滑剂、抗静电剂、颜料,各自以有效量使用。一般而言,省去附加的不相容的引发空泡的填料,例如碳酸钙或聚酯,例如PET或PBT,使得该层通常含有低于5wt%,优选0至最多1wt%的这些能引发空泡的填料。这样的低用量可例如经由回收薄膜的引入而到达该层中。
一般而言,微孔层含有至少70->100wt%,优选80至99.95wt%,特别是90至97wt%的丙烯均聚物和/或丙烯嵌段共聚物,和0.001至5wt%,优选0.1至3wt%的至少一种β-成核剂,这些百分比各自基于该层的重量计(余量是其它聚烯烃和/或所列添加剂)。
合适的丙烯均聚物含有80至100wt%,优选90至100wt%丙烯单元并具有140℃或更高,优选150至170℃的熔点,和在230℃和2.16千克的力(DIN 53735)下通常具有0.5至10克/10分钟,优选2至8克/10分钟的熔体流动指数。含有15wt%或更低的无规立构级分的全同立构丙烯均聚物是用于该层的优选丙烯聚合物,其中全同立构丙烯均聚物尤为优选。
合适的丙烯嵌段共聚物主要含有,即含有多于50wt%,优选70至99wt%,特别是90至99wt%的丙烯单元。相应量的适合的共聚单体是乙烯、丁烯或更高级的烯烃同系物,其中乙烯是优选的。嵌段共聚物的熔体流动指数为1至15克/10分钟,优选2至10克/10分钟。熔点高于140℃,优选为150至165℃。
给出的重量百分比基于每种情况下的聚合物计。
由丙烯均聚物和丙烯嵌段共聚物构成的混合物含有以任意混合比的这两种组分。丙烯均聚物与丙烯嵌段共聚物的比率优选为10∶90wt%至90∶10wt%,优选20∶70wt%至70∶20wt%。由均聚物和嵌段共聚物构成的这种混合物尤为优选并改进了微孔层的外观。
如果需要,多孔层除了含有丙烯均聚物和/或丙烯嵌段共聚物外还可以含有其它种聚烯烃。这些其它种聚烯烃的比例通常低于30wt%,优选为1至20wt%。其它种聚烯烃是,例如,具有20wt%或更低的乙烯含量的乙烯与丙烯的无规共聚物,具有20wt%或更低的烯烃含量的丙烯与C4-C8烯烃的无规共聚物,具有10wt%或更低的乙烯含量和具有15wt%或更低的丁烯含量的丙烯、乙烯与丁烯的三元共聚物,或聚乙烯,例如HDPE、LDPE、VLDPE、MDPE和LLDPE。
原则上,所有在聚丙烯熔体冷却时促进β-晶体形成的已知添加剂均适合作为用于微孔层的β-成核剂。这种β-成核剂以及它们在聚丙烯基体中的作用方式本身是现有技术中已知的并在下文中详细描述。
聚丙烯的各种晶相是已知的。在熔体冷却过程中,通常主要形成α-结晶PP,其熔点为大约158-162℃。可以通过特定温度控制而在冷却过程中生成低比例的β-晶相,其具有比单斜α-变体明显更低的熔点,在148-150℃。添加剂是现有技术中已知的,其导致聚丙烯结晶过程中提高的β-变体比例,例如γ-喹吖啶酮、二氢喹吖啶或邻苯二甲酸的钙盐。
对于本发明目的,优选在多孔层中使用高活性β-成核剂,其在熔体膜冷却时产生30-90%,优选50-80%的β-比例。例如,由碳酸钙和有机二羧酸构成的双组分成核体系适用于此,其在DE 3610644中进行了描述,在此将该文献明确引入作为参考。二羧酸的钙盐尤为有利,例如如在DE 4420989中所述的庚二酸钙或辛二酸钙,同样将该文献明确引入作为参考。EP-0557721中描述的二羧酰胺,特别是N,N-二环己基-2,6-萘二羧酰胺也是合适的β-成核剂。
除成核剂外,在引出挤出熔体膜时保持特定温度范围和熔体膜在这些温度下的停留时间对于实现前体薄膜中β-结晶聚丙烯的高比例也是重要的。挤出熔体膜优选在60至130℃,特别是80至120℃的温度下冷却。缓慢冷却也促进了β-微晶的生长,因此,引出速度,即熔体膜在围绕第一冷却辊上运行的速度,应缓慢。在给定的引出辊布置的情况下,可以经由引出速度确保薄膜缓慢冷却至特定温度,或在此温度下保持足够长的时间。一般而言,10秒直至数分钟的停留时间是可行的。超过3分钟的较长停留时间虽然在技术上是可行的并以本身有利的方式提高β-结晶的比例,但使用这种过程控制,制备过程变得非常缓慢并因此是不经济的。因此,停留时间优选为15至120秒。引出速度优选小于25米/分钟,特别是1至20米/分钟。在前体薄膜中达到的β-晶体比例越高,就可越简单地通过拉伸获得网状多孔结构,一般而言,在保持相同的方法条件下,前体薄膜中β-比例越高,所获得的孔隙率越高。
尤其优选的实施方案在由丙烯聚合物制成的微孔层中含有0.001至5wt%,优选0.05至0.5wt%,特别是0.1至0.3wt%的庚二酸钙或辛二酸钙。
一般而言,微孔标签膜是单层的并仅由微孔层构成。但是,不言而喻的是,这种单层膜任选地可以在其用作深拉过程中的标签膜之前被提供有印刷层或涂层。当然,在这种多层薄膜的情况下,多孔层的表面与容器接触,并且印刷层或涂层形成标签外侧面。对于这种单层实施方案,薄膜,即多孔层的厚度为20至150微米,优选30至100微米。
任选地,微孔层可以在外侧面上提供电晕、火焰或等离子体处理以改进相对于印刷油墨或涂料的粘合性。
微孔层的密度通常为0.2至0.80克/立方厘米,优选0.3至0.65克/立方厘米,其中小于0.6克/立方厘米的密度是优选的。已经令人惊奇地发现,尤其低的密度不会如在含空泡的不透明薄膜中那样导致桔皮效应的增强。关于含空泡的不透明薄膜,有关文献教导由太强的空隙产生引起的太低的密度导致增强的桔皮效应。令人惊奇地,在多孔膜的情况下不会如此。密度可以降至低于0.5克/立方厘米的极低值,且该薄膜仍然可在深拉过程中无缺陷地施加,而不会出现干扰性的桔皮效应。
在进一步实施方案中,可以为微孔层提供另外的覆盖层,其中在这种多层实施方案的根据本发明的使用中多孔层朝向容器并在深拉过程中与模塑体接合。相应地,附加的覆盖层构成标签的外侧面。附加的覆盖层可以例如通过将多孔层与另一薄膜层合或胶合来施加。其优选为共挤出的覆盖层。在这些多层实施方案中,微孔层的厚度为至少20微米,多孔层的厚度优选为25至100微米,特别是30至50微米。这种覆盖层的厚度通常为0.5-5微米,优选1-3微米。
任选地共挤出的覆盖层通常含有至少70wt%,优选75至<100wt%,特别是90至98wt%的聚烯烃,优选丙烯聚合物,并且任选地含有以各自有效量的其它常规添加剂,例如中和剂、稳定剂、抗静电剂、润滑剂,例如脂肪酸酰胺或硅氧烷或防粘连剂。
覆盖层的丙烯聚合物是,例如,如上文对于多孔层已述的丙烯均聚物,或由丙烯与乙烯,或丙烯与丁烯,或丙烯与含有5至10个碳原子的另一烯烃构成的共聚物。对于本发明目的,乙烯与丙烯与丁烯,或乙烯与丙烯与含有5至10个碳原子的另一烯烃的三元共聚物也适用于覆盖层。此外,可以使用由两种或更多种所列共聚物和三元共聚物构成的混合物或共混物。
无规乙烯-丙烯共聚物和乙烯-丙烯-丁烯三元共聚物优选用于覆盖层,特别是具有2至10wt%,优选5至8wt%的乙烯含量的无规乙烯-丙烯共聚物,或具有1至10wt%,优选2至6wt%的乙烯含量,和3至20wt%,优选8至10wt%的1-丁烯含量的无规乙烯-丙烯-1-丁烯三元共聚物,每一百分比均基于共聚物或三元共聚物的重量计。
上文所述无规共聚物和三元共聚物通常具有1.5至30克/10分钟,优选3至15克/10分钟的熔体流动指数。熔点为105℃至140℃。由上文所述的由共聚物和三元共聚物构成的共混物具有5至9克/10分钟的熔体流动指数和120至150℃的熔点。上文给出的所有熔体流动指数均在230℃和2.16千克的力下(DIN 53735)测量。
任选地,可以对这种覆盖层的表面提供电晕、火焰或等离子体处理以改进可印刷性。与单层实施方案相比,同样不含任何空泡的非多孔覆盖层仅不显著地提高薄膜密度,并因此对于这些实施方案也通常为0.25至0.8克/立方厘米,优选0.25至0.6克/立方厘米,特别是小于0.5克/立方厘米。
任选地,覆盖层可以额外含有以各自常用量的常规添加剂,例如稳定剂、中和剂、防粘连剂、润滑剂、抗静电剂等等。
根据本发明使用的多孔膜优选根据本身已知的挤出法或共挤出法制备。
在本发明方法的范围内这样进行将与β-成核剂混合的聚丙烯在挤出机中熔融并通过扁平模头挤出到引出辊上,在该辊上熔体固化,同时形成β-微晶。在双层实施方案的情况下,与覆盖层一起进行相应的共挤出。选择冷却温度和冷却时间以在前体薄膜中形成尽可能高比例的β-结晶聚丙烯。具有高的β-结晶聚丙烯比例的这种前体薄膜随后这样双轴拉伸以在拉伸过程中出现β-微晶转化成α-聚丙烯并出现网络结构的形成。随后将双轴拉伸薄膜热固定,并且任选地在表面上进行电晕、等离子体或火焰处理。
双轴拉伸(取向)通常相继进行,其中拉伸优选首先纵向(沿机器方向),然后横向(与机器方向垂直)进行。
将所述一个或多个引出辊保持在60至130℃,优选80至120℃的温度下,以促进高比例β-结晶聚丙烯的形成。
在纵向拉伸过程中,温度低于140℃,优选为90至125℃。拉伸比为2∶1至5∶1。横向拉伸在高于140℃,优选145至160℃的温度下进行。横向拉伸比为3∶1至6∶1拉伸。
适宜地,借助于以与力求的拉伸比对应的不同地高速运行的两个辊进行纵向拉伸,并借助于相应的拉幅架(Kluppenrahmen)进行横向拉伸。
在薄膜的双轴拉伸之后通常将其热固定(热处理),其中将薄膜在110至150℃的温度下保持大约0.5至10秒。随后使用卷绕装置以通常方式将薄膜卷绕上。
优选地,如上所述,在双轴拉伸之后通常根据已知方法之一对薄膜表面进行电晕、等离子体或火焰处理。
对于备选的电晕处理,在用作电极的两个导体元件之间将薄膜引导通过,在此在电极之间施加这样高的电压,通常是交流电压(大约10,000伏和10,000Hz),使得可发生喷雾处理或电晕处理。通过喷雾或电晕放电将薄膜表面上方的空气离子化并与薄膜表面的分子反应以在基本上非极性聚合物基体中产生极性插入。处理强度在通常范围内,在此38至45mN/m是优选的。
根据本发明方法获得具有多孔层的薄膜。薄膜整体上突出之处为白色或不透明外观。多孔层具有类似网状的结构(参见图1a和1b),其可透气。多孔层的透气性可以例如由Gurley值确定,该值说明100立方厘米空气在指定条件下通过单层膜花费的时间长短。
已经发现,在气泡产生和粘合性方面,较高的透气性,即相应地低的Gurley值,是特别有利的。因此,具有Gurley值>50至5000秒的微孔层的薄膜是优选的。但是,令人惊奇地,使用相对较致密的薄膜也已经发现非常好的结果,其中Gurley值大于5000。已经发现,Gurley值可以最高至300,000秒,且仍然可以实现所要求的良好粘合性和无气泡性。令人惊奇地,具有相对较低透过性的薄膜同样好地适用,因为良好的粘合性和无气泡性归因于通过该层的多孔结构的良好通风性。因此可预期,具有>5000Gurley的较低透气性的薄膜较差地适用于深拉应用。令人惊奇地,情况并非如此。
因此,多孔层的Gurley值为>5000至300,000Gurley,优选8000至250,000Gurley的实施方案也是优选的。这些实施方案可以以较高的制备速度制备,并因此与高渗透性实施方案相比具有显著的经济优点。特别地,在此可以缩短在引出辊上的冷却时间,由此可以显著提高制备速度。
根据本发明,该薄膜在深拉过程中用作标签。在合适的深拉法中,由热塑性聚合物制成的厚膜在气体动力的作用下或通过模具的机械作用,在升高的温度下塑性模塑成型。使用气体动力的塑性模塑成型可以通过减压(深拉)或超压,即压缩空气进行。这种方法在现有技术中是已知的并在英语惯用法中被称作“thermoforming(热成形)”。例如在Rosato’s Plastics Encyclopedia and Dictionary,第755至766页中详细描述了该方法和其实施方案,由此将其明确引入作为参考。
在待深拉薄膜通常已经使用上冲模预成型之后,例如借助减压进行在气体动力作用下的塑性模塑成型。在实际深拉之前,将标签膜放入模体中,并将深拉膜置于其上以将模体气密性闭合。以较合适的方式向模体施加减压或真空。由于压力差,向深拉膜上产生抽吸力。将加热元件在薄膜表面上方安装并加热薄膜直至其在模体方向上变形。在该方法中选择温度和减压以使该薄膜以锁紧模具的方式紧贴在具有放入的标签的模体上并在此与标签接合。在消除压差并冷却之后,可以取出贴标签的深拉过的容器。
在图3中举例显示了深拉法的各种实施方案并示意性显示深拉用的装置。在图4中显示了其它深拉方法。原则上,可以在深拉中使用可以被抽真空的任意合适模具并且任选地使用模塑工具。
使用下列测量方法表征原材料和薄膜熔体流动指数根据DIN 53 735在2.16千克载荷和230℃下测量丙烯聚合物的熔体流动指数,且对于聚乙烯在190℃和2.16千克载荷下测量。
熔点DSC测量,熔融曲线的最大值,加热速度20K/分钟。
β-晶体含量使用DSC方法测定聚丙烯中的β-晶体比例(例如,在前体薄膜中)。
Varga在J.o.Appl.Polymer Science,第74卷,第2357-2368页,1999中描述了使用DSC的表征,并如下进行将添加了β-成核剂的试样在DSC中首先以20℃/分钟的加热速率加热至220℃并熔融(一次加热)。然后以10℃/分钟的冷却速率冷却至100℃,此后再以10℃/分钟的加热速率(二次加热)将其熔融。在二次加热过程中,由β-晶相的熔融焓(Hβ)与β-和α-晶相的熔融焓之和(Hβ+Hα)的比率测定结晶度Kβ,DSC。
密度根据DIN 53 479,方法A测定密度。
孔隙率由未形成空隙的PP的密度(δPP)和形成空隙的PP的密度(δPPV)如下计算孔隙率
孔隙率[%]=100*(1-[δPPV/δPP])渗透性(Gurley值)使用Gurley试验机4110,根据ASTM D 726-58测量标签膜的渗透性。在此测定100立方厘米空气渗透1平方英寸(6.452平方厘米)标签面积所需的时间。在此,薄膜上方的压力差与12.4厘米高水柱的压力相对应。这样所需时间与Gurley值相对应。
具体实施例方式
现在通过下列实施例解释本发明。
实施例1按照挤出法,在245℃的挤出温度下从宽缝模头中挤出单层薄膜。该薄膜具有下列组成大约50wt%丙烯均聚物(PP),该均聚物具有4.5wt%(基于100%PP计)的正庚烷可溶级分比例和165℃的熔点;和在230℃和2.16千克载荷(DIN 53 735)下3.2克/10分钟的熔体流动指数,和大约49.9wt%丙烯-乙烯嵌段共聚物,该共聚物具有基于嵌段共聚物计的大约5wt%的乙烯比例,和6克/10分钟的MFI(230℃和2.16千克),0.1wt%的庚二酸钙作为β-成核剂该薄膜额外含有常用量的稳定剂和中和剂。
在挤出之后经由第一引出辊和另一三辊轧机引出熔融的聚合物混合物,并固化,随后纵向拉伸,横向拉伸,并固定,在此具体选择下列条件挤出挤出温度245℃冷却棍温度125℃引出速度1.5米/分钟(在引出辊上的停留时间55秒)纵向拉伸拉伸辊T=90℃纵向拉伸倍数4
横向拉伸加热区域(Aufheizfelder)T=145℃拉伸区域T=145℃横向拉伸倍数4由此制成的多孔膜大约80微米厚,具有0.35克/立方厘米的密度并表现出均匀的白色-不透明外观。孔隙率为56%且Gurley值为1040秒。
实施例2如实施例1中所述制备薄膜。与实施例1不同的是,在此使用基于层重量计的0.3wt%的二羧酰胺作为β-成核剂。由此制成的多孔膜大约70微米厚,具有0.40克/立方厘米的密度,并表现出均匀的白色-不透明外观。孔隙率为51%且Gurley值为1200秒。
实施例3如实施例1中所述制备薄膜。组成不变。与实施例1不同的是,在制备中选择更高的引出速度3米/分钟(在引出辊上的停留时间27秒)并设定120℃的引出温度。由此制成的多孔膜大约60微米厚,具有0.5克/立方厘米的密度,并表现出均匀的白色-不透明外观。孔隙率为41%且Gurley值为36,000秒。
实施例4如实施例1中所述制备薄膜。组成不变。与实施例1不同的是,在制备中选择5米/分钟(在引出辊上的停留时间17秒)的更高引出速度,并设定115℃的引出温度。由此制成的多孔膜大约90微米厚,具有0.5克/立方厘米的密度,并表现出均匀的白色-不透明外观。孔隙率为42%且Gurley值为170,000秒。
对比例1通过共挤出和随后沿纵向和沿横向的分步取向,制备总厚度为80微米的具有层结构ABC的不透明三层薄膜。覆盖层各具有0.6微米的厚度。
底层B(=含空泡层)93wt%熔点为165℃的丙烯均聚物7.0wt%平均直径为3微米的Millicarb型CaCO3覆盖层A99.67wt%C2含量为3.5wt%的无规乙烯-丙烯共聚物0.33wt%平均直径为2微米的作为防粘连剂的SiO2覆盖层B与覆盖层A相同各个方法步骤中的制备条件为挤出温度 280℃引出辊温度 30℃纵向拉伸温度 122℃纵向拉伸比 6.0横向拉伸温度 155℃横向拉伸比 8.0固定温度 140℃会聚度 15%由此方式,获得密度为0.6克/立方厘米的不透明的含空泡薄膜。该薄膜不是多孔的,因此不可以测定该薄膜的Gurley值。
根据本发明的应用使用根据实施例和对比例的薄膜作为深拉人造黄油杯时的标签膜。为此,将标签裁切成十字形,堆叠毛坯件并在料箱中供应给深拉系统。深拉系统配有上冲模作为模塑辅助设备。通过抽吸将标签从料箱中取出并折叠以使十字形标签的表面覆盖随后容器的侧壁。将折叠的标签放入模具中,使用辅助型芯放置,并通过抽吸固定。
使用IR辐射器加热600微米厚PP深拉膜,直至进入其可塑性变形性的范围(>165℃)。通过降下上冲模并通过模具壁中的穿孔施加真空,使深拉膜变形,从而使其与放入的标签接合。
检查贴标容器的粘合性和外观。表明,对比例1的薄膜在薄膜与容器壁之间具有明显的气泡产生,并因此具有被损害的粘合性。
实施例1至4的微孔膜表现出无气泡产生或其它视觉缺陷的标签表面的均匀外观,以及标签在容器表面上的良好粘合性。令人惊奇地,尽管实施例3和4的薄膜具有明显低于常规多孔膜的透气性,但贴标容器的视觉质量方面没有不同。
权利要求
1.具有多孔层的双轴取向薄膜用于在深拉过程中将容器贴标的用途,该多孔层含有丙烯聚合物和至少一种β-成核剂且其微孔性是通过在薄膜拉伸过程中β-结晶聚丙烯的转化而产生的。
2.根据权利要求1的用途,其特征在于该层的孔隙率为>50至5000Gurley。
3.根据权利要求1的用途,其特征在于该层的孔隙率为>5000至300,000,优选8000至250,000Gurley。
4.根据权利要求1至3中任一项的用途,其特征在于该薄膜的密度为0.2至0.80克/立方厘米。
5.根据权利要求1至4中任一项的用途,其特征在于微孔层含有丙烯均聚物和/或丙烯嵌段共聚物。
6.根据权利要求1至5中任一项的用途,其特征在于微孔层含有丙烯均聚物与丙烯嵌段共聚物的混合物,且比率为90∶10至10∶90。
7.根据权利要求1至6中任一项的用途,其特征在于微孔层含有基于经β-成核的层的重量计0.001wt%至5wt%的β-成核剂。
8.根据权利要求1至7中任一项的用途,其特征在于成核剂是庚二酸或辛二酸的钙盐或羧酰胺。
9.根据权利要求1至8中任一项的用途,其特征在于微孔层在一个侧面上具有覆盖层。
10.根据权利要求1至9中任一项的用途,其特征在于按照拉幅法制备该薄膜且引出辊温度为60至130℃。
11.根据权利要求1至10中任一项的用途,其特征在于施加的标签没有桔皮效应。
12.借助深拉制备贴标容器的方法,其中将剪切的标签放入模具中,并使用加热元件将可深拉厚膜加热至聚合物可热塑性变形的温度,随后使用模塑工具或以气动方式将薄膜深拉入模具中,使得薄膜与模具相匹配并模塑成型为容器,同时施加上了放入的标签,其特征在于标签由具有微孔层的双轴取向薄膜构成,该微孔层具有开孔的网状结构,该结构是在薄膜制备过程中通过在拉伸过程中将β-结晶聚丙烯转化成α-结晶聚丙烯而产生的,其中微孔层朝向容器。
13.具有微孔层的双轴取向薄膜,该微孔层含有丙烯聚合物和至少一种β-成核剂且其微孔性是通过在薄膜拉伸过程中β-结晶聚丙烯的转化而产生的,其特征在于该多孔层的Gurley值为100,000至500,000秒。
全文摘要
本发明涉及具有微孔层的双轴取向薄膜用于在深拉过程中将容器贴标签的用途,该微孔层包含丙烯聚合物和至少一种β-成核剂且其微孔性是通过在薄膜拉伸过程中β-结晶聚丙烯的转化而产生的。
文档编号G09F3/02GK101035676SQ200580034265
公开日2007年9月12日 申请日期2005年10月5日 优先权日2004年10月7日
发明者B·施密茨, K-H·科赫姆, W·图斯 申请人:特里奥凡德国有限公司及两合公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1