用于驱动显示面板的驱动芯片及显示产品的制作方法

文档序号:19225590发布日期:2019-11-26 02:30阅读:461来源:国知局
用于驱动显示面板的驱动芯片及显示产品的制作方法

本申请涉及一种显示技术,特别涉及一种用于驱动显示面板的驱动芯片及显示产品。



背景技术:

随着显示技术的飞速发展,有源矩阵有机发光二极体(active-matrixorganiclight-emittingdiode,amoled)手机产品、虚拟现实(virtualreality,vr)、增强现实(augmentedreality,ar)产品也被越来越多消费者所接纳。随着amoled产品显示屏尺寸的增大,以及移动支付技术及人们娱乐、游戏的需求的增长,人们越来越多的离不开这些产品的使用。用户对于显示产品续航能力要求越来越高,尤其是可携式的显示产品(如amoled产品)。减小显示产品功耗为本技术领域重要的课题。

以amoled手机为例,现有的amoled显示面板的驱动芯片(driveric)主要包含了源极驱动电路、栅极驱动电路、直流至直流(dc-dc)模块、数据处理模块及时序控制(timingcontrol)模块。其中,源极驱动电路提供数据信号给显示面板中每一列(column)的子像素,源极驱动电路中包括伽马分压电路,其利用分压电阻串来提供多个绑点灰阶电压,每个绑点灰阶电压的输出通道上都设置有运算放大器(operationalamplifier,op)。运算放大器用以当向像素施加灰阶电压时,防止由于电流供给原因引起的电压下降,具有进行阻抗变换的电压输出器的功能。

图1显示现有的驱动芯片的电压配置示意图。现有的驱动芯片中,系统电压vci升压为升压电压avdd后馈入驱动芯片中,接地电压gnd并提供给驱动芯片。升压电压avdd被分压为高基准电压gvdd,供源极驱动电路使用。源极驱动电路中的伽马分压电路所提供的最高绑点灰阶电压gsp和最低绑点灰阶电压gsn由高基准电压gvdd分压而来。

现有技术中,伽马分压电路提供的每个绑点灰阶电压的输出通道上都设置有运算放大器op。每一个输出通道上的运算放大器op的正输入端接收绑点灰阶电压vgamma,而负输入端与输出端相连。运算放大器op的正电源端由高基准电压gvdd提供的电压馈入,而负电源端连接接地电压gnd。

现有的伽马分压电路中,驱动芯片提供给每一个输出通道上的运算放大器op的电源是固定的。运算放大器op本身会有功率消耗,如果加在运算放大器op的正电压源和负电压源两端的电压差越大,则功率损耗越大。而现有的伽马分压电路提供给每一路的运算放大器op的电源都是固定的,这在输出低灰阶电压时,对应的运算放大器op上会存在较多的功率耗损。此因在显示低灰阶画面下,源极驱动电路输出的数据电压较小,对应的运算放大器op不需要较大的电源。

因此,如何降低显示面板的驱动芯片不必要的功耗,是本领域需要解决的技术问题。



技术实现要素:

本申请的目的在于提供一种用于驱动显示面板的驱动芯片及显示产品,以降低驱动芯片的功率耗损。

为达成上述目的,本申请一方面提供一种用于驱动显示面板的驱动芯片,所述驱动芯片包括源极驱动电路,所述源极驱动电路包括用于提供多个绑点灰阶电压的伽马分压电路,所述伽马分压电路包括:

分压电阻串,由多个分压电阻串联而成,用以生成所述多个绑点灰阶电压;

多个运算放大器,每个运算放大器设置在每个绑点灰阶电压的输出通道上,每个运算放大器具有接收第一电压的正电源端和接收第二电压的负电源端,所述第一电压大于所述第二电压;

低电压稳压电压源,提供固定的第二电压到每个运算放大器的负电源端;以及

数字模拟转换器,提供所述第一电压到每个运算放大器的正电源端,其中所述数字模拟转换器所提供的第一电压根据要输入到所述显示面板的灰阶或数据电压而动态调整。

本申请实施例中,所述伽马分压电路还包括用以将任两相邻的绑点灰阶电压进行分压而得出灰阶电压的电阻,所述灰阶电压对应所述要输入到所述显示面板的灰阶或数据电压。

本申请实施例中,所述运算放大器设置在用来生成所述绑点灰阶电压的分压电阻和用来生成所述灰阶电压的电阻之间。

本申请实施例中,每个运算放大器还包括正输入端、负输入端及输出端,所述运算放大器的正输入端接收所述绑点灰阶电压,所述负输入端电性连接到所述输出端。

本申请实施例中,所述低电压稳压电压源包括低耗损型稳压电压源。

本申请实施例中,所述低电压稳压电压源的输入电压来自于所述多个绑点灰阶电压中的最低绑点灰阶电压,所述低电压稳压电压源的输出电压为提供到所述运算放大器的负电源端的固定的第二电压。

本申请实施例中,当所述要输入到所述显示面板的灰阶或数据电压介于一组相邻绑点灰阶电压之间,则所述数字模拟转换器提供给所述运算放大器的正电源端的电压为上一组相邻绑点灰阶电压中的较小绑点灰阶电压。

本申请实施例中,所述数字模拟转换器的输入端接收所述多个绑点灰阶电压,并将其中一个绑点灰阶电压输出到所述运算放大器的正电源端。

本申请另一方面提供一种显示产品,其包括上述各实施例中的驱动芯片。

现有技术中,驱动芯片提供固定的电源给伽马分压电路中每一个输出通道上的运算放大器,存在运算放大器功耗大而使得驱动芯片功耗不佳的问题。相对于现有技术,本申请的驱动芯片的伽马分压电路中每一个输出通道上的运算放大器的正电源端和负电源端的压差,是根据要输入到像素的数据电压而动态调整的,因此运算放大器的功耗可以有效降低,从而驱动芯片整体的功耗获得了改善。

附图说明

图1显示现有的驱动芯片的电压配置示意图。

图2显示根据本申请的用于显示面板的驱动芯片的示意图。

图3显示根据本申请的驱动芯片的电压配置示意图。

图4显示根据本申请的伽马分压电路的示意图。

图5为根据本申请的3比特数字模拟转换器的原理图。

图6为根据本申请的用于数字模拟转换器的真值表。

具体实施方式

为使本申请的目的、技术方案及效果更加清楚、明确,以下参照附图并举实施例对本申请进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,本申请说明书所使用的词语“实施例”意指用作实例、示例或例证,并不用于限定本申请。

图2显示根据本申请的用于显示面板的驱动芯片的示意图,图3显示根据本申请的驱动芯片的电压配置示意图,图4显示根据本申请的伽马分压电路的示意图。

请一并参阅图2至4,驱动芯片10用于提供驱动信号给显示面板,以驱动显示面板上的像素产生灰阶亮度,进而显示影像。本申请的驱动芯片10适用于有源矩阵显示面板,例如有源矩阵液晶显示(active-matrixliquidcrystaldisplay,amlcd)面板和有源矩阵有机发光二极体(active-matrixorganiclight-emittingdiode,amoled)。

驱动芯片10包括栅极驱动电路和源极驱动电路20,栅极驱动电路提供扫描信号给显示面板上的扫描线,以一一开启像素中的薄膜电晶体(thin-filmtransistor,tft),源极驱动电路20提供数据信号给显示面板上的数据线,以一一将数据信号输入像素中,使像素作出不同程度的发光。本申请的驱动芯片10也可仅包括源极驱动电路20,而栅极驱动电路设置在另一个驱动芯片中。

源极驱动电路20包括伽马分压电路30,其利用分压电阻串来提供多个绑点灰阶电压。任两相邻的绑点灰阶电压再由电阻进行分压得出灰阶电压,灰阶电压即对应要输入到显示面板的像素的数据信号,也就是,灰阶电压使得像素作出不同程度的发光,产生灰阶亮度。

在驱动芯片10的电压配置上,驱动芯片10接收由系统电压vci升压而来的升压电压avdd,接地电压gnd并提供给驱动芯片10。升压电压avdd被分压为高基准电压gvdd,供源极驱动电路20使用。源极驱动电路20中的伽马分压电路30所提供的最高绑点灰阶电压gsp和最低绑点灰阶电压gsn由高基准电压gvdd分压而来。

gsp电压和gsn电压输入到源极驱动电路中,gsp电压作为最高绑点灰阶电压,gsn电压作为最低绑点灰阶电压。伽马分压电路30包括由多个分压电阻rp串联而成的分压电阻串rs。分压电阻串rs的一端接入gsp电压,另一端接入gsn电压。伽马分压电路30通过分压电阻串rs产生介于最高绑点灰阶电压gsp和最低绑点灰阶电压gsn之间的多个绑点灰阶电压vbpi。任两相邻的绑点灰阶电压经由电阻rq分压产生灰阶电压vgi。伽马分压电路30具有多值电压发生电路(multivaluedvoltageproducingcircuit)的功能。源极驱动电路20基于显示数据所表示的灰阶,选择灰阶电压vgi来施加给每个像素。

用以生成绑点灰阶电压vbpi的分压电阻rp所构成的电阻串(即分压电阻串rs)设置在伽马分压电路30的输入端;用以生成灰阶电压vgi的电阻rq所构成的电阻串设置在伽马分压电路30的输出端。分压电阻rp例如为可变电阻,而电阻rq例如为固定电阻,分压电阻rp的电阻值可通过校正信号进行校正,以实现伽马校正。

伽马分压电路30包括多个运算放大器(operationalamplifier,op)301。每个运算放大器301设置在每个绑点灰阶电压vbpi的输出通道上,也就是,每个绑点灰阶电压vbpi的输出通道上都设置有一个运算放大器301。具体地,运算放大器301设置在用来生成绑点灰阶电压vbpi的分压电阻rp和用来生成灰阶电压vgi的电阻rq之间。

运算放大器301具有正输入端、负输入端、输出端、正电源端和负电源端。运算放大器301的正输入端接收伽马电压vgamma(即,绑点灰阶电压vbpi),负输入端与输出端连接。运算放大器301用以当向像素施加灰阶电压时,防止由于电流供给原因引起的电压下降,具有进行阻抗变换的电压输出器的功能。

伽马分压电路30还包括低电压稳压电压源gvee和数字模拟转换器(digitaltoanalogconverter,dac)302。每个绑点灰阶电压vbpi的输出通道上的运算放大器301的正电源端接收数字模拟转换器302提供的电压,负电源端接收低电压稳压电压源gvee提供的电压。也就是,每个绑点灰阶电压vbpi的输出通道上的运算放大器301使用双电源供电。

低电压稳压电压源gvee用以提供稳定的低电压给运算放大器301。数字模拟转换器302会根据要输入到像素的数据电压(或数据信号),动态改变要提供给运算放大器301的正电源端的电压。由于提供给运算放大器301的正电源端和负电源端两端的压差,是根据要输入到像素的数据电压而动态调整的,因此可降低运算放大器301的功率耗损,从而降低驱动芯片整体的功耗。

针对低电压稳压电压源gvee,其可通过低耗损型(lowdropout,ldo)稳压电路来实现,低耗损型稳压电路是一种输入输出间电位差低,仍然可以运作良好的稳压电路。如图4所示,低耗损型稳压电路的输入电压可以来自于伽马分压电路30中的最低绑点灰阶电压gsn。低耗损型稳压电路的输入电压(即最低绑点灰阶电压gsn)和输出电压(即低电压稳压电压源gvee)之间的压差越小,则低耗损型稳压电路的损耗功率也越小。因此,较佳地,gvee电压大小尽量接近gsn电压,两者不要相差太大(较佳相差0.3v)。

数字模拟转换器302根据要输入到像素的数据电压,输出电压vdac给运算放大器301的正电源端。数字模拟转换器302可以根据需要的灰阶大小或数据电压大小,产生合适的输出电压vdac给运算放大器301,以减少运算放大器301本身的功耗。具体地,与一实施例中,当需要输入到像素的数据电压介于一组相邻绑点灰阶电压(如vbp4和vbp3)之间,则数字模拟转换器302的输出电压vdac为上一组相邻绑点灰阶电压(如vbp3和vbp2)中的较小绑点灰阶电压(即vbp2)。

图5为根据本申请的3比特数字模拟转换器的原理图,图6为根据本申请的用于数字模拟转换器的真值表。请参阅图5及图6,如下以3比特数字模拟转换器进行说明,v0、v3、v7、v13、v24、v36及v55代表绑点灰阶电压(即vbpi),b2、b1及b0代表3比特数值的每个位(digit),vout代表要输入到像素的灰阶或数据电压,vop代表数字模拟转换器302的输出电压vdac,即提供给运算放大器301的正电源端的电压。假设要输入到像素的数据电压vout为灰阶电压的值48,从图6显示的表可知,48灰阶落在55灰阶到36灰阶范围内,此时可通过微控制器(microcontrolunit,mcu)将3比特的数值“101”输入到数字模拟转换器302中,从而数字模拟转换器302将v24绑点灰阶电压输出到运算放大器301的正电源端。于另一个例子中,假设要输入到像素的数据电压vout为灰阶电压的值30,从图6显示的表可知,30灰阶落在36灰阶到24灰阶范围内,此时可通过微控制器将3比特的数值“100”输入到数字模拟转换器302中,从而数字模拟转换器302将v13绑点灰阶电压输出到运算放大器301的正电源端。通过此方式,数字模拟转换器302可实现输出到运算放大器301的正电源端的电压的动态调整。数字模拟转换器302的输入端可接收伽马分压电路30中每一路的绑点灰阶电压vbpi,并将其中一路的绑点灰阶电压vbpi输出到运算放大器301的正电源端。

本申请并提供一种显示产品,其包括上述的驱动芯片。驱动芯片的具体细节如上文所述,在此不再赘述。

现有技术中,驱动芯片提供固定的电源给伽马分压电路中每一个输出通道上的运算放大器,存在运算放大器功耗大而使得驱动芯片功耗不佳的问题。相对于现有技术,本申请的驱动芯片的伽马分压电路中每一个输出通道上的运算放大器的正电源端和负电源端的压差,是根据要输入到像素的数据电压而动态调整的,因此运算放大器的功耗可以有效降低,从而驱动芯片整体的功耗获得了改善。

综上所述,虽然本申请已以优选实施例揭露如上,但上述优选实施例并非用以限制本申请,本领域的普通技术人员,在不脱离本申请的范围内,均可作各种更动与润饰,因此本申请的保护范围以权利要求界定的范围为准。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1