利用难熔钎焊组装碳部件的方法

文档序号:3167911阅读:226来源:国知局
专利名称:利用难熔钎焊组装碳部件的方法
技术领域
本发明涉及利用基于碳化硅的钎焊接头通过难熔钎焊(refractory brazing)连 接碳部件的方法,由此获得的复合部件在微电子领域和太阳能光伏领域尤其有用。
背景技术
碳材料被广泛用于很多工业部门。但是,复杂形状的部件通常不容易制作。为了 克服这个困难,通常优选制造具有简单结构的基本元件,然后连接基本元件形成所希望的 复杂结构。目前,钎焊是一种普遍用于制造组合件的技术。石墨钎焊(graphite brazing)已经被很多作品所描述,通常用于研究石墨与各种 金属的连接情况[1-2],以及石墨与石墨的连接情况[3]。但是,目前可行的钎焊接头都包 括金属元素,所以不适于要求使用极纯硅的环境,例如微电子环境和太阳能光伏环境。

发明内容
本发明的目的正是提供一种满足这一纯度要求的新型钎焊技术。特别是,本发明提供一种用于钎焊碳部件的技术,所述碳部件在所形成的钎焊接 头的纯度方面特别有利。更特别的是,本发明提供一种用于碳部件的基于使用硅作为钎焊材料的钎焊技 术。本发明特别提供一种除了碳和硅外无需其他元素的连接方法,因此尤其适合形成 专用于微电子领域和太阳能光伏领域的部件。特别是,本发明利用了当液体硅与碳材料接触时,通过反应在其界面形成一层碳 化硅[4]这一发现。这种反应可以持续进行,直至形成厚度通常介于ΙΟμπι 20μπι之间 的层,所述层的生长受到碳在其厚度中的扩散的限制。已知硅在碳基质中的渗透深度主要 取决于所述基质的孔隙率及两种材料接触的温度。对于例如为挤压成形石墨的材料,深度 通常可达到厘米级,但对于细粒石墨而言,深度为不到一毫米。关于玻璃碳,未观察到显著 渗透,碳化硅层仅形成于界面。本发明进一步的目的是提供一种钎焊技术,可准确控制液体硅在待连接的碳部件 中的渗透。更准确而言,本发明涉及一种用于连接至少两个具有低于ΙΟμπι的颗粒尺寸的碳 部件的方法,该方法至少包括下述步骤a)定位安置待连接的碳部件和硅元件,所述硅元件特别的为硅条的形式,所述元 件被插入到所述部件之间;和b)使结合的组合件保持在压力作用下,并且在惰性气氛中在高于1410°C的温度 下进行加热以熔化硅,并在所述部件的界面形成含有至少一个碳化硅桥的接头。在优选实施方式中,在步骤b)之后得到的组合件可以通过后续的步骤C)被置于 温度高于步骤b)的温度下,以消耗所有熔融硅,从而在所述碳部件的界面的整个表面上形成碳化硅接头。因此,本发明方法包括仅实施步骤a)、b)的第一实施方式以及至少实施三个步骤 a)、b)和c)的第二实施方式。因此,根据钎焊的通常条件(特别是关于热循环和/或应力行为的规范),本发明 能够有利的采用第一实施方式,其中组合件的机械强度是通过孤立的SiC桥获得的,或者 采用第二实施方式,其中延长的高温退火使硅完全转变为Sic。在步骤b)之后得到的接头中较佳的含有多个碳化硅桥,所述多个碳化硅桥可以 不连续地分布在界面的表面上。在步骤c)之后获得的碳化硅接头较佳的为连续的。根据第一实施方式,利用本发明方法在两个碳部件之间制备的钎焊接头由含有至 少一个也称为SiC接头的碳化硅桥的复合区域构成。在本发明的上下文中,复合区域是指,由至少两相(石墨和碳化硅)构成的结构, 并且还可能含有(未反应的)硅。在本发明的上下文中,SiC接头是指,在待连接的两部件之间的物理途径。这样的 接头可以较佳的具有例如为至少为ι μ m的直径和30 μ m的长度。这样的接头如图2所示。在这一可替代方案中,并不是全部初始的硅都被消耗掉。剩余的硅通常基本上分 布在钎焊接头的两端,如果需要,可以利用通常已知的技术将其从两端除去。根据在本发明方法中包括强制执行步骤C)的第二实施方式,钎焊接头由在两个 部件的界面上的包含碳化硅接头的复合区域所构成,该复合区域在所述界面的整个长度上 延伸。在所述第二实施方式中钎焊接头较佳的包括少于5%的剩余固体硅,并且,更特别的, 无剩余固体硅。在待连接的碳部件具有开孔多孔结构的情况下,存在于钎焊接头中的SiC 接头在侧面上被复合区域所包围。在接头和复合区域,所有熔化的硅都被转变成SiC,石墨 的孔隙中没有剩余任何未反应的硅。有利的,使用硅作为钎焊材料能够制作复杂形状的部件,该碳部件一方面纯度令 人满意,所以适合最苛刻的环境。根据上述第二实施方式形成的钎焊接头由于完全没有硅,所以被证明适合在高于 硅熔点的温度下使用,甚至高达2000°C。硅元件作为起始材料,除了待连接的碳部件外,本方法还至少使用一个硅元件。从上文可以看出,当所述硅元件被加热至高于硅熔点的温度时,所述硅元件被转 变为熔化的硅。通过与相邻的碳表面相互作用,熔化的硅在待连接的两个部件之间形成一 个或多个SiC桥,或者甚至在所述界面的整个长度上形成SiC接头,并且,如果碳材料为多 孔材料,则在两个部件的界面上形成复合区域。在第一种可替代方案中,根据本发明的实施方式不包括步骤C),也就是说,并非所 有的熔化的硅都被消耗掉。在第二种可替代方案中,所有的熔化的硅被完全消耗掉。较佳的,这种硅元件的尺寸,特别是其面积被调整为待连接的两个碳部件的表面 的面积。优选地,所述硅元件为硅板或硅条。其厚度可以在50μπι和800μπι之间,尤其优 选在300 μ m和500 μ m之间。
以硅元件表示的硅的数量必须根据所希望的钎焊接头的类型、待连接的碳部件的 类型进行调整,尤其是根据碳部件各自的孔隙率程度和为进行步骤b)或甚至步骤C)(如果 考虑进行步骤c))而选择的温度进行调整。实际上,依待连接的两个碳部件的孔隙率而定,步骤b)中进行的反应也可以导致 在所述部件的界面的两侧的熔融碳的深度渗透,从而形成复合区域,其厚度大于利用无开 孔的碳部件(例如玻璃碳)而获得的厚度。本领域技术人员通过常识能够根据所希望的钎焊接头的类型而调整硅数量。例如,硅条的厚度可以调整为在300μπι 500μπι的范围,使得在步骤b)的熔化 状态下,于0. 2 !Bbar的压力下,熔化的硅在待连接的两个部件的界面形成具有10 μ m 40μπκ尤其是20μπι 30μπι的厚度的液态接头(liquid joint),该接头具有分布在 Ιμπι 5μπι范围内的微粒尺寸,并具有0 40%的开孔孔隙率。碳部件更特别的是,在本发明的上下文中,基于碳材料的层指的是基本上由碳原子组成 的材料。更准确而言,在本发明的上下文中,碳材料是一种相对于其总重量的碳原子的重 量含量高于95%、特别是高于99%的材料。更特别地,所述材料为石墨。本发明方法对于具有1 10 μ m、优选1 5 μ m的微粒尺寸的碳材料最有利。该方法也适用于例如玻璃碳的材料。在这种情况下,复合区域的厚度实际上为零, 并且所有的过程仅发生在两个部件之间的界面处。碳材料的孔隙率以体积计可以介于0% (玻璃碳的情况下) 40%的范围。该孔隙率可以通过压汞法来表征。如果待连接的表面具有平面(planeity)和/或粗糙的缺陷,这些缺陷必须小于期 望的接头厚度。否则,必须研磨表面。如上所述,依所选石墨的级别而定,可以形成接头和可选的形成复合区域,该复合 区域根据熔融硅向孔隙中的渗透率(渗透0 Imm)而具有可变尺寸。本方法适合具有宽尺寸范围的部件的钎焊,部件的尺寸级别通常介于Imm Im的 范围。本发明还涉及通过上述方法连接的部件。通过阅读下面描述的用于说明而非限定的内容,并参照附图,本发明的其他特征 和优点将变得更清楚,应当注意,由于清晰的原因,在附图中,具有可见结构的材料的各层 不是按比例表示的,某些部件的尺寸被大幅度扩大了。


图1是待连接的两个部件的示意图,两个部件之间插有硅条。图2是已经经过步骤b)的加热条件的图1中的组合件的示意图。图3是已经经过步骤C)的条件的图2中的组合件的示意图。
具体实施例方式步骤b)在步骤b)中,可以在被控制的惰性气体环境中,于1410°C (硅的熔点) 1600°C的 温度范围内,优选于1450°C 1550°C的温度范围内对待钎焊的碳部件和硅部件进行加热。可以将这一热处理进行10分钟至1小时,优选进行20 40分钟。可以根据是否进行后续的步骤c)来优化具体的加热温度和加热时间。因此,在本发明方法不进行步骤C)的情况下,温度可以较佳的被调整到介于 1450°C 1550°C的范围内并持续10分钟,或者甚至持续20 40分钟。另一方面,在本发明方法有必要包括步骤C)的情况下,步骤b)中进行的热处理的 温度可以在1410°C 1500°C的范围内变化,特别是在1430°C 1500°C的范围内变化,并持 续10分钟至1小时,或者甚至持续10分钟 40分钟。关于被采用的压力,优选调整压力使得位于待连接的两部件之间的熔融硅的液流 厚度等于所希望的待形成的碳化硅接头的厚度。这一压力也可以导致在界面两端并在接头外部形成液态Si突出部分(见图2)。在步骤b)中平行发生以下几个过程在待连接的部件的粗糙度即部件之间的距离最小的位置通过反应形成碳化硅桥; 以及在部件具有多孔石墨结构的情况下,熔融硅渗透,直至界面处的孔被反应和碳化 硅的形成所关闭,并由此中断了渗透区的供给。在这一渗透过程结束时获得最大渗透深度 (见图2),并且未反应的硅存在于孔隙中,这一区域是复合区域。综上所述,在步骤b)之后,界面上局部形成SiC桥,在两个部件的碳基质中获得最 大渗透深度,并且在压力的作用下,于界面末端的部件的侧壁上形成液态突出部分。为了控制过剩的液体体积以及防止硅浸湿石墨部件外部,可以如钎焊过程中通常 所做的那样,在接头的两侧设置膨胀外壳。步骤C)步骤c)可以在步骤b)后进行,其类似于第二退火,该第二退火被设计来通过SiC 桥的增加和/或已形成的桥的增厚来在界面处形成接头。这一第二退火可以在1500°C 1750°C、优选1600 V 1700 V的温度范围内获得。存在于侧面突出部分中的硅接下来利用毛细作用被输送至未反应区域。同时,观 察到渗透区域的复合结构成型。如图3所示,当接头形成并且所有硅被耗尽时,步骤c)结束。第二退火的退火时间可以介于在3 8小时的范围之间,优选3 6小时。为了确保在步骤b)后使在部件侧壁上的形成突出部分的硅(其中如果有膨胀外 壳,形成突出部分的硅被回收到膨胀外壳中)完全返回到接头的仍未反应区域,可以在待 钎焊的部件中蚀刻表面通道以传输硅。由于这些通道本身因Si+C — SiC反应可能被堵塞,所以,优选这些通道的直径略 微大于接头的厚度。在这些通道为被机械加工过的材料的情况下,通道的表面粗糙度可以 满足输送硅的要求。现在通过下面的实施例说明本发明,显然该实施例用于说明,而非限制本发明。
起始材料待连接的部件为Carbone Lorraine 2020石墨部件,具有以体积计为15%的孔隙 率,并且微粒尺寸为5 μ m。硅板为IOX 10cm2,其厚度为500 μ m。实施例1 利用2. 5bar的压力使其间插有硅条的两个碳部件保持结合。将组合件在惰性气 体氛围(氩气)中加热至1500°C,保持30分钟。停止加热后,将组合件以5°C/min的速度 冷却至900°C,然后自然冷却至环境温度。由此获得的钎焊接头由含有碳化硅桥的复合区域构成。实施例2 利用2. 5bar的压力使其间插有硅条的两个碳部件保持结合。将组合件在惰性气 体氛围(氩气)中加热至1460°C,保持10分钟,然后加热至1600°C,保持5小时。停止加 热后,接下来将组合件以5°C /min的速度冷却至900°C,然后自然冷却至环境温度。与实施例1中获得的钎焊接头相反,这个钎焊接头无硅。渗透区域的深度为400 600微米,并且所形成的SiC接头的厚度为10 20微米。引用的文献[ 1 ] L. Yinquan, Z. Zhengde , D. Chaoquan and S. Yusheng, Materials Characterization 44(2000)425[2] US 6,877,651,[3] US 3,946,932,[4]A. Favre,H. Fuzellier and J. Supti 1,Ceramics International 29(2003)23权利要求
1.一种用于连接至少两个碳部件的方法,该碳部件的颗粒尺寸小于10 μ m,所述方法 至少包括下述步骤a)定位待连接的所述碳部件和硅元件,所述硅元件尤其是硅条形式的硅元件,所述元 件被插入到所述部件之间;b)使结合的组合件保持在压力作用下,并在惰性气氛中,于高于1410°C的温度下加热 所述组合件,以熔化硅并在所述部件的界面处形成含有至少一个碳化硅桥的接头;以及c)将在步骤b)之后获得的所述组合件置于高于步骤b)的所述温度的温度下,以消耗 所有熔化的硅,并在所述碳部件的界面的整个表面上形成碳化硅接头。
2.根据前一权利要求所述的方法,其特征在于,在步骤c)之后获得的钎焊接头完全没 有剩余的固体硅。
3.根据前述权利要求中任一项所述的方法,其中,所述碳部件的开孔孔隙率以体积百 分比计为0 40%。
4.根据前述权利要求中任一项所述的方法,其中,所述碳材料的颗粒尺寸为Iym 5 μ m0
5.根据前述权利要求中任一项所述的方法,其中,在两个被连接的部件的界面形成的 接头的厚度在10 μ m 40 μ m之间,特别是在20 μ m 30 μ m之间。
6.根据权利要求1 5中任一项所述的方法,其中,步骤b)包括在惰性气氛中,于 1410°C 1600°C的温度范围、特别是1450°C 1550°C的温度范围进行加热,特别是加热10 分钟 1小时,或者甚至加热20 40分钟。
7.根据权利要求1 6中任一项所述的方法,其中,步骤b)是在1410°C 1500°C之 间的温度下、特别是1430°C 1500°C之间的温度下进行,特别是进行10分钟 1小时、 或者甚至10分钟 40分钟;并且,步骤c)是在1500°C 1750°C之间的温度下、特别是 1600°C 1700°C之间的温度下进行,特别是进行3 8小时、或者甚至3 6小时。
8.根据权利要求1 7中所述的方法获得的连接的部件,所述部件通过所述部件的界 面的整个表面上的碳化硅接头连接。
全文摘要
本发明涉及利用基于碳化硅的钎焊接头组装碳部件的方法。本发明还涉及利用这种方法组装的部件。
文档编号B23K35/30GK102143926SQ200980134950
公开日2011年8月3日 申请日期2009年9月3日 优先权日2008年9月5日
发明者丹尼斯·卡梅尔, 尼古拉斯·于斯塔泽普罗斯, 拉纳·伊斯雷尔, 简-保罗·加朗代, 贝亚特丽斯·德勒韦 申请人:原子能与替代能源委员会, 国立格勒诺布尔综合理工学院
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1