一种烷氧基芴衍生物及其醚类制剂、面异质结器件和应用的制作方法

文档序号:14946283发布日期:2018-07-17 21:31阅读:284来源:国知局

本发明属于有机光电技术领域,特别涉及一种烷氧基芴衍生物及其醚类制剂、面异质结器件和在有机半导体元器件中的应用。



背景技术:

有机发光二极管(oled)因具有高效、低电压驱动,易于大面积制备等优点得到人们广泛的关注。oled的研究始于20世纪50年代,直到1987年美国柯达公司的邓青云博士采用三明治器件结构研制出了oled器件在10v直流电压驱动下发光亮度可达到1000cd·m-2,使oled获得了划时代的发展。

oled器件由阴极、阳极和中间的有机层构成,有机层一般包括电子传输层、发光层和空穴传输层,首先电子和空穴分别从阴阳两极注入,并分别在功能层中进行迁移,然后电子和空穴在合适的位置形成激子,激子在一定范围内进行迁移,最后激子发光。

为了早日实现有机/高分子电致发光器件的商业化,除了应满足能够实现全色显示、单色纯度高、热化学稳定性好和使用寿命长等要求外,还希望器件具有高的发光效率。目前提升器件效率最直接的方法是使用多层器件结构,其中层与层之间形成的面异质结可以实现载流子平衡和高效的激子利用。

对于蒸镀型的小分子有机半导体材料而言,因为它们在高真空中的升华温度比较低(低于分解温度),通过真空热蒸镀工艺可以非常容易地实现任意多层的器件结构。然而,对于只能溶液加工的有机半导体材料,制作多层器件结构就非常具有挑战性了。因为大多数的半导体聚合物都具有相似的溶解性,通常都溶于常用的卤代烃和芳香烃类溶剂。因此,在加工制作多层器件时,加工上层薄膜时所使用的溶剂会对底层薄膜造成渗透、侵蚀、互溶、共混等现象,无法获得平整的有机-有机面异质结界面。



技术实现要素:

为了克服上述现有技术的缺点与不足,本发明的首要目的在于提供一种烷氧基芴衍生物。本发明的烷氧基芴衍生物在醚类溶剂中具有良好的溶解性,并且具有优秀的半导体性能,可以用于溶液法制备面异质结器件结构,借助异质结独特的能级结构,实现单一半导体无法实现的功能。

本发明目的在于提供一种基于上述烷氧基芴衍生物的醚类制剂。

本发明再一目的在于提供一种基于上述烷氧基芴衍生物的面异质结器件。

本发明再一目的在于提供上述烷氧基芴衍生物在有机半导体元器件中的应用。

本发明的目的通过下述方案实现:

一种可溶于醚类溶剂的烷氧基芴衍生物,其结构式中含有式(1)单元,且式(1)单元的含量占所述衍生物总的相对分子质量≥50%:

l为可能的连接位点;

x相同或不同的分别选自c-h、c-o-r或c-r;进一步的,一个或一个以上的x可彼此链接且可形成环;

r相对独立地为取代的或未取代的具有1~40个碳原子的脂肪族、芳香族或杂芳族有机基团。

所述的取代是指一个或一个以上氢原子被d、f或cn取代。

本发明还提供一种基于上述烷氧基芴衍生物的醚类制剂。上述烷氧基芴衍生物可溶于醚类溶剂,从而得到相应的醚类制剂。所述的醚类溶剂优选为二氧六环、二氧五环和三氧六环等系列溶剂。

本发明的可溶于醚类溶剂的烷氧基芴衍生物可应用于有机半导体元器件中,特别是在发光二极管、光伏电池、场效应晶体管、平板显示器中的应用。

所述应用中,本发明的可溶于醚类溶剂的烷氧基芴衍生物可溶解于醚类溶剂中,通过旋涂、喷打印或印刷方法等方式成膜,得到功能层,从而应用于有机电子器件中。所述功能层通过醚类溶剂进行加工得到,可沉积在极性较弱的有机功能分子薄膜层上,形成面异质结器件结构。

本发明还提供上述基于本发明烷氧基芴衍生物的面异质结器件。

本发明相对于现有技术,具有如下的优点及有益效果:

(1)本发明制备的基于烷氧基芴衍生物材料,由于良好的半导体性能,有利于获得高效率的电子元器件。

(2)本发明制备的材料在醚类溶剂里面具有较好的溶解性、成膜性和薄膜形态稳定性,在制备面异质结时不会对下功能层薄膜造成渗透、侵蚀、互溶、共混等现象,可以获得平整的有机-有机面异质结界面。

(3)本发明制备的面异质结无需真空、退火,不需要针对下功能层进行预处理,工艺简单。

附图说明

图1为化合物p1电致发光光谱图。

图2为化合物p1薄膜的光致发光谱图。

图3为化合物p1薄膜的紫外-可见吸收光谱谱图。

图4为化合物p1的循环伏安(cv)谱图。

图5为基于本发明烷氧基芴衍生物材料的面异质结期间结构示意图。

具体实施方式

下面结合实施例对本发明作进一步详细的描述,但本发明的实施方式不限于此。

下列实施例中涉及的物料均可从商业渠道获得。

实施例1:化合物1的制备

往100ml的两口瓶中加入2,7-二溴芴酮(3.38g,10mmol)、苯酚(2.82g,30mmol)、甲基磺酸(3.36g,35mmol)和四氯化碳(30ml),氮气保护下,85℃加热搅拌反应24小时。冷却后抽滤,滤渣先后用蒸馏水(150ml)和二氯甲烷(150ml)洗涤两次,再用硅胶柱进一步提纯(淋洗剂为石油醚:乙酸乙酯=6:1),得到白色固体4.22g,产率82%。1hnmr、13cnmr、ms和元素分析结果表明所得到的化合物为目标产物,其化学反应方程式如下所示:

实施例2:化合物2的制备

往300ml的两口瓶中加入化合物1(5.08g,10mmol)、碳酸钾(4.14g,30mmol)和n,n-二甲基甲酰胺(50ml),氮气保护下,加热至90℃下搅拌2小时,再加入1-溴-2-乙基己烷(4.25g,22mmol),90℃继续反应8小时。反应液冷却后,用300ml二氯甲烷萃取产物,用饱和氯化钠水溶液洗涤五遍除去n,n-二甲基甲酰胺,干燥,过滤,减压蒸馏除去有机相中的溶剂。粗产物用硅胶柱提纯(淋洗剂为石油醚),得到白色固体6.44g,产率88%。进一步用正己烷/乙醇重结晶可得到聚合纯的无色晶体。1hnmr、13cnmr、ms和元素分析结果表明所得到的化合物为目标产物,其化学反应方程式如下所示:

实施例3:化合物3的制备

往300ml的两口瓶中加入2,7-二溴-9,9-二(4-(2-乙基己烷氧基)苯基)芴(7.33g,10mmol)、双-3,3-二甲基-2-丁酮二硼酯(6.35g,25mmol)、乙酸钾(2.94g,30mmol)、1,1’-双二苯基膦二茂铁二氯化钯(0.37g,0.5mmol)和二氧六环(60ml)。在避光和氮气保护下,加热至80℃反应12小时。反应液冷却后,减压蒸馏除去二氧六环,用二氯甲烷萃取产物,饱和氯化钠水溶液洗涤三遍,干燥,过滤。蒸去二氯甲烷后用硅胶柱提纯(淋洗剂为石油醚:二氯甲烷=4:1),用四氢呋喃/乙醇重结晶得到白色固体6.29g,产率76%。1hnmr、13cnmr、ms和元素分析结果表明所得到的化合物为目标产物,其化学反应方程式如下所示:

实施例4:聚合物p1的制备

1)化合物4的制备

氮气保护下,往150ml的两口瓶中加入购买的3,7-二溴二苯并噻吩(3.42g,10mmol)和50ml乙酸,加热至回流,缓慢加入过氧化氢水溶液(4ml,40mmol),继续回流反应12小时。冷却后过滤,得到白色晶体3.37g,产率90%。1hnmr、13cnmr、ms和元素分析结果表明所得到的化合物为目标产物,其化学反应方程式如下所示:

2)聚合物p0的合成:氮气保护下,将化合物3(248.0mg,0.3mmol)、化合物2(219.8mg,0.3mmol)溶解在10ml甲苯中,再加入四乙基羟胺水溶液(1ml,wt%=25%)、醋酸钯(1mg)和三环己基膦(2mg);加热至85℃反应24小时后,加入苯硼酸(20mg)封端6小时,再加入溴苯(0.2ml)封端6小时;反应停止,冷却后,将有机相沉析在甲醇(200ml)中,过滤,干燥后,粗产物先后用甲醇、丙酮、正己烷抽提,用甲苯溶解聚合物,以甲苯为淋洗剂,用中性氧化铝进行柱层析提纯;浓缩聚合物的甲苯溶液,再次沉析在甲醇溶液中,过滤,干燥,得到浅黄绿色纤维状聚合物。gpc:mn=33.2kda,pdi=1.65。

3)聚合物p1的合成:氮气保护下,将化合物3(248.0mg,0.3mmol)、化合物2(175.8mg,0.24mmol)、化合物4(22.4mg,0.06mmol)溶解在10ml甲苯中,再加入四乙基羟胺水溶液(1ml,wt%=25%)、醋酸钯(1mg)和三环己基膦(2mg);加热至85℃反应24小时后,加入苯硼酸(20mg)封端6小时,再加入溴苯(0.2ml)封端6小时;反应停止,冷却后,将有机相沉析在甲醇(200ml)中,过滤,干燥后,粗产物先后用甲醇、丙酮、正己烷抽提,用甲苯溶解聚合物,以甲苯为淋洗剂,用中性氧化铝进行柱层析提纯;浓缩聚合物的甲苯溶液,再次沉析在甲醇溶液中,过滤,干燥,得到浅黄绿色纤维状聚合物。gpc:mn=125kda,pdi=2.22。

实施例5:基于聚合物p0的醚类制剂的配制

称取20mg的聚合物p0于试剂瓶,加入一颗磁力搅拌子和≥0.2ml的1,4-二氧六环溶剂,密封后≥60摄氏度加热搅拌1小时以上即可获得无色澄清的聚合物p0制剂。

实施例6:基于聚合物p1的醚类制剂的配制

称取20mg的聚合物p1于试剂瓶,加入一颗磁力搅拌子和≥0.5ml的1,4-二氧六环溶剂,密封后≥60摄氏度加热搅拌1小时以上即可获得淡青色透明的聚合物p1制剂。

实施例7:基于聚合物p1的面异质结型电致发光器件的制备

在预先做好的氧化铟锡(ito)玻璃上,其方块电阻为10-20ω/□,先依次用丙酮,洗涤剂,去离子水和异丙醇超声清洗,等离子处理10分钟。在ito上旋涂掺杂有聚苯乙烯磺酸的聚乙氧基噻吩(pedot:pss)膜,厚度约为40nm。pedot:pss膜在真空烘箱里80℃下干燥8小时。随后在一部分覆盖有pedot:pss的ito玻璃上,将聚二辛基芴(pfo)的二甲苯溶液(0.5wt%)旋涂在pedot:pss膜的表面作为面异质结的下半部分,厚度为20nm;另一部份用1.5wt%的溶液旋涂,厚度为70nm。接着在20nmpfo表面旋涂p1的1,4-二氧六环溶液(0.6wt%)作为面异质结的上半部分,厚度为50nm;最后在pfo和p1上依次蒸镀一薄层金属钡(4nm)和120nm厚的金属铝层。器件结构为:ito/pedot:pss/pfo/ba/al和ito/pedot:pss/pfo/p1/ba/al。对其进行检测,结果见图1~图4。图1为聚合物p1电致发光光谱图。图2为聚合物p1薄膜的光致发光谱图。图3为聚合物p1薄膜的紫外-可见吸收光谱谱图。图4为聚合物p1的循环伏安(cv)谱图。电致发光器件性能见表1。

表1双层聚合物电致发光器件性能

可以看到,基于本发明烷氧基芴衍生物的双层聚合物的面异质结型器件的性能比单层p1的有明显提高。

上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1