一种大孔温敏两亲性水凝胶材料及其制备方法与流程

文档序号:18088032发布日期:2019-07-06 10:37阅读:695来源:国知局
一种大孔温敏两亲性水凝胶材料及其制备方法与流程

本发明属功能高分子材料领域,具体涉及一种新型大孔温敏两亲性水凝胶材料pnipam-aac-span80及其制备方法。



背景技术:

环境敏感性水凝胶,又称智能型水凝胶,由于其结构中特殊的官能团结构导致这种聚合物的物理、化学性质会随着外界环境刺激在特定范围内的变化而出现突变。这类聚合物具有易于加工、可化学修饰及形态可裁剪性,可以把一些常规的配体分子引入材料基体,再组装入活性组分,通过温度、ph等加以调控,使其对目标组分达到“收”、“放”自如的效果。聚n-异丙烯酰胺(pnipam)水凝胶是目前研究比较广泛的一类智能型水凝胶,因其分子链上同时具有亲水性的酰胺基-conh-和疏水性的异丙基-ch(ch3)2,使其在32℃(lcst)左右能够发生可逆的非连续体积相转变,具有温度和ph双重敏感性。在油水两相体系中,由于其亲水性较强,降低了其与油相间的物质传递效率。span80是一种亲油性乳化剂,其能够与丙烯酸发生酯化反应形成疏水复合体,将该疏水基团引入pnipam凝胶,能够有效增加凝胶的亲油性,提高其在油水两相间的物质传递效率。

水凝胶材料pnipam的反应方程式

研究表明,孔结构能够增大凝胶表面积,同时为物质传递提供通道,减小传递阻力,提高有效组分的负载量及传递速率。span80自身的乳化作用使其能够作为制孔剂对聚合凝胶孔结构进行有效地调控,获得大孔温敏两亲性水凝胶。该类水凝胶能够感知外界环境变化并做出响应,作为一种功能材料在提取分离,药物缓控释,废水处理,催化剂负载等方面具有良好的应用前景。



技术实现要素:

本发明的目的在于提供一种新型大孔温敏两亲性水凝胶材料及其制备方法。

基于上述目的,本发明采用以下技术方案:

所述新型大孔温敏两亲性凝胶pnipam-aac-span80以n-异丙基丙烯酰胺(nipam)为温敏性单体,丙烯酸(aac)与span80酯化产物为疏水单体,偶氮二异丁腈(aibn)为引发剂聚合形成。

具体通过如下方法实现:

加入温敏性单体和疏水单体、引发剂、偶联剂于烧瓶中,然后加入无水乙醇和水溶液,将添加完后的烧瓶置于40℃~90℃的水浴中反应;反应结束后将烧瓶取出,得到大孔温敏两亲性凝胶材料。

水凝胶材料pnipam-aac-span80的反应方程式

所述温敏性单体为甲基丙烯酸二甲氨基乙酯(dmaema)、n-异丙基丙烯酰胺(nipam)、丙烯酰胺(am)中的一种或几种;

所述疏水单体为丙烯酸(aac)与span80的酯化产物;

温敏性单体和疏水单体质量份比为1:0.05~0.1;

所述引发剂为偶氮二异丁腈(aibn)、过硫酸钾、叔丁基过氧化氢(tbhp)中的一种或几种;

所述偶联剂为n,n’-亚甲基双丙烯酰胺(mbaa);

所述疏水单体通过以下方法制备而成:

酯化产物aac-span80的反应方程式

(1)加入span80、甲苯于烧瓶内,搅拌加热到80℃~150℃,再加入丙烯酸、对苯二酚,对甲苯磺酸,反应直至分水器没有水分排出;

(2)将反应产物加入分液漏斗中,先用na2co3溶液洗涤,除去过量的丙烯酸和对甲苯磺酸,洗涤后静置分层,再用nacl溶液洗涤,静置分层后除去水相,得到上清的棕色油状物即为酯化产物aac-span80和甲苯的混合物;

(3)旋蒸aac-span80和甲苯的混合物,直至产物质量不再变化时,得到纯化的酯化产物aac-span80。

本发明的优点在于:

(1)将aac-span80大分子引入凝胶材料中,不仅能够增加凝胶的亲油性,且能够作为致孔剂提高凝胶表面孔结构,增大比表面积。该方法制备的大孔温敏两亲性凝胶pnipam-aac-span80同时具有温度和ph敏感性,且在强酸和高温条件下,其体积发生明显的皱缩;

(2)该制备方法稳定性好、反应条件温和、工艺简单;

(3)所得凝胶大孔结构及其两亲性可控;

(4)所得凝胶具有温度、ph双重敏感性,两亲性及内部传递阻力小等特性,在提取分离,药物缓控释,催化剂负载等方面具有很好的应用前景。

附图说明

图1是span80和aac-span80的红外图谱;

图2是pnipam和pnipam-aac-span80的红外图谱;

图3是水凝胶材料pnipam的扫描电镜图;

图4是水凝胶材料pnipam-aac-span80(0.05)的扫描电镜图;

图5是水凝胶材料pnipam-aac-span80(0.08)的扫描电镜图;

图6是水凝胶材料pnipam-aac-span80的温度敏感性测试;

图7是水凝胶材料pnipam-aac-span80的两亲性测试。

具体实施方式

下面结合具体实施例对本发明做进一步描述。

实施例1制备水凝胶材料pnipam

称取1g单体n-异丙基丙烯酰胺(nipam)、0.02g引发剂偶氮二异丁腈(aibn)、0.1g偶联剂n,n’-亚甲基双丙烯酰胺(mbaa)、再加入质量百分含量50%的乙醇溶液,将添加完后的烧瓶置于75℃的水浴中反应,反应结束后将烧瓶取出,得到凝胶材料pnipam。制备的凝胶材料pnipam的红外光谱如图2,电子扫描电镜如图3。

实施例2制备丙烯酸和span80的酯化产物,即疏水单体aac-span80

称取4.826gspan80、20ml甲苯于烧瓶内,搅拌加热到80℃~150℃,再加入0.72g丙烯酸、0.044g对苯二酚,0.388g对甲苯磺酸,反应直至分水器没有水分排出;将反应产物加入分液漏斗中,先用na2co3溶液洗涤,除去过量的丙烯酸和对甲苯磺酸,洗涤后静置分层,再用nacl溶液洗涤,静置分层后除去水相,得到上清的棕色油状物,即为酯化产物aac-span80和甲苯的混合物;旋蒸aac-span80和甲苯的混合物,直至产物质量不再变化时,得到纯化的酯化产物aac-span80。制备的酯化产物aac-span80的红外光谱如图1。

实施例3制备大孔温敏两亲性水凝胶材料pnipam-aac-span80

称取1g单体n-异丙基丙烯酰胺(nipam)、0.03g单体丙烯酸(aac)与span80的酯化产物aac-span80、0.02g引发剂偶氮二异丁腈(aibn)、0.2g偶联剂n,n’-亚甲基双丙烯酰胺(mbaa)、再加入质量百分含量为50%的乙醇溶液,将添加完后的烧瓶置于75℃的水浴中反应,反应结束后将烧瓶取出,得到大孔温敏两亲性凝胶材料pnipam-aac-span80。

实施例4制备大孔温敏两亲性水凝胶材料pnipam-aac-span80

称取1g单体n-异丙基丙烯酰胺(nipam)、0.05g单体丙烯酸(aac)与span80的酯化产物aac-span80、0.02g引发剂偶氮二异丁腈(aibn)、0.2g偶联剂n,n’-亚甲基双丙烯酰胺(mbaa)、再加入质量百分含量为50%的乙醇溶液,将添加完后的烧瓶置于75℃的水浴中反应,反应结束后将烧瓶取出,得到大孔温敏两亲性凝胶材料pnipam-aac-span80。制备的大孔凝胶材料pnipam-aac-span80的红外光谱如图2,电子扫描电镜如图4,凝胶材料孔径范围0~20μm。

实施例5制备大孔温敏两亲性水凝胶材料pnipam-aac-span80

称取1g单体n-异丙基丙烯酰胺(nipam)、0.08g单体丙烯酸(aac)与span80的酯化产物aac-span80、0.02g引发剂偶氮二异丁腈(aibn)、0.2g偶联剂n,n’-亚甲基双丙烯酰胺(mbaa)、再加入质量百分含量为50%的乙醇溶液,将添加完后的烧瓶置于75℃的水浴中反应,反应结束后将烧瓶取出,得到大孔温敏两亲性凝胶材料pnipam-aac-span80,其电子扫描电镜如图5,凝胶材料孔径约50μm。

实施例6制备大孔温敏两亲性水凝胶材料pnipam-aac-span80

称取1g单体n-异丙基丙烯酰胺(nipam)、0.10g单体丙烯酸(aac)与span80的酯化产物aac-span80、0.02g引发剂偶氮二异丁腈(aibn)、0.2g偶联剂n,n’-亚甲基双丙烯酰胺(mbaa)、再加入质量百分含量为50%的乙醇溶液,将添加完后的烧瓶置于75℃的水浴中反应,反应结束后将烧瓶取出,得到大孔温敏两亲性凝胶材料pnipam-aac-span80。

应用例1aac-span80加入量对水凝胶材料pnipam-aac-span80孔径的影响

为了观察aac-span80加入量对水凝胶材料pnipam-aac-span80孔径的影响,做了扫描电镜图进行分析。如图3常规pnipam凝胶的表面形态致密且光滑,有一些褶皱但没有孔隙,相比之下,pnipam-aac-span80水凝胶(图4和图5)拥有丰富的孔隙,这些凝胶的形貌是粗糙的。在图4中,aac-span80加入量为0.05时,凝胶材料的孔径为约0-20μm,具有厚孔壁,而aac-span80加入量为0.08时,凝胶材料的孔径增加到50μm,孔壁更薄。随着反应溶液中aac-span80的量增加,孔体积和孔数逐渐增加。原因可能是pnipam和aac-span80之间的自由基共聚合之间的互补作用。水凝胶的最大孔径意味着aac-span80的加入量在控制pnipam-aac-span80水凝胶的孔径方面起主导作用。反应介质中的大分子乳化剂aac-span80不仅可以作为凝胶疏水基团的亲油性,而且可以是有效的致孔剂。应用例2温度对水凝胶材料pnipam-aac-span80溶胀度的影响

为了测试pnipam-aac-span80水凝胶材料的温度敏感性,测定了不同aac-span80含量的水凝胶在25℃,30℃,35℃,40℃和45℃水中的溶胀度。图6显示pnipam和pnipam-aac-span80水凝胶在25℃的水中在实验温度范围内具有最高的溶胀度。其中,pnipam水凝胶在水中的最大溶胀度为7.34。当aac-span80的添加量为0.03g,0.05g,0.08g和1g时,水凝胶在水中的最大溶胀度为6.60、3.10、2.12和1.35。聚合物表面活性剂aac-span80的引入降低了pnipam水凝胶的溶胀度。此外,pnipam和pnipam-aac-span80水凝胶的溶胀度与温度非常相似,在30-35℃之间急剧下降。pnipam和pnipam-aac-span80水凝胶在30℃时的溶胀度分别为6.60、6.05、5.75、5.66和5.15,但在35℃时分别为3.10、2.74、2.63、2.47、2.23。pnipam和pnipam-aac-span80水凝胶的体积相变温度(vptt)应为30-35℃,并且pnipam-co-aac-span80水凝胶在温度敏感性方面类似于pnipam。

应用例3两亲性对水凝胶材料pnipam-aac-span80溶胀度的影响

为了测试加入aac-span80之前和之后pnipam水凝胶的亲水性和亲脂性的变化。研究了pnipam和pnipam-aac水凝胶在苯甲醇中的溶胀度。图7显示了pnipam和pnipam-aac-span80水凝胶在35℃下在水和苯甲醇中的溶胀度。可以看出,aac-span80的引入增加了pnipam-aac-span80水凝胶在苯甲醇中的溶胀度。随着aac-span80引入量的增加,pnipam-aac-span80水凝胶在苯甲醇中的溶胀度逐渐增加,当aac-pan80的引入量达到0.1g时达到最大值12.88。相反,随着aac-span80的引入量逐渐增加,pnipam-aac-span80水凝胶在水中的溶胀度逐渐降低,当aac-span80的引入量为0.1g时达到最小值2.23。这表明聚合物表面活性剂aac-span80的引入不仅降低了pnipam的亲水性,而且还增加了pnipam的亲脂性,结果获得了具有亲水性和亲脂性的pnipam-aac-span80水凝胶。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1