一种低密度、耐低温的聚氨酯泡沫及其制备方法与流程

文档序号:24873849发布日期:2021-04-30 12:47阅读:361来源:国知局

本发明属于高分子材料领域,具体涉及一种低密度、耐低温的聚氨酯泡沫及其制备方法。



背景技术:

随着环保法规的日趋严格,硬质聚氨酯泡沫发泡剂替代技术的更新迭代从未止步,但现有的发泡剂体系仍然难以满足需求,如hfc类发泡剂,虽然臭氧消耗潜能值(odp)为零,但是全球变暖潜值(gwp)较高,其对环境仍然具有不利影响,而对于环戊烷发泡体系,虽然其odp为零、gwp低,但其易燃、导热系数较高,同时由于环戊烷的沸点较高,低温状态下在泡孔中冷凝成液态,进而影响泡沫的尺寸稳定性。虽然聚氨酯发泡剂的替代技术已历经了30年左右的时间,但是至今仍然没有发现一种发泡剂替代物的绝热性、工艺性、经济性、非可燃性等方面可同时达到一氟三氯甲烷(cfc-11)的水平,且符合环保要求的,可见,聚氨酯发泡剂的替代技术较为复杂。

对于聚氨酯泡沫体系来说,在进行发泡剂替代时,除了考虑发泡剂本身的性质,如工艺性、绝热性、安全性、价格等,还需要对聚氨酯原料体系进行研究开发,以使其与发泡剂相匹配,并最终获得优化配方。除了环保以外,聚氨酯泡沫配方的流动性、物理性能也是备受关注的指标,其直接影响着生产效率和加工成本。而现有技术中,对聚氨酯泡沫各种性能的兼顾仍存在不足。在绿色环保的大前提下,如何优化聚氨酯泡沫的工艺性,提高生产效率,同时又降低生产成本并保证物理性能等,仍为本领域的研究热点。



技术实现要素:

本申请的目标在于,(1)降低发泡剂体系的全球变暖潜值,(2)降低泡沫密度,并保证泡沫稳定性,(3)提高聚氨酯泡沫的耐低温性,(4)优化泡沫的绝热性能。为了达到上述目标,本申请首先提供一种低密度、耐低温的聚氨酯泡沫,其原料包括多元醇、发泡剂、催化剂、泡沫稳定剂、水和异氰酸酯,其特征在于,发泡剂中含有戊烷和六氟丙烯,戊烷和六氟丙烯的总量在发泡剂中的质量占比≥90%,戊烷与六氟丙烯的质量比为1:0.5~3.2。

本发明主要使用戊烷和六氟丙烯作为发泡剂,具有环保和全球变暖潜值低的特性,其中戊烷可以是环戊烷、异戊烷、正戊烷中的一种或几种的混合。对于戊烷体系,泡沫的耐低温性较差,导热系数较高,而对于六氟丙烯体系,会导致聚氨酯发泡原液的流动性较差。实验发现,使用本发明的发泡剂组合和相应配比,可提高聚氨酯泡沫的耐低温性和绝热性能,同时,还可改善聚氨酯发泡原液的流动性,使物料易于填充模具,进而可以减少灌注量,并降低泡沫的密度。除了戊烷和六氟丙烯外,还可以在本配方体系中加入少量的其它烷烃类发泡剂,如丁烷等,以改善流动性和耐低温性。

进一步的,所述聚氨酯泡沫由如下原料组成,按重量份计:70~110份多元醇、3~6.5份催化剂、2~5份泡沫稳定剂、15~30份发泡剂、1.3~2.1份水、105~150份异氰酸酯。

采用上述配方,可提高聚氨酯发泡原液的流动性,且使聚氨酯泡沫达到最低稳定密度。本发明中所述的最低稳定密度是指聚氨酯泡沫能够保持其各项性能符合国家标准时的最小芯密度。本发明可以在不增加灌注量的前提下,通过物料配方的创新,进而降低泡沫密度。

进一步的,所述多元醇包含芳胺聚醚多元醇,羟值为160~600mgkoh/g,所述芳胺聚醚多元醇在所述多元醇中的质量占比为5~50%。所述芳胺聚醚多元醇为使用苯胺、苯二胺、甲苯二胺、烷基苯胺、烷基苯二胺、联苯胺、二苯甲烷二胺等中的一种或多种为起始剂制得,所选用的多元醇与本发明配方中其他组分的相容性较好,能够与催化剂、泡沫稳定剂、发泡剂等原料相匹配,加快固化速度,有助于保温隔热性能的提升和对物料流动性的调控。

进一步的,所述催化剂包括发泡型催化剂、凝胶型催化剂和聚合催化剂,其中,发泡型催化剂能够促进发泡反应的进行,优选0~1份,可选自五甲基二乙烯三胺、双-二甲基氨基乙基醚、n-甲基二环己基胺、改性双(二甲氨基乙基)醚和四甲基己二胺中的至少一种;凝胶型催化剂能够促进凝胶反应的进行,优选2~4份,可选自二甲基环已胺、1,2-二甲基咪唑和二甲基苄胺中的至少一种;聚合型催化剂能够促进聚合反应的进行,优选0.5~1.5份,可选自(2-羟基丙基)三甲基甲酸铵、三(二甲氨基丙基)六氢化三嗪、2,4,6-三(二甲氨基甲基)苯酚中的至少一种。

所选用的催化剂具有较好的协同效应,能够有效调节链增长速度和交联速度的平衡,且与本发明配方其他组分的协调性较好,能够使发泡反应、凝胶反应和聚合反应在短期内达到平衡,促进均匀致密泡孔的形成,且有助于对聚氨酯发泡原液流动性的调控。

进一步的,所述泡沫稳定剂为有机硅氧烷与聚醚的共聚物。可选自l5440、l5512、l6988、ak8810、ak8811、ak8818、ak8860、b8461、b8467和b8469中的一种或多种,本发明所选用的泡沫稳定剂能够降低体系的表面张力、促进气泡核的形成和稳定,有利于提高泡孔的稳定性和各向同性,同时,与本发明所使用的发泡剂、催化剂等具有较好的协调作用。

进一步的,所述异氰酸酯为官能度≥2,nco含量为15~31.5wt%的多异氰酸酯。

多异氰酸酯具体可选自多亚甲基多苯基异氰酸酯和/或改性异氰酸酯,其中,改性异氰酸酯是由聚醚多元醇和/或聚酯多元醇进行改性的,以优化泡沫的强度,与本发明配方体系的相容性较好。

其次,本申请还公开了上述各项低密度、耐低温的聚氨酯泡沫的三种制备方法。

第一种制备方法的步骤如下:

将多元醇、催化剂、泡沫稳定剂、水与含有戊烷和六氟丙烯的发泡剂进行预混合,获得组分a1,将组分a1与异氰酸酯混合,进行发泡反应,获得聚氨酯泡沫。

该方法提高了聚氨酯发泡原液的流动性,使混合充分,反应平稳,各原料组分能充分发挥协同作用,有利于均匀细密泡孔的形成。

第二种制备方法的步骤如下:

将发泡剂分为第一发泡剂和第二发泡剂两部分,其中第一发泡剂含有戊烷、且不含有六氟丙烯,第二发泡剂含有六氟丙烯、且不含有戊烷;

将多元醇、催化剂、泡沫稳定剂、水与第一发泡剂进行预混合,获得组分a2,将异氰酸酯与第二发泡剂进行预混合,获得组分b2,将组分a2与组分b2混合,进行发泡反应,获得聚氨酯泡沫。

该方法提高了聚氨酯发泡原液的流动性,且六氟丙烯的成核性较好,有利于形成均匀细密的泡孔结构,提高了保温隔热性能,同时,六氟丙烯与异氰酸酯的相容性较好,该方法可减少六氟丙烯的逸出,从而进一步提高聚氨酯泡沫的耐低温性。

第三种制备方法的步骤如下:

将发泡剂分为第一发泡剂和第二发泡剂两部分,其中第一发泡剂含有戊烷、且不含有六氟丙烯,第二发泡剂含有六氟丙烯和戊烷;

第一发泡剂与多元醇、催化剂、泡沫稳定剂和水进行预混合,获得组分a3,第二发泡剂与异氰酸酯进行预混合,获得组分b3,将组分a3与组分b3混合,进行发泡反应,获得聚氨酯泡沫。

该方法提高了聚氨酯发泡原液的流动性,在保证反应充分、平稳进行的前提下,提高了物料在模具中的填充效果,减少了灌注量。同时,六氟丙烯的成核性好、与异氰酸酯的相容性较好,该方法可减少六氟丙烯的逸出,从而进一步提高了聚氨酯泡沫的耐低温性和保温隔热性能。

进一步的,在第二种制备方法和第三种制备方法中,异氰酸酯参与的预混合过程在静态混合器中进行,异氰酸酯中的不溶物含量≤0.02wt%,发泡剂的水分<0.005wt%。

在物料进入到静态混合器前,对异氰酸酯进行不溶物含量检测,选取不溶物含量≤0.02%的异氰酸酯,对所述发泡剂进行水分检测,若所述发泡剂的水分≥0.005%,则对所述发泡剂进行水分去除,将水分降至<0.005%。

在上述限定下,不仅能够实现异氰酸酯与待混合物的充分均匀混合,而且能够避免混合过程中异氰酸酯发生反应而导致部分或者全部失效,能够避免杂质的引入,并且静态混合器密闭的混合环境,还可以防止异氰酸酯挥发给人体带来的刺激或损害。

相对于现有技术,本发明的总体有益效果为:

(1)绿色环保。所用发泡剂的臭氧消耗潜能值(odp)为零,全球变暖潜值(gwp)较低;

(2)耐低温性较好。聚氨酯泡沫在表观芯密度<27kg/cm3的条件下,具有较好的低温尺寸稳定性;

(3)流动性好。易于填充复杂空腔,可相对减少灌注量。同时,较好的流动性还有利于形成均匀细密的泡孔,提高了聚氨酯泡沫的保温隔热性能;

(4)能够快速固化。纤维时间≤70s,固化时间≤100s,生产效率可有效提高;

(5)密度低且比强度高,节省原材料成本;

(6)保温隔热性能好,导热系数<19mw/(m·k)@10℃。

具体实施方式:

为了更好地理解本发明,下面结合实施例进一步阐明本发明的内容,但本发明的内容不仅仅局限于下面的实施例。

在本发明中,除非特别说明,本发明中的各种术语定义如下:

自由泡密度:聚氨酯原料在自由状态下(无模具)发泡制备的泡沫的芯密度;

表观芯密度:将聚氨酯原料注入模具中发泡制备的泡沫的平均芯密度;

表观芯密度变异系数:表观芯密度标准偏差与平均表观芯密度的比值;

最小灌注量:是指将模具(模具容腔尺寸:1100mm×300mm×50mm)恰好完全充满时所需要的聚氨酯原料重量;

比强度:是压缩强度与表观芯密度之比;

纤维时间:从聚氨酯原料混合开始,到用一根细棒能从聚氨酯原料中刚拔出细纤维状丝所经历的时间;

固化时间:从聚氨酯原料注入模具到固化完全成型的时间。

本发明中的表观芯密度、压缩强度和导热系数按照《gb/t26689-2011冰箱、冰柜用硬质聚氨酯泡沫塑料》中的方法进行;表观芯密度变异系数按照《gb/t35453-2017冻土路基用硬质聚氨酯泡沫板(dlpu)》中的方法进行;低温尺寸稳定性按照《gb/t8811-2008硬质泡沫塑料尺寸稳定性试验方法》进行,试样尺寸(100±1)mm×(100±1)mm(25±0.5)mm,试验条件为温度(-40±3℃)、时间24h。

本发明实施例中所选用的原料组分如下表1所示。

表1聚氨酯原料组分

实施例1

选用表1中的1#原料组分,将多元醇、催化剂、泡沫稳定剂、水和发泡剂进行混合,获得组分a1-1#,然后将组分a1-1#与异氰酸酯混合,通过高压机枪头注入密闭模具中,充分反应,模温控制为35~42℃,经脱模后获得聚氨酯泡沫pu,标记为1#。

实施例2

选用表1中的2#原料组分,将多元醇、催化剂、泡沫稳定剂、水和发泡剂进行混合,获得组分a1-2#,然后将组分a1-2#与异氰酸酯混合,通过高压机枪头注入密闭模具中,充分反应,模温控制为35~40℃,经脱模后获得聚氨酯泡沫pu,标记为2#。

实施例3

选用表1中的3#原料组分,对六氟丙烯、异丁烷进行水分检测,并将水分降至<0.005%,对异氰酸酯进行不溶物含量检测,选取不溶物含量≤0.02%的异氰酸酯,将多元醇、催化剂、泡沫稳定剂、水与环戊烷进行混合,获得组分a2-3#,将异氰酸酯、六氟丙烯和异丁烷引入到洁净的静态混合器中,经混合后获得组分b2-3#,将组分a2-3#与组分b2-3#混合,通过高压机枪头注入密闭模具中,充分反应,模温控制为35~40℃,经脱模后获得聚氨酯泡沫pu,标记为3#。

实施例4

选用表1中的4#原料组分,对六氟丙烯、异戊烷和异丁烷进行水分检测并将水分降至<0.005%,对异氰酸酯进行不溶物含量检测,选取不溶物含量≤0.02%的异氰酸酯,将多元醇、催化剂、泡沫稳定剂、水与环戊烷进行混合,获得组分a3-4#,将异氰酸酯、六氟丙烯、异戊烷和异丁烷引入到洁净的静态混合器中,经混合后获得组分b3-4#,将组分a3-4#与组分b3-4#混合,通过高压机枪头注入密闭模具中,充分反应,模温控制为35~41℃,经脱模后获得聚氨酯泡沫pu,标记为4#。

实施例5

选用表1中的5#原料组分,将多元醇、催化剂、泡沫稳定剂、水和发泡剂进行混合,获得组分a1-5#,然后将组分a1-5#与异氰酸酯混合,通过高压机枪头注入密闭模具中,充分反应,模温控制为35~40℃,经脱模后获得聚氨酯泡沫pu,标记为5#。

对比例1

选用表1中的对比-1#原料组分,将多元醇、催化剂、泡沫稳定剂、水和发泡剂进行混合,获得组分a1-对比1#,然后将组分a1-对比1#与异氰酸酯混合,通过高压机枪头注入密闭模具中,充分反应,模温控制为35~42℃,经脱模后获得聚氨酯泡沫pu,标记为对比-1#。

对比例2

选用表1中的对比-2#原料组分,将多元醇、催化剂、泡沫稳定剂、水和发泡剂进行混合,获得组分a1-对比2#,然后将组分a1-对比2#与异氰酸酯混合,通过高压机枪头注入密闭模具中,充分反应,模温控制为35~40℃,经脱模后获得聚氨酯泡沫pu,标记为对比-2#。

对比例3

选用表1中的对比-3#原料组分,将多元醇、催化剂、泡沫稳定剂、水和发泡剂进行混合,获得组分a1-对比3#,然后将组分a1-对比3#与异氰酸酯混合,通过高压机枪头注入密闭模具中,充分反应,模温控制为35~40℃,经脱模后获得聚氨酯泡沫pu,标记为对比-3#。

对比例4

选用表1中的对比-4#原料组分,对六氟丙烯、异戊烷和异丁烷进行水分检测,测得水分分别为0.013%、0.009%、0.012%,对异氰酸酯进行不溶物含量检测,选取不溶物含量≤0.02%的异氰酸酯,将多元醇、催化剂、泡沫稳定剂、水与环戊烷进行混合,获得组分a3-对比4#,将异氰酸酯、六氟丙烯、异戊烷和异丁烷引入到洁净的静态混合器中,经混合后获得组分b3-对比4#,将组分a3-对比4#与组分b3-对比4#混合,通过高压机枪头注入密闭模具中,充分反应,模温控制为35~41℃,经脱模后获得聚氨酯泡沫pu,标记为对比-4#。

对比例5

选用表1中的对比-5#原料组分,对六氟丙烯、异丁烷进行水分检测并将水分降至<0.005%,对异氰酸酯进行不溶物含量检测,测得不溶物含量为0.027%,将多元醇、催化剂、泡沫稳定剂、水与环戊烷进行混合,获得组分a2-对比5#,将异氰酸酯、六氟丙烯和异丁烷引入到洁净的静态混合器中,经混合后获得组分b2-对比5#,将组分a2-对比5#与异组分b2-对比5#混合,通过高压机枪头注入密闭模具中,充分反应,模温控制为35~40℃,经脱模后获得聚氨酯泡沫pu,标记为对比-5#。

上述实施例和对比例的性能表征结果如表2所示。

表2实施例性能表征

从表中数据可以看出,对比-1#~对比-5#的各项性能指标均差于本发明实施例,这与发泡剂自身的特性及原料体系的协调适应性等均有着密切的关系。对比-1#为仅使用戊烷的配方体系,其低温冷凝的特性致使导热系数较高、耐低温性不佳。对比-2#为仅使用六氟丙烯的配方体系,其蒸汽压较高、汽化速度快,导致聚氨酯发泡原液的流动性变差,为了将模具充满必须增加投料量,因而最小灌注量、表观芯密度均较大,且表观芯密度变异系数较高,说明密度分布不均匀。对比-3#为使用环戊烷和1,1,1,2-四氟乙烷的复合发泡体系,该配方虽然使用低沸点的1,1,1,2-四氟乙烷替代六氟丙烯,但是其与本发明配方的协调性不佳,最终导致泡沫性能不佳。对比-4#未对发泡剂进行水分去除,对比-5#未对异氰酸酯进行筛选,最终均导致聚氨酯发泡原液的流动性不好,且泡沫性能较差。而使用本发明的技术方案,能够使聚氨酯发泡原液具有较好的流动性,且所获得的聚氨酯泡沫低温尺寸稳定、泡沫密度低且分布均匀,能够有效的提高生产效率,降低生产成本,并达到很好的耐低温和保温隔热效果。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1