一种银纳米线与二维锑烯复合导电薄膜及其柔性透明超级电容器

文档序号:31577933发布日期:2022-09-21 00:01阅读:257来源:国知局
一种银纳米线与二维锑烯复合导电薄膜及其柔性透明超级电容器

1.本发明属于新型半导体器件领域,涉及一种基于银纳米线和二维锑烯复合材料的柔性透明超级电容器,其中涉及一种尺寸形貌可控的二维锑烯纳米片的制备及二维锑烯纳米片与银纳米线复合薄膜的制备。


背景技术:

2.柔性透明超级电容器(ftsc)因其易于接近的设备配置、快速的充电/放电时间、高能量/功率密度和长期的使用寿命而得到了显著发展。与传统超级电容器相比,ftsc正在适应下一代柔性透明电子产品,在健康监测器、可穿戴人造电子皮肤、微型触摸传感器、和移动智能设备领域的快速发展。开发具有良好光电性能、高导电性、优异机械性能和高电化学响应的材料对柔性透明导电电极(ftce)的构建具有重要意义。目前的ftsc通常采用碳材料来做电极,包括石墨烯和碳纳米管,但是石墨烯超级电容器目前的比电容一般在5.8μ f
·
cm-2
,而采用其他电极制备的超级电容器一般透明度(t)都在40%-60%。高性能ftce 与ftsc的集成是新兴的灵活透明便携式电子产品的关键技术。开发出高性能柔性透明导电电极ftce是亟待解决的课题。基于银纳米线和二维锑烯复合材料有较高的比表面积和透光度,单片ftce的透明度可达90%,用其制备柔性透明超级电容器可得到良好的透明度,该银纳米线与二维锑烯复合电极的柔性透明超级电容器的比电容可达0.08mf
·
cm-2



技术实现要素:

3.针对现有方法中存在的问题,本发明的第一个目的在于提供一种二维锑烯纳米片(sbnss) 与银纳米线(agnws)的复合导电薄膜的制备方法。本发明的二维锑烯纳米片和银纳米线可以很好的复合,并且可以获得具有高透光度,良好导电性的柔性透明电极。此方法原材料简单,稳定性好,操作简单,适合大规模化生产,具有广阔的应用前景。
4.本发明的第二个目的是提出一种利用所述的二维锑烯纳米片与银纳米线复合导电薄膜制备柔性透明超级电容器的方法。
5.本发明所述的一种二维锑烯纳米片(sbnss)与银纳米线(agnws)的复合导电薄膜的制备方法,具体包括以下几个步骤;
6.a)配制氯化锑硫醇前驱体;
7.将0.5~10g质量的商品氯化锑(sbcl3)粉末溶解在0.001~1l正十二硫醇和0.001~1l 十八烯中,采用加热套进行加热,温度100-120℃,进行抽真空以及冷凝回流,期间通入4~5 次氩气,每次间隔3~8分钟,保持1~2分钟,最后将温度升高到150-160℃保持2~8分钟,得到氯化锑硫醇溶液;
8.最优条件为将0.912g sbcl3溶解在0.004l正十二硫醇和0.006l十八烯中,加热温度110℃,通入5次氩气,每次间隔5分钟,保持1分钟,最后将温度升高到150℃保持2分钟,得到氯化锑硫醇溶液;
9.所述sbcl3硫醇溶液最佳配比为正十二硫醇和十八烯体积比为2:3,sbcl3硫醇溶液浓度为91.2g/l;再将0.001~1l十八烯、0.1~1ml油胺和0~1g双十二烷基二甲基溴化铵(ddab) 在三口烧瓶中进行加热,温度100~120℃,进行抽真空以及冷凝回流,期间通入4~5次氩气,每次间隔3~8分钟,保持1~2分钟,然后将温度升高到290~310℃把氯化锑硫醇溶液注入进去,自然冷却至室温,得到含有二维锑烯纳米片的氯化锑硫醇前驱体;
10.最优条件为将0.004l十八烯、0.5ml油胺和0.1gddab在三口烧瓶中进行加热,温度为 110℃,通入5次氩气,每次间隔5分钟,保持1分钟,最后将温度升高到300℃,把氯化锑硫醇溶液注入进去,自然冷却至室温,得到含有二维锑烯纳米片的氯化锑硫醇前驱体;
11.或者是配制氯化锑膦酸前驱体;
12.将0.1~10g质量的商品sbcl3粉末、0.1~10g正辛基膦酸和0~1g ddab溶解在0.001~1l 十八烯中,采用磁力搅拌器进行搅拌,搅拌速率为400~900r/min,时间为60~120min,温度为90-110℃,充分搅拌颜色变深后得到氯化锑膦酸溶液;
13.最优条件为将0.139g sbcl3,0.387g正辛基膦酸和0.1gddab溶解在0.001l十八烯中,搅拌速率为500r/min,时间为60min,温度为95℃,充分搅拌颜色变深后得到氯化锑膦酸溶液;
14.再将0.1~10ml油胺在三口烧瓶中进行加热,温度100~120℃,进行抽真空以及冷凝回流,期间通入4~5次氩气,每次间隔3~8分钟,保持1~2分钟,然后将温度升高到290~310℃把氯化锑膦酸溶液注入进去,自然冷却至室温,得到含有二维锑烯纳米片的氯化锑膦酸前驱体;
15.最优条件为将4.5ml油胺在三口烧瓶中进行加热,温度为110℃,通入5次氩气,每次间隔5分钟,保持1分钟,最后将温度升高到300℃,自然冷却至室温,得到含有二维锑烯纳米片的氯化锑膦酸前驱体;
16.b)将步骤a)中所得两种前驱体分别用氯仿离心洗涤,离心速率为6000-12000r/min,离心时间1-30min,洗涤次数为1-10次,最优条件为离心速率8000r/min,离心时间5min,洗涤次数为3次,洗涤后产物保存在氯仿中,得到二维锑烯纳米片溶液;
17.c)将二维锑烯纳米片溶液稀释至1%~20%,取0.001-0.1l商品银纳米线、0.001-0.1l 乙腈和0.001-0.1l稀释后的二维锑烯纳米片、银纳米线与乙腈、氯仿混合溶液;
18.最优条件为银纳米线、乙腈和稀释后的二维锑烯纳米片溶液的体积比为1:1:2,混合后得到二维锑烯纳米片、银纳米线与乙腈、氯仿混合溶液;
19.d)将商品pet衬底放入紫外臭氧清洗机中进行表面处理1~60min,在旋涂仪上旋涂上述混合溶液,转速500~5000r/min,时间10~100s,在旋涂面边缘上刷涂导电银浆,烘干之后再在其上面旋涂凝胶电解质,转速1000~8000r/min,时间10-100s,最后在加热台上进行退火处理,温度80~160℃,时间2~60min,退火后得到二维锑烯纳米片与银纳米线复合导电薄膜;
20.最优条件为表面处理时间为20min,旋涂上述混合溶液,转速为1500r/min,时间45s,旋涂凝胶电解质转速2500r/min,时间15s,退火温度120℃,时间5min,退火后得到二维锑烯纳米片与银纳米线复合导电薄膜;
21.本发明的第二个目的是提出一种利用所述的二维锑烯纳米片与银纳米线复合导电薄膜制备柔性透明超级电容器的方法,其步骤为:
22.1)、凝胶电解质的制备;
23.将0.1~10g磷酸、0~10g聚乙烯醇(pva)和1~50ml去离子水在磁力搅拌器中进行搅拌,搅拌速率为400~900r/min,时间为60~120min,温度为90~110℃,最优条件为将1.8g磷酸, 0.8gpva和15ml去离子水在磁力搅拌器中进行搅拌,搅拌速率为500r/min,时间为60min,温度为95℃,充分搅拌后得到凝胶电解质;磷酸和pva的质量比为9:4;
24.2)、取两片上述制备的二维锑烯纳米片与银纳米线复合薄膜的pet,其中一片刷涂一层凝胶电解质;
25.3)、然后将两片带二维锑烯纳米片与银纳米线复合薄膜的面对面错开组装,保证导电银浆不与另一片pet接触;
26.4)、固定自然风干10-30min得到基于银纳米线和二维锑烯复合材料的柔性透明超级电容器;最优条件为10min。
27.制备的基于银纳米线和二维锑烯复合材料的柔性透明超级电容器结构如图2结构示意图所示。
28.该发明的原理是这样的。本发明是利用溶液化学相合成法制备二维锑烯纳米片。合成过程中添加不同配体对二维锑烯纳米片的形貌有一定影响。添加硫醇配体时,在合成sbnss 的过程中硫醇会先形成六边形的外围边框,而cl元素会附着在sbnss的(001)面保证sb 朝着二维材料的方向生长。添加膦酸配体时,膦酸会直接附着在层状物表面而不是边缘,因此其在表面的附着占据了卤素的附着点位,因此这样的sb在生长过程中没有卤素的辅助,其后在与油胺反应的时候层状物的层与层之间分离得到sbnss。最终产物是以三棱锥为主的三维产物,而在添加双十二烷基二甲基溴化铵之后可以发现产物全部变成了二维的sbnss。乙腈溶液促进二维锑烯复合银纳米线得到复合导电薄膜制备成柔性透明电极,旋涂凝胶电解质得到柔性透明超级电容器,同时将聚(3,4-亚乙二氧基噻吩)-聚(苯乙烯磺酸)(pedot:pss) 覆盖在银纳米线(agnws)表面以保护纳米线,采用叉指电极提高稳定性的同时保证透光度得到微型叉指超级电容器。
29.本发明具有明显的优点。本发明的银纳米线与二维锑烯复合透明薄膜具有较高的比表面积和透光度,单片ftce的透明度可达90%,用其制备柔性透明超级电容器可得到良好的透明度,比电容可达0.08mf
·
cm-2

30.本发明的方法原材料简单,稳定性好,操作简单,适合大规模化生产,具有广阔的应用前景。
附图说明
31.图1为二维锑烯纳米片高分辨透射电子显微镜(hrtem)示意图及扫描电子显微镜 (sem)示意图;
32.其中a为二维锑烯纳米片tem示意图;b为纳米片高分辨晶格条纹示意图;c为二维锑烯纳米片与银纳米线复合薄膜扫描电子显微镜(sem)示意图;
33.图2为基于银纳米线和二维锑烯复合材料的柔性透明超级电容器结构示意图;
34.其中1为pet层,2为二维锑烯纳米片与银纳米线复合薄膜,3为凝胶电解质;
35.图3为柔性透明超级电容器循环伏安特性曲线、充放电曲线和面积比电容曲线;
36.其中a、b为柔性透明超级电容器循环伏安特性曲线,c为充放电曲线,d为面积比电
容曲线。
37.图4为柔性透明超级电容器面积比电容对比曲线、能量/功率密度曲线;
38.其中a为面积比电容对比曲线,b为能量/功率密度曲线。
39.图5为银纳米线与二维锑烯复合电极的柔性透明超级电容器的实物图。
40.图6为二维锑烯纳米片与银纳米线复合薄膜的透光率与薄膜电阻、透过率与吸收谱。
41.其中a为透光率与薄膜电阻,b为透过率与吸收谱。
具体实施方式
42.实施例1
43.用硫醇配体制备尺寸形貌可控的二维锑烯纳米片溶液:
44.1)、在三颈烧瓶中,将0.912克质量的商品sbcl3粉末溶解在4ml正十二硫醇和6ml 十八烯中,采用加热套进行加热,温度110℃,进行抽真空以及冷凝回流,期间通入5次氩气,每次保持1分钟,最后将温度升高到150℃保持2分钟,得到氯化锑硫醇溶液;
45.2)、将4ml十八烯、0.5ml油胺和0.1g ddab在三颈烧瓶中进行加热,温度110℃,进行抽真空以及冷凝回流,期间通入5次氩气,每次保持1分钟,然后将温度升高到300℃把硫醇前驱体注入进去,自然冷却至室温,得到到含有二维锑烯纳米片的氯化锑硫醇前驱体,
46.3)将所得前驱体用氯仿离心洗涤,离心速率8000r/min,离心时间5min,洗涤次数为 3次,洗涤后保存在氯仿中得到二维锑烯纳米片溶液
47.实施例2
48.用磷酸前驱体制备尺寸形貌可控的二维锑烯纳米片溶液:
49.1)、将0.139g质量的商品sbcl3粉末、0.387g正辛基膦酸和0.1g ddab溶解在0.001l 十八烯中,采用磁力搅拌器进行搅拌,搅拌速率为500r/min,时间为60min,温度为95℃,充分搅拌颜色变深后得到氯化锑膦酸溶液;
50.2)、再将4.5ml油胺在三口烧瓶中进行加热,温度110℃,进行抽真空以及冷凝回流,期间通入5次氩气,每次间隔5分钟,保持1分钟,然后将温度升高到300℃把氯化锑膦酸溶液注入进去,自然冷却至室温,得到含有二维锑烯纳米片的氯化锑膦酸前驱体;
51.3)将所得前驱体用氯仿离心洗涤,离心速率8000r/min,离心时间5min,洗涤次数为 3次,洗涤后保存在氯仿中得到二维锑烯纳米片溶液
52.实施例3
53.制备二维锑烯纳米片与银纳米线复合导电薄膜:
54.在烧杯中,将2ml银纳米线(2mg/ml),2ml乙腈和4ml二维锑烯纳米片(稀释12%) 混合均匀得到二维锑烯纳米片与银纳米线的混合溶;再在烧杯中将1.8g磷酸、0.8g pva和 10ml去离子水在磁力搅拌器中进行搅拌,搅拌速率为500r/min,时间为60min,温度为95℃,充分搅拌后得到凝胶电解质;将pet衬底进行臭氧处理20min,在旋涂仪上旋涂二维锑烯纳米片与银纳米线的混合溶液,转速1500r/min,时间45s,在边缘刷上导电银浆,烘干之后再在上面旋涂凝胶电解质,转速2500r/min,时间15s,最后在加热台上进行退火处理,温度 120℃,时间5min,退火后得到二维锑烯纳米片与银纳米线复合薄膜。
55.实施例4
56.制备基于银纳米线和二维锑烯复合材料的柔性透明超级电容器:
57.1)、从实施例3中取两片得到的二维锑烯纳米片与银纳米线复合导电薄膜,其中一片刷涂一层凝胶电解质;
58.2)、然后将两片带二维锑烯纳米片与银纳米线复合薄膜的pet面对面错位组装,保证导电银浆条不与另一片pet接触;
59.3)、固定自然风干10min得到基于银纳米线和二维锑烯复合材料的柔性透明超级电容器;
60.检测结果见图3、4、6,单片ftce的透明度可达90%,用其制备柔性透明超级电容器比电容可达0.08mf
·
cm-2

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1