一种二氧化硅包裹的钯掺杂无机钙钛矿量子点及其制备方法与流程

文档序号:19741003发布日期:2020-01-18 05:13阅读:1179来源:国知局
一种二氧化硅包裹的钯掺杂无机钙钛矿量子点及其制备方法与流程

本发明涉及一种无机钙钛矿量子点,属于新型纳米材料制备领域。



背景技术:

全无机钙钛矿量子点材料由无机纳米晶组成,相对于有机无机杂化钙钛矿材料更加稳定。作为纳米晶形态的材料,它还可以利用胶体化学方法制备形成核壳结构,从而提升材料的性能。目前利用全无机钙钛矿量子点材料制备的太阳能电池光电转换效率可超过10%[参考文献1,2],全无机钙钛矿绿光量子点的荧光量子效率也已经接近100%。这显示出全无机钙钛矿量子点材料在太阳能电池、发光与显示器件等领域具有广泛的应用前景。其中,cspbx3(x=cl,br,i)量子点可采用低成本的溶液法制备工艺制备,其禁带宽度可以基于化学元素替换和量子尺寸效应覆盖整个可见光谱范围。

但是目前cspbx3(x=cl,br,i)量子点普遍存在蓝光范围荧光量子效率低(plqy)的问题。如cspbcl3钙钛矿蓝光量子点的plqy为~5%,现有技术大多通过向cspbcl3纳米晶内部引入br元素来提高蓝光的plqy,但是效果仍然不够理想,在460nm左右其plqy仅15%,因此需要找到进一步提高蓝光量子点荧光量子效率的方法。

通过金属元素掺杂,特别是过渡金属元素的掺杂,来提高蓝光量子点荧光量子效率是近年来被报道的一种有效途径。2017年,孟鸿课题组通过在cspbbr3量子点中引入3价铝离子得到峰位在456nm的蓝光量子点,plqy达到42%。2018年,孙洪涛课题组通过在cspbcl3量子点中引入正2价镍离子得到峰位在410-435nm的蓝光量子点,plqy达到了90%以上。2019年,田建军课题组通过在cspbbrxcl3-x量子点中引入2价铜离子得到峰位在450-460nm的蓝光量子点,plqy达到了85%左右。由于这类量子点材料性能的提升得益于量子点制备过程中阴阳离子的扩散,它们作为光学薄膜应用在器件中就很难避免元素的扩散造成的器件性能的下降。此外,扩散过程往往致使纳米晶长大,引起光谱的显著红移。

参考文献:

1.xiang,w.c.andw.tress"reviewonrecentprogressofall-inorganicmetalhalideperovskitesandsolarcells."advancedmaterials:28.

2.swarnkar,a.,etal.(2016)."quantumdot-inducedphasestabilizationofalpha-cspbi3perovskiteforhigh-efficiencyphotovoltaics."science354(6308):92-95.



技术实现要素:

针对上述现有技术所存在的问题,本发明公开了一种二氧化硅包裹的钯掺杂无机钙钛矿量子点及其制备方法,旨在充分获取元素掺杂和量子限域效应带来的优势,同时抑制材料在使用过程中由于阴阳离子扩散造成的材料性能退化。

为实现上述目的,本发明采用如下技术方案:

本发明公开了一种二氧化硅包裹的钯掺杂无机钙钛矿量子点,其特点在于:所述量子点为cspbxpd1-xbrycl3-y@sio2量子点,是在cspbbr3量子点外包裹sio2层形成cspbbr3@sio2量子点后,再与cspdcl3量子点混合进行钯离子掺杂获得。

进一步地,所述cspbxpd1-xbrycl3-y@sio2量子点为蓝光量子点,通过调控cspbbr3@sio2量子点与cspdcl3量子点的混合比例,即调控x的值来调控蓝光量子点的发射峰。

进一步地,0.05≤x≤0.5。

本发明还公开了所述二氧化硅包裹的钯掺杂无机钙钛矿量子点的制备方法,为:首先通过热注入法合成cs4pbbr6和cspdcl3量子点;然后在cs4pbbr6外包裹sio2层,获得cspbbr3@sio2量子点;最后将cspbbr3@sio2量子点与cspdcl3量子点混合,即获得二氧化硅包裹的钯掺杂无机钙钛矿量子点cspbxpd1-xbrycl3-y@sio2。

与现有技术相比,本发明的有益效果体现在:

1、本发明二氧化硅包裹的钯掺杂无机钙钛矿量子点,通过二氧化硅的包裹进一步提高了钯离子掺杂的有效性:在波长小于480nm的蓝光波段,plqy仍然超过80%,应用于显示器可同时提高色彩的饱和度和能效。

2、二氧化硅的包裹层可以有效抑制量子点的生长,提高量子点的化学稳定性,同时增强了量子限域效应。

3、本发明量子点的制备方法简单,利用相对稳定的cs4pbbr6中间体,避免了制备过程中极性分子对发光纳米晶的破坏作用,重复性好。

附图说明

图1为本发明实施例所得不同混合比例下的cspbbrycl3-y量子点的荧光量子效率图,其激发波长为365nm。

图2为本发明实施例所得不同混合比例下的cspbbrycl3-y@sio2量子点的荧光量子效率图,其激发波长为365nm。

图3为本发明实施例所得不同混合比例下的cspbxpd1-xbrycl3-y量子点的荧光量子效率图,其激发波长为365nm。

图4为本发明实施例所得不同混合比例下的cspbxpd1-xbrycl3-y@sio2量子点的荧光量子效率图,其激发波长为365nm。

具体实施方式

下面对本发明的实施例作详细说明,本实施例以本发明技术方案为基础,给出了详细实施方式和具体操作过程,但本发明的保护范围不限于下述的实施例。

实施例1

本实施例按如下步骤制备cspbxpd1-xbrycl3-y@sio2量子点:

(1)前驱体的制备

将0.319gcs2co3加入到15ml的ode溶液中,再加入1.5ml油酸,通入氮气,在150℃下加热搅拌直至cs2co3完全溶解,获得前驱体溶液,使用前在100℃下加热。

(2)cspbbr3@sio2的制备:

将0.1468gpbbr2加入到20ml的ode溶液中,在100℃真空干燥20min,再加入2ml油酸和2ml油胺,搅拌至pbbr2完全溶解;然后升温至140℃,快速注入4.2ml的前驱体溶液,反应10s后迅速冰水浴冷却1min,8000rpm离心5min,去除上清液,剩余沉淀中加入5ml正庚烷,再5000rpm离心3min,所得上清液即为cs4pbbr6溶液;

在5mlcs4pbbr6溶液中加入20μltmos(四甲氧基硅烷)和200μl去离子水,2800rpm振荡5min,静置12h,5000rpm离心3min,所得上清液即为cspbbr3@sio2量子点溶液;

(3)cspdcl3量子点的制备:将0.08gpdcl2加入到20ml的ode溶液中,在120℃真空干燥1h,再加入2ml油酸和2ml油胺,搅拌至pdcl2完全溶解;然后升温至140℃,快速注入2ml的前驱体溶液,反应5s后迅速冰水浴冷却1min,8000rpm离心5min,去除上清液,剩余沉淀中加入5ml正庚烷,再5000rpm离心3min,所得上清液即为cspdcl3量子点溶液。

(4)混合

将cspbbr3@sio2量子点溶液与cspdcl3量子点溶液按所需配比进行混合并摇匀后,静置1min,即获得二氧化硅包裹的钯掺杂无机钙钛矿量子点(cspbxpd1-xbrycl3-y@sio2)的溶液。通过调控混合比,即调控x的值,可获得不同发射峰的蓝光量子点。本实施例cspbbr@sio2与cspdcl3的混合体积比比分别为=1:4、1:1.4、1:1、1:0.8、1:0.6、1:0.5。

对进行对比,本实施例还制备了如下量子点溶液:

cspbbr3量子点的制备:将0.2gpbbr2加入到20ml的ode溶液中,在120℃真空干燥1h,再加入2ml油酸和2ml油胺,搅拌至pbbr2完全溶解;然后升温至165℃,快速注入2ml的前驱体溶液,反应5s后迅速冰水浴冷却1min,8000rpm离心5min,去除上清液,剩余沉淀中加入5ml正庚烷,再5000rpm离心3min,所得上清液即为cspbbr3量子点溶液。

cspbcl3量子点的制备:将0.14gpbcl2加入到20ml的ode溶液中,在120℃真空干燥1h,再加入2ml油酸和2ml油胺,搅拌至pbcl2完全溶解;然后升温至140℃,快速注入2ml的前驱体溶液,反应5s后迅速冰水浴冷却1min,8000rpm离心5min,去除上清液,剩余沉淀中加入5ml正庚烷,再5000rpm离心3min,所得上清液即为cspbcl3量子点溶液。

将cspbbr3量子点溶液与cspbcl3量子点溶液按不同比例进行混合并摇匀后,静置1min,即获得cspbbrycl3-y量子点的溶液。本实施例cspbbr3量子点溶液与cspbcl3量子点溶液的混合体积比分别为1:0.8、1:0.7、1:0.6、1:0.5、1:0.3。

将cspbbr3@sio2量子点溶液与cspbcl3量子点溶液按不同比例进行混合并摇匀后,静置1min,即获得cspbbrycl3-y@sio2量子点的溶液。本实施例cspbbr3@sio2量子点溶液与cspbcl3量子点溶液的混合体积比分别为1:0.6、1:0.5、1:0.4。

将cspbbr3量子点溶液与cspdcl3量子点溶液按不同比例进行混合并摇匀后,静置1min,即获得cspbxpd1-xbrycl3-y量子点的溶液。本实施例cspbbr3量子点溶液与cspdcl3量子点的混合体积比分别为1:4、1:3、1:2、1:0.8、1:0.6、1:1.55、1:0.5、1:0.3。

图1、2、3、4分别为不同混合比例下的cspbbrycl3-y量子点、cspbbrycl3-y@sio2、cspbxpd1-xbrycl3-y量子点、cspbxpd1-xbrycl3-y@sio2量子点的荧光量子效率图,其激发波长皆为365nm。从图中可以看出二氧化硅包裹的钯掺杂的蓝光量子点相对于其他的量子点荧光量子效率显著提高。

以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1