带有加压气垫的船的制作方法

文档序号:4115614阅读:307来源:国知局
专利名称:带有加压气垫的船的制作方法
技术领域
本发明涉及航海船舶,通过使用在船体底面凹座内设置的加压支承气垫,使船的行驶效率更高。
本发明是对本申请人早期在这方面(通常叫做“空气调节船体”)的若干发明的进一步完善。所有这些发明都要求将压缩空气引入船体底面的凹座中,以增大航行速度,提高运载能力,并提高稳定性。这种改善是由于在多数情况下加压气垫支承着大约80%~90%的船的重量。提高了在高速行驶中的效率主要是由于降低了浸水面积阻力,与普通形式的船体相比,通常可降低几个数量级。
本发明与申请人早期的专利相比,从使用多个的、大致平行的和宽舱位的船体的观点来看,有明显的进步。这种效果就是与普通的气垫支承航海器例如水上活动船(SES)相比,在许多情况下改变了和改善了船的稳定性和行驶阻力以及各种性能特征。现有技术的水上活动船(SES)具有薄的平行的舷侧船体,这种船体用全跨度柔性密封件从头到尾横向连接,由此形成的空间充入压缩空气,以产生大的提升力。这样,可以看到,这种船在水面上具有一种整体的相当宽的矩形复盖面。
美国海军于80年代初投资研究了一种采用双船体式舷侧船体的船,每个舷侧船体是一艘普通的SES,如前所述,普通的SES是一种加压缩空气的气垫船,它的前后(船头、船尾)在平行的舷侧船体之间装有全跨度柔性密封件。在海军的构想中,成对的普通SES舷侧船体由跨接甲板或浸水底板结构隔开并连接。它们的舷侧船体不仅是平行的,而且每个舷侧船体都具有薄板状的并且完全延伸到浸水底板处的侧面,浸水底板向外延伸实际形成了加压气体凹座的上表面,这一点可以从F.W.Wilson等人的文章“水上活动双体船-设计进展的评价”的图2中看出来,这篇文章刊登在美国海军工程师协会出版的《海军工程师杂志》1983年5月号P301~311。该文章详细综述了海军的双体船舷侧船体气垫的设计方案。为了简化起见,本文下面将把海军的设计方案简写为SECAT(“水上活动双体船”的缩写)。
SECAT的概念是每个舷侧船体的柔性船头密封件将接触波浪,而且,只要波浪的高度不会接触到凹座浸水底板,它们便能顺利地通过舷侧船体的凹座。尽管SECAT的分析和模型研究还在进行中,但是对于实际的全尺寸船只或原型船只似乎已经不再作持续的研究。SECAT还要求给瘦长的悬臂式舷侧船体板以额外的结构重量,而且其离垫性能甚差。看来,上面所述的问题加上在每个侧船体的凹座中十分高而窄的并且难于维修的柔性密封件造成在波涛中行驶时浸水面积阻力的惊人增大,可能阻碍着上述研究的继续进行。因为,与普通的单舱SES相比,该柔性密封件在每个舷侧船体的船内侧上的附加上下运动,会造成浸水面积的增加。
美国专利No.1,307,135采用了双气垫浮体,其浮体是由一个发动机的废气充气的。该专利的主要意图是制造一种装置来提高水上飞机的性能,该水上飞机能实现水上航行或空中航行。按照该专利说明书的第2页96~106行所述,“而且,还可认识到,当水上飞机在空中飞行时,水翼与支承压力之间将发生相应的传输作用,(支承压力是废气压力源所提供的),在此情况下所产生的摩擦阻力的减小将是明显的,因为进入水翼与空气压力之间的弹性流体的密度相对地较轻”。这一点在美国专利No.1,307,135的说明书第2页22~24行进一步阐述了,它说“浮体就像用支杆9支承机身8一样,代表支承机构的机翼由10表示”。所述的支承机构10实际上是飞机的机翼。
美国专利No.4,393,802公开了一种单船体,它具有一个中央加压气垫和双重外凹座,该凹座在不带尾部密封机构的尾端敞开,以便限制侧气垫中的压力。美国专利No.3,191,572;3,606,857;和4,031,841提出了各种改型的空气润滑多船体。但是,所有这些在它们尾端都存在不能封闭的空气层,因为它们没有尾部气垫密封件。因此它们不能密封舷侧船体下的空穴或凹座内的空气压力。它们简单地采用活塞或空压机压缩的空气来润滑舷船体的底部,或采用一种装置加速水流从空气润滑的舷侧船体底部后端的开口排出。由于它们都没有限制舷侧船体凹座中气垫压力的机构,故不能用加压气垫支承大部分的船体重量。
本发明的目的是发扬先前的“空气调节船体”发明的优点,并同时进一步改善船的稳定性和性能。
为了实现本发明的上述目的,本发明提供了一种带有设置在双船体式舷侧船体中的支承气垫的船,所述的双船体式舷侧船体与船体连接结构机械连接,所述的支承气垫由气体压缩机构供给加压气体,其特征在于每个双体船式舷侧船体有一凹座,该凹座至少部分地限制加压气垫,每个所述的双体船式舷侧船体有内侧壁和外侧壁,并且如果在所述船的水平浸水平面上看去,至少一个上述双船体式舷侧船体中,上述的凹座在其从前头过渡到船尾的纵向长度的至少一部分长度上宽度加大,当上述的船在平静海面以25海里/小时以上的速度行驶时,气垫增压到足以支承着船的大部分重量。
舷侧船体最好基本上是普通的船形,如果在贯穿船只高速行驶的平静海面水线的平面上看,它实际上是尖船头形。舷侧船体可以是对称的或是不对称的。而且,一个或者两个舷侧船体的侧壁的浸水面可以发散,以便使气垫从船头至船尾加宽。一个舷侧船体的侧壁的浸水面可以从前面向外发散,并使其后部的至少一部分变成平行。舷侧船体的外侧壁浸水面可以比该舷侧船体的内侧壁浸水面宽一些。而且,舷侧船体的侧壁的浸水面最好是较直的舷,或者前面较平坦,至后面变成比较弯曲。再者,舷侧船体内侧壁的下表面,平均说来,其高度高于该舷侧船体外侧壁的下表面。而且,舷侧船体可以向前伸出主船体结构外。还可以应用中央船头形式,在此情况下,这种中央船头增加了船头和船尾的稳定性,并减小浸水底板的浸水面积,特别是当船在巨浪中行驶的时候,更是如此。中央船头可以向前伸出舷侧船体外。中央船头可做成不同形状,例如,最好是深V形、倒V形等。还可以做成大致上是垂直的台阶,用以减小船在波涛中行驶时舷侧船体的垂直浸水面积。周围的空气向下充入垂直的台阶内。垂直台阶可以倾斜,所以水不仅从舷侧船体冲向外,而且冲向下,从而增加对舷侧船体的升力。舷侧船体的形状可以做成垂直台阶前面宽些,后面窄些,从而减小对舷侧船体台阶向后面喷射的冲击力。舷侧船体在变窄台阶部分之下可以是全宽度,从而形成全宽度气垫,并形成一个全宽度提升表面,同时又仍然保持沿着垂直设置的通风台阶成锥形的舷侧船体侧壁的优点。可以在浸水底板的底面装上一个空气紊流发生器,以限制浸水底板下的气流,从而在浸水底板下面形成静气压升力。可以装上船头和/或凹座的活动密封件,它们相对于舷侧船体是可活动的。活动的船头密封件可以与它前面的尖船头形状结合起来应用,从而获得成本低且外观诱人的简单固定的破浪船头。活动的船头密封件的设计包含一系列密封件或零件,每个密封件都能浮在水面,从而形成有效的气体密封。船头密封件最好是能够从侧面自密封,而且后面的密封件有助于在它们前面的密封件的密封。活动的船头密封件最好具有弯曲的或者与后面密封件的相应位移成一角度的尾部表面,从而使气垫中形成良好的加压气体的密封。活动密封件最好尽可能用结构强度高的材料来制造,因为这种活动密封件不需要用柔性材料来制造。随意活动的密封件的优点在于,活动密封件可用铰链或其他简单机构连接到船体上。随意活动的船头密封件最好做成有成形的下表面,例如最好是倒V形,以提供良好的水面轨迹,并降低破浪冲击载荷。在气垫凹座中可装上辅助的弓形件,以助提高船体的稳定性,并帮助在波涛中行驶时冲破船体下的波浪。上述辅助的弓形件可做成倒V形,其下部置于接近舷侧船体的侧面,从而增加船体在摇摆中的稳定性,并且减小倒V形密封件顺流浸水的凹座内表面积。一个受向下的力偏压的活动密封件装在前后舷侧船体增压气垫之间。这种密封件可做成多个浸水雪撬式零件。凹座的辅助的弓形件内可能受到偏压,或者,凹座的船外侧低于船内侧,因而进一步提高船的摇摆稳定性。结构上完整而可靠的船尾固定密封件可以随意地与活动的船尾密封件连接,这有助于气体密封,控制船体平衡,和/或使水流冲向位于船尾活动密封件后面的推进器。船尾的固定密封件可以具有一个较低的表面,该表面比该固定式船尾密封件的前面部分稍为平坦些,这就为航行船只的尾端提供了高效的滑行表面。船尾密封件可以具有一个有低的波浪冲击力,并且至少部分是倒V形(从航行中的一个底平面看去或从鱼眼看去)的下表面。船尾密封件可嵌入一个嵌块,以减少船尾密封件高阻力的浸水面积。船尾密封件中的这一嵌块可以充入加压气体。船尾密封件的固定的结构部分可以扩大,按照其各部分的数学求和来说,可超过凹座宽度的大半。从船体的垂直横向平面上看去,船尾密封件的固定结构部分在它们的宽度的大部分上可以与水平面成一定角度,以减小在狂涛中的波浪冲击力。可以装入气体压力控制机构用以调节至少在凹座部分的气体压力。调节该凹座部分的气体压力有助于维持船体在巨浪中有最佳的平衡。可以用控制器来控制气压控制机构的动作,从而控制凹座中的气压。上述控制器可以接受有关船体方向和船体凹座中压力值的输入信号。
按照本发明的最佳实施例,相隔开较宽的瘦长形气垫船体,综合地说,具有比单一的宽气垫船体显著降低了低速或“峰值”速度阻力的特征。而大型的具有单一气垫的宽气垫船体在很高速度下通常具有较小的阻力。那是部分地由于在分开的双船体式舷侧船体的船内侧上增加了所需的额外侧壁,而使浸水面积阻力增大。本发明作了一些努力来减少那种浸水面积的影响,其方法是应用了垂直设置台阶的新概念,最好是将表面的空气向下引入垂直设置的台阶中。最好其侧壁沿垂直向在船后方向逐渐向里的锥形状,以减小由于浪花对台阶冲击造成的阻力。
由于本发明在其最佳实施例中采用了实质上是船形的舷侧船体,所以以其最佳的状态完成了上述的设计方案,所述的舷侧船体,如果从船体的浸水的一个动态水线平面来看,具有一个普通的尖船头和平切的船尾形状。至少有一块舷侧船体龙骨板在船头的后面向外发散,然后在其后面长度的大部分变成基本上平行。在最佳实施例中,舷侧船体是对称的,但是,不对称的舷侧船体也可以用。固定的和/或活动的密封件可以用在舷侧船体的增压气体凹座内,也可以用在靠近舷侧船体凹座的地方。
本发明的另一实施例在双体船式气垫舷侧船体上采用了比船外侧壁更窄的船内侧壁。其理由是,稳定船体的横向的瞬时力多半是由船外侧壁提供的,因为它们距船体垂直中心线平面的距离更大得多。因此,从横向稳定性的观点来说,采用宽的船内侧壁对稳定性的提高极其有限,而采用较窄的船内侧壁则可产生较低的浸水船体阻力。
至于进一步减小船体阻力,本研究表明采用前头具有直的或更确定的船舷而后面有较弯曲的侧壁形状会有好处。前头较直的船舷可带来在狂涛中更好的稳定性,而后尾较弯曲的侧壁形状将产生较小阻力。船尾弯曲的侧壁形状通常是圆弧形的。
船内侧壁的下表面的高度最好高于船外侧壁的下表面,其作用是减小船体阻力,因为船内侧壁浸在水中的部位较少。这是有可能的,因为船内侧壁距船体垂直中心线平面较近,因此,在船体摇摆过程中,它经受较小的垂直位移。
如上所述,在最佳实施例中,舷侧船体具有大致成尖形的、可以采用浅的凹座的船头,因为这种尖的船头可分开迎面而来的波浪,使它们直冲舷侧船体的两侧,而不允许它们全部通过舷侧船体的凹座。舷侧船体具有颇似船形的尖船头和平切的船尾,这一点可从其最佳实施例中的一个舷侧船体的水平水线横截面的轮廓线上看出来。这可以与SECAT相比较,在SECAT中,每个SECAT的舷侧船体在水面上有矩形的覆盖面,如上面所提到的SECAT文章中P306图11所示。而且,在舷侧船体中具有垂直台阶的最佳实施例将大大限制在巨浪中航行时舷侧船体的外侧或海面侧浸水面积阻力的增加。上面所述的优点哪一条也不会降低性能,并且在增压系统关闭时确实至少能提供相当良好的普通双体船式船体的性能。这是由于较浅的气垫和任意的凹座密封件能形成比SECAT的双气垫设计要多得多的船体在水下。这是由于SECAT的设计对船头船尾的浸水底板采用了全深度的凹座,并带有全深度的柔性密封件,这种设计采用平行的瘦的侧船身,并从头到尾都延伸至浸水底板,而组成双船体式舷侧船体的每一侧面。很容易看到,当关掉增压机时,SECAT的设计的功能一定很像一叶百合的浮叶。
采用密封件将凹座分开几部分也有好处,可减小在巨浪中行驶时浸水的凹座表面积。尤其是在采用择优的倒V形密封件设计时更是如此,因为这样的设计形状在舷侧船体侧壁上有最低点,因而导引波浪顺流离开倒V形密封件下游的凹座垂直表面。凹座密封件也在前后形成若干个较小的能够被分别加压的凹座,以便帮助船体平衡。采用由船上的控制器操纵的压力控制阀进行分别的加压,所述控制器可显示船体的航向和凹座中的压力。
在采用舷侧船体中的前后分离开的气垫的情况下,本研究表明需要一个活动的密封件,该密封件的最佳结构形式是弹簧或其他加力构件向下偏压,并安装在两个气垫之间,因此活动密封件可有效地浮在水面。当前头的气垫受到比后部的气垫更大的压力时便对密封件施加向下的力。需要活动密封件的原因在于,舷侧船体的前端和后端跟随着波浪型式,而靠近舷侧船体的中间部分则经历了气垫内的升起和降落的波浪型式。
在最佳实施例中,设置在舷侧船体的内部(通常部分地在其前头)的中央船头大有好处。首先,在外观上,如果中央船头向前延伸,从顶面看或从轮廓上看,颇像一艘游艇的尖船头;第二,可提供在巨浪中航行时良好的乘坐平稳性,因为中央船头有助于防止船在狂涛中船头向下倾斜;第三,中央船头有助于防止船在恶浪中航行时浸水底板受到猛击,因为当遇到大浪时,它能提起船的前面部分,然后导引波浪脱离浸水底板。
下面结合


本发明,附图中图1是按照本发明的船的右侧视图;
图2是图1所示的船的底视平面图;
图3是图1所示的船在巨浪中行驶时的右侧视图,图中示出其船头向上倾斜;
图4是沿图2中4-4线的中心线剖视图;
图5是沿图2中5-5线的剖视图;
图6是沿图2中6-6线的剖视图;
图7是图1所示的船去掉甲板后的顶视平面图;
图8是沿图4的8-8线的剖视图;
图9是图1所示船的正视图;
图10是图1所示船的后视图;
图11是沿图2、5、6、7中的11-11线的剖视图;
图12是沿图2、5、6、7中的12-12线的剖视图;
图13是沿图2的13-13线的剖视图;
图14是图13中所示的密封机构的透视图;
图15是右舷侧船体的中间活动密封机构沿图2的15-15线的剖视图;
图16是沿图2的16-16线的剖视图;
图17是沿图2的17-17线的剖视图;
图18是沿图2的18-18线的剖视图;
图19是本发明另一个实施例的船的右侧视图,这种船带有很长的、向前延伸的舷侧船体的头部;
图20是图19所示船的底视平面图;
图21是沿图20的21-21线的剖视图;
图22是沿图20的22-22线的剖视图;
图23是沿图20的23-23线的剖视图;
图24是沿图20的24-24线的剖视图;
图25是沿图20的25-25线的剖视图;
图26是沿图20的26-26线的剖视图;
图27是沿图20的27-27线的剖视图;
图28是沿图20的28-28线的剖视图;
图29是沿图20的29-29线的剖视图;
图30是一些典型的中间活动密封件和一个铰销的透视图;
图31是一个中间密封件和作动器的透视图。
下面参见附图,特别是图1。图1示出了一艘行驶在如海面水线34所示的平静的海面上的船37。图中示出了右舷侧船体95、右舷侧船体外侧壁113、舷侧船体船舷42、主船体船舷72、主船体中央船头38、甲板线46、艉构架97、位于船体水面36附近的推进器131(图中是一个水面螺旋浆驱动器)和位于垂直方向上的通风阶梯式水密舱47。在本发明的一些最佳实施例中,垂直设置的通风阶梯式水密舱47包括成一定角度的斜线48和一个垂直方向上的锥形台阶49。垂直设置的台阶式通风水密舱47可减少右舷侧船体95的浸水面积(以图中海平面水线34作为检验标准)。当船只行驶在巨浪中时,浸水面积的降低将更为明显。
图2示出了船37的底视平面图,它示出了连接船体的结构99,在在结构99的下面是带有一个空气紊流发生器39的浸水底板41。在本发明的最佳实施例中,连接船体的结构99一般是用机械办法与中央船头38、左舷侧船体96和右舷侧船体95相连接的。在本实施例中,浸水底板41也与艉构架97、主船体上舷72和73相连接。中央船头38最好以船的垂直中心线平面32为准对中,但是也可采用一个以上的中央船头38并且中央船头38也可不必以船的垂直中心线平面32而对中。船37带有一个垂直的中心线平面32、一个左舷侧船体的垂直中心线平面33和一个右舷侧船体的垂直中心线平面98。图中还示出了甲板线46、推进器131、舷侧船体外船舷42和内船舷43、舷侧船体外龙骨板44和内龙骨板45左舷侧船体内侧壁110、左舷侧船体外侧壁111、右舷侧船体内侧壁112、右舷侧船体外侧壁113、加压气源管道84以及舷侧船体的前凹座58、中间凹座59和尾部凹座60。值得注意的是,不管是舷侧船体95还是96都可设置任意数量的凹座(从1个到很多个);并且,其他的船体构件例如中央船体38,需要时也可设置加压气槽。
从图2还可看出,在左舷侧船体上设置有固定的倒V字形凹座密封件,并在右舷侧船体上设置有含有相对于船体是活动的密封件和固定密封件的综合密封机构。一般说来,两侧船体上的密封件的形状最好相同,但是,如图所示的综合式密封机构则是非常切实可行的。固定密封件有前密封件90、中间密封件89和船尾密封件88。从船的一个垂直剖面图中可以看出,斜角的密封段100与位置较低且比较水平的密封段101相似。当船在波涛中行驶时,在前面使用更加倾斜的表面100可提供良好的乘坐平稳性而较为水平的下表面101则提供较高的动力学效率,因此,这种综合结构是合理的。左舷船尾密封件88含有一个嵌块93,由来自凹座60或其他气源经由导管94送来的增压气体作用到嵌块93上,以便在嵌块93上形成一个气体层,从而降低了船尾密封件88的浸水面积,因而也降低了浸水面积的阻力。
右舷侧船体95的随意密封机构是位于前面的活动密封件51、52、53和54;中间活动密封件55和56以及船尾活动密封件91。基本上是垂直的(或者是相平行的)舷侧船体内表面通常与活动密封件相邻,并且这种平行的舷侧船体内表面57在邻近活动密封件51、52、53、54、55和/或56的尾部处可以成发散状。这些活动密封件的功能将在下面进一步阐述,但是,它们的主要目的是提供此左舷侧船体上的固定密封件更好的气体密封。
右舷侧船体95的前端可以截掉而形成如图所示的没有尖端船头的船体。本发明的一种任意实施例是舷侧船体的船头可以部分地被截去而使活动密封件51之前的舷侧船体形成一个只有一点或者设有尖端的中央船头。
图3示出了船37行驶在如海面水线34所示的巨浪中时右舷侧船体的外形。在本实施例中,中央船头38向上倾斜。可以看出,活动密封件51、52和53前面的右舷侧船体95向下延伸至龙骨线44的下面以便帮助密封增压气体。
图4示出了中央船头38后面的浸水底板41的垂直剖视图(中央船头38有助于防止波浪猛击浸水底板41)。浸水底板41实际上是在船体连接结构99的下面。图中还示出空气紊流发生器39及其对空气流的影响(如气流箭头40所示)。所产生的紊流减少了空气流的面积从而增加了空气紊流发生器39前面的空气静压力,结果提高了作用在浸水底板41上的升力。当然,这种作用也提高了船37的总效率。图4中还示出了横向的前增压气流管道82和后增压气流管道83。
图5示出了左舷侧船体96的气体增压系统的工作及其他特征。本实施例所示的气体增压系统含有一个气体增压装置或增压器驱动马达69、前增压器67、前气流控制阀75、进气管86、排气管85、后增压器68和后气流控制阀76。在本实施例中,前增压器67向前凹座58和中间凹座59供应增压气体而后增压器68向后凹座60供应增压气体。
由于有可能通过气流控制阀75和76来调节凹座58、59和60中的气压,因此显著地改善了船37的俯仰、摇摆和上下起伏特性。这些阀门的工作通常由控制器79控制,控制器79通过连接器92接收作为输入信号的来自压力传感器87的凹座压力数据。控制器79通常还接收来自陀螺稳定器(未示出)的船体方位数据(俯仰摇摆和偏航数据)和来自通常是安装在控制器79内部的加速度计(未示出)的惯性力加速度数据。控制器79对上述信息进行处理并依次将控制信号送到气流控制阀75和76中。控制器79的工作是这样的,如果船头的状态是向下倾斜的,则控制器79将全部打开前气流控制阀75并限制流过后气流控制阀76中的气流。这种作用将增加前凹座58和中间凹座59中的气压并降低后凹座60中的气压从而使船37回到了更加正常的平衡位置上。应该注意到,如果需要的话,气流控制阀可以设置在增压器67、68和凹座58、59、60之间。气流控制阀也可设置来降低凹座58、59和60中的压力以便调整船体的位置,但是这种设计没有上述设计那样有效,因为它将浪费增压器的动力。
图5中还示出嵌入船尾固定密封件88的嵌块93,密封件88带有比较水平的下表面101,来自后凹座60的增压气体就作用在这个表面上。图中还示出了中间固定密封件89和前固定密封件90以及更倾斜的密封表面100。气流用气流箭头74表示。
图6示出了船37航行在如海面水线34所示的狂涛中的剖视图,此时,其船头处在向上倾斜的位置上。至此,采用活动的前密封件51、52、53、和54的优点就更清楚了,因为这种密封件在船体露出水面时限制了中间凹座59的漏气量。可以看出,在这个实施例中,前凹座58露出了海面34从而失去了它的增压气体,直到它重新进入水里为止。图6中还示出了本实施例中位于凹座水线35之上的中间活动密封件55和56。可以看出,在本舷侧船体的中心线剖面图上,只有活动密封件51和55上求出了活动密封件的铰销50。图6还示出了由作动器62控制其位置的后活动密封件91。在本实施例中,后活动密封件91可帮助控制后凹座60中的水平面并协助将水流引导至水面螺旋浆推进器131上。
图6还示出了气体增压和控制系统。它包含增压器驱动马达61、前增压器67、前气流控制阀77、后增压器68、后气流控制阀78、进气管86、排气管85、气流箭头74、压力传感器87、控制器79和连接器92。这种气体增压系统的工作和功能基本上与图5的说明相同,故可参考上面的说明。但是,图6的控制器79还可通过控制作动器62的工作而控制活动密封件例如后活动密封件91的运动。图6中还示出了主驱动马达130、中央船头38和甲板线46。
图7示出了一种最佳的气体增压系统设计的平面图。在这一系统中,左舷侧增压器65和66由左舷侧增压器马达61驱动,进入增压器中的气流由气流控制阀75和76控制。右舷侧增压器67和68由增压器驱动马达69驱动,进入增压器的气流由气流控制阀77和78控制。还有互相连通的导管82和83,万一左舷侧的增压器马达61失效,它们也可保证有增压气体流入左舷侧船体96中,或者,万一右舷侧的增压器马达69失效,则可保证有增压气体流入右舷侧船体内。阀80和81通常位于互相连接的导管82和83中。气流控制阀75、76、78、79、82和83用控制器79通过连接器92协调控制。
图8示出了类似于图1、3和4的剖面图中所示的垂直方向上的通气阶梯式水密舱47的工作。这些阶梯式水密舱47可显著地减少舷侧船体的浸水面积(或者单侧船体的浸水面积),从而降低了船体的浸水面积总阻力。从图中可以看出,左舷侧船体沿垂直设置的通风阶梯式水密舱47的船内侧壁(图8中的下侧)基本上平行于左舷侧船体的垂直的中心线剖面33,而船的外侧壁(图8的上侧)则越往船尾的艉构架97越朝垂直的中心线平面33往里斜。这种侧壁向里倾斜的理由在于它可减小或消除水(用邻近船体的水面36的水平面表示)从前一个垂直设置的台阶到下一个垂直设置的台阶49冲击引起的向后阻力。当然,垂直设置的阶梯式水密舱47和/或侧壁的向里倾斜可以设置在船体的任一侧或两侧,并且,如果适用的话,也可设置在中央船头的其他部位上。
从图8也可以看出,在本发明的最佳实施例中,外船舷42仍保持与内船舷43基本平行,并且它们都基本上平行于垂直的中心线平面33。从图1、3、4可以看出,在本发明的最佳实施例中,垂直设置的阶梯式通气水密舱47实际上是终止于(或终止在高于)船舷42和43处,因此,可提供更宽、更有效的气垫和/或船体结构在水面上的覆盖面积。
图9是船37的船头视图,它示出了本发明的船具有十分高的、从海面34到浸入底板41间的排除波浪的距离。
图10和11进一步示出了当船在无风浪的海面上高速行驶时离开船体的喷水图型。
图11是通过后增压器66和68的典型剖视图。图中示出了增压器排气管85、互相连接的气流导管83、互相连接的阀81和气流箭头74。
图11还示出了右舷侧船体95下部为倒V型的活动密封件55。通常在两个基本上是平行的或垂直的内表面57之间动作,如右舷侧船体95中所示。通常希望活动密封件的底面(至少是它的部分长度)具有一定的形状,以便提供良好的于恕涛中行驶时的乘坐平稳性。从左舷侧船体96中可以看出,后凹座60的上表面具有最佳的倒V字形。在这一最佳实施例中,凹座的表面被偏压使船外侧比船内侧占有更大的表面,这样做的目的实际上是当船与水接触时,由于这种偏移会在船外侧上给予船以较大的升力,从而增加了船的摇摆稳定性(也就是,船外侧的升力更加大与船的垂直中心线平面32处的升力差异,结果便可得到更大的摇摆弯矩)。
图12是通过前气流控制阀75和77的剖面图。图12也是表示船行驶在狂涛中的情况,其左舷侧船体96的凹座58露出水面,因此,增压气体被排空,而右舷侧船体95的凹座仍保持其气压,因为它的活动密封件52向下延伸到龙骨44和45之下,因此至少有部分密封可防止漏气。在本发明的最佳实施例中,前活动密封件52在两个基本上是平行的舷侧船体的内表面57间动作,如本实施例右舷侧船体95中所示。
图12也示出了左舷侧船体96的凹座58的上表面上存在类似于图11所示一样的偏压。注意,对于本发明的功能,凹座表面不需要向外偏压可以采用对称的凹座表面,或者的确需要时,也可采用向凹座的船内侧偏移的凹座表面。而且,为了使本发明发挥作用,尽管舷侧船体的两侧以它们的垂直中心线平面成对称这样做是最好的,但并不是必须的。
从图5、6、11和12中可以看出,凹座的平均深度(舷侧船体龙骨44和45以上的距离)比浸水底板41高于舷侧船体的龙骨44和45之上的深度小得多。这是本发明与本说明书前面背景部分所述的SECAT相比的一个十分重要的特征,后者的浸水底板的深度与凹座的深度相等。SECAT在前后的每个舷侧船体凹座中都采用全深度的柔性密封件,以便允许波浪基本都顺利地通过,只要波浪的高度比浸水底板的高度低。在本发明的最佳实施例中,波浪由每一舷侧船体前端上像弓一样的船尖分开而引导它们离开凹座。因此,本发明能够采用只有浸水底板深度的一半或更少的平均凹座深度。实际上,在本发明的很多情况下,可以认为,凹座深度为浸水底板深度的25%是合适的和切实可行的数值。本发明采用较浅的凹座深度有下列几个优点(1)关掉增压器时,吃水深度较浅;(2)是一种固有的较强的和较轻的结构;(3)关掉增压器时具有较好的乘坐平稳性和驾驶特性。
图13示出了右舷侧船体95的前活动密封件51、52、53和54处在向下延伸并与海面水线34相接触的位置上。在本实施例中,这些前密封件51、52、53和54由铰销50固定到舷侧船体的凹座结构58中。图中只示出最前的活动密封件51的铰销50,因为其他的铰销50不通过这一结构的舷侧船体的中心线。从图中可以看出,最后一个前活动密封件54的工作在本实施例中是由作动器62控制的(尽管不一定要用作动器来完成这一控制),也可采用弹簧偏压机构、缓冲器等(未示出)来对一个或全部的活动密封件提供复原力。
图14示出前密封件51、52、53和54处于它们退回的位置。正如这一最佳实施例中所示,这些活动密封件不仅前后重叠,而且它们的两侧也互相重叠,这是一种最佳的位置,因为它可在凹座露出水面时防止气流从凹座的两侧漏出。图14还清楚地示出了活动密封件的铰销50式连接机构。值得注意的是,在本实施例中,铰销50并没有穿透密封件52、53和54,因为这样做会妨碍密封件52、53和54的运动。
图15示出了放入后凹座60中的中间活动密封件55和56。在这种情况下,活动密封件55和56紧跟在凹座水线35之后,并且活动密封件55和56被退回。图中还示出了活动密封件的铰销50。这些后活动密封件55和56的结构中含有一种封闭的胞状泡沫填料70和外蒙皮71。这种制作方法提供了一种重量极轻而强度较高的活动密封结构,在本发明的最佳实施例中,这种结构是防潮的,因为它采用了一种封闭的胞状塑料泡沫填料70。最好所有的活动密封件都用这种方法制造,但是,其它的制造密封件的方法(包括采用柔性密封材料)也可使用。
图16示出了用来定位右舷侧船体95中的后活动密封件91的传动装置62。可以看出,在这个特殊的实施例中,采用了某种形状的后活动密封件91。
图17示出了一种任选的缓冲减震器或缓冲器63和右舷侧船体后活动密封件91。在后活动密封件91的底部做成某种形状以降低在波涛中水的冲击载荷。值得注意的是,可以使用一种简单的弹簧(未示出)或其它的偏压机构与所示的缓冲减震器63连接在一起或者代替它。
图18示出了一种后活动密封件91的最佳实施例,它采用一种气压弹簧承压波纹管64来控制右舷侧船体95的后密封件的位置。在本发明最佳实施例中,与水接触的构件实际上是一块玻璃纤维或其它材料的板状构件。采用气压弹簧波纹管的优点是(1)在船上就已经载有加压气源;(2)气压波纹管不仅可用作缓冲构件,而且也可对后活动密封件进行定位;(3)后活动密封件91的位置能够很容易地由图5、6、7中所示的控制器的输出信号进行控制,控制器调节气压阀(未示出),而气压阀则调节气压弹簧波纹管64中的压力。
图19~29示出了一种带有如右舷侧船体95所示的、具有极其伸长的、向前延伸的舷侧船体的船37的实施例。这种船具有更有效的长舷侧船体的优点和更好的在巨浪中行驶的乘坐平稳性,因为它的舷侧船体的船头实际上是破浪前进的而不是越浪前进的。在这一实施例中,舷侧船体的船舷42(通常称为直舷)终止于船的中部附近。这是因为在本发明的这一实施例中,直舷船体的外侧壁113的前端较平的表面在它们向船中央过渡时隔合成一个较为光滑的且较弯曲的表面。这种过渡将使前面船头处产生更好的稳定性而在船尾处又降低了阻力。
图20是图19的船37的底视平面图。左舷侧船体96和右舷侧船体95两者都带有前凹座58和后凹座60,前后凹座间由限制在铰销50上的活动密封件103~108隔开。增压气体通过排气孔84按表示气流的方向的气流箭头74喷入到前凹座58中。舷侧船体后密封件下表面88处的气垫由倾斜表面115和116引导。舷侧船体的内舷43和内龙骨板45与右舷侧船体内侧壁112和右舷侧船体外侧壁113相邻接。在这一最佳实施例中,由于侧壁向后过渡时是由平的变成弯曲的,故船舷在向船中央的后部前进时就看不见了。至于左舷侧船体内侧壁110和外侧壁111,情况也是一样。
图20也示出了喷水入口102,从图20可以看出,舷侧船体和气垫形状是不对称的,而左舷侧和右舷侧船体的内侧壁110和112则基本上是直的。虽然对称的舷侧船体船头的设计(如上面图2所示)是最好的,但是如果适用的话,也可采用任何对称的和不对称的舷侧船体形状。这是因为对称的、或部分对称的舷侧船体的形状将部分波浪偏导到舷侧船体船头尖部的每一侧,而图20所示的不对称舷侧船体则将所有的波浪都偏导到外侧上。因此,对称的舷侧船体在大浪中行驶时具有最好的乘坐平稳性。
图21示出了舷侧船体的船头向下倾斜而进入海面34的波浪中。从图中可以看出,尖形的舷侧船体进入了一个波浪中而不是越过它,因而具有较平稳的乘坐性能。在船处在图示的向下倾斜的状态时,前气垫将自动加压而大于后气垫的压力以便使船纠正到水平的位置上。此时,向左舷前增压器65供气的左舷前乘坐品质控制阀75将自动地全部打开,而向左舷后增压器65供气的左舷后乘坐品质控制阀76则至少部分关闭。这种程序将使前凹座58的气垫获得最大的压力而使后凹座60的气垫的压力则降至最小,从而使船37恢复到更加水平的位置上。
最好将浮在或贴在气垫水面35上的活动密封件(如图示的活动密封件106)设置在舷侧船体的前、后凹座58、60的气垫之间。通常必须设置有一种能强迫活动密封件向下的机构,例如弹簧109,以便在前凹座58气垫的压力高于后凹座60的气垫时能保证活动密封件仍停留在它的位置上。还应该提醒一点,如果需要的话,也可在任何一侧的舷侧船体上设置附加的气垫凹座。
图22示出了左舷侧船体95和右舷侧船体96前端的剖视图。从图中可以看出,其下表面与水平线的夹角小于上表面与水平面的夹角。因此可获得大于入水力的升力,从而在船37的船头向下倾斜后能协助恢复其水平状态。
图23示出了船37前面的形状,包括位于连续浸水底板的舷侧船体前端的任选中央船头38的前端。注意,在本最佳实施例中,左舷侧和右舷侧船体的外侧壁111、113的这些前端的部位带有直外舷42和与舷侧船体外龙骨板44相连接的比较平的表面。左舷侧和右舷侧船体的内表面110、112十分窄,最好基本上是像一把刀片一样的削水,以便使阻力减至最小。
图24示出了左舷侧和右舷侧后增压器66和68以及它们是如何将增压气体送到活动密封件103~108的。活动密封件103~108通常是用铰销50固定到船体37上的。空气按气流箭头40所示进入到左舷侧和右舷侧的气流控制阀76、78中,然后由后增压器66、68增压并按照气流箭头74所示的方向排出。在本实施例中,由于船37被表示行驶在平静的海面上,因此,活动密封件103~108是水平的,并且浮在气垫水面35上。它们通常是基本上与船体的活动密封件表面57垂直相邻的。
下面再参见图24,值得注意的是,左舷侧和右舷侧船体侧壁111和113的下部形状最好做成比图22和图23中所示的前部分的形状更加弯曲。这种从前面的较平的斜角表面或直舷侧壁表面过渡到后面的较弯曲的表面的方法使船头具有良好的倾斜稳定性并使船尾具有良好的动力学效率。从图中也可以看出,左舷侧和右舷侧船体的外侧壁111、113比左舷侧和右舷侧船体的内侧壁110、112更宽、更深。因此可获得最高的横向稳定性和最小的阻力。
图25是与图24一样的剖面图,但是在图25中,船37向右舷侧摇摆。此时,活动密封件103~108成一定角度因为它们跟踪气垫水面35。最好活动密封件(不是固定密封件)如图2和图5实施例所示的左舷侧船体一样位于舷侧船体气垫之间,因为它们能浮在舷侧船体的内侧或气垫水面35上,而固定密封件则不能,图25中所示的其他构件与上面刚刚详细介绍过的图24中所示的相同,所以就不再重复了。
图26是最佳实施例典型船体的横截面图,它示出了刚刚露出水面的船头剖视图,而且任何中间活动密封件都与图24和25中所示的相同。在这一最佳实施例中,舷侧船体仅仅带有前气垫和后气垫,活动密封件最好位于舷侧船体水线长度中点的附近或者在水线长度中点偏前一点的位置上。
了解下面的事实是十分重要的,即左舷侧和右舷侧船体的内侧壁110、112比左舷侧和右舷侧船体的外侧壁111、113窄,并且它们与水接触的下表面的终点也比后者高,因此其动力学阻力最小且摇摆稳定性最大。这种效应将在下面对图27的说明中进一步讨论。
从图26中可以看出,在本发明的最佳实施例中,舷侧船体的内表面115和外表面116是向内成一定角度的。
图27是与图26一样的剖视图,只是此时船或船体37向右舷侧摇摆。了解下面事实是很重要的,即在本最佳实施例中,舷侧船体的内侧壁比外侧壁窄并且它们与水接触的下表面也比后者高,因此,船体的内侧壁阻力较小。从图27中可以看出,在船处于这种摇摆的条件下,左舷侧凹座气垫的水面35基本上由左舷侧船体相等高度的内和外侧壁110和111所限制。同样重要的是,在正视图中,右舷侧船体气垫的水面35较低,因此在较高的压力下能使右舷侧船体获得最大的纠正摇摆的上升力矩,因为此时右舷侧船体的气垫压力较高。
图28示出了最佳的倒V字形船尾密封件。注意,凹座的内、外倾斜表面115、116与水平面的夹角更大,而且,这些表面115、116向上延伸在最佳的倒V字形的顶点处汇合。可以认为,本发明的特征就在于这个倒V字形,也就是说,凹座的倾斜表面115、116直接地或延长地(如图所示)在顶点114汇合而形成一个倒V字形。最好是这一顶点位于船体37的甲板线46之下,至少要比后密封件的形状高许多,因为这样就能够形成一个能获得良好的、在狂涛中行驶的乘坐平稳性的最佳倒V字形密封件。
图29示出了船尾凹座的气体密封件的剖视图。从图中可以看出它已演变成几乎是全跨度的水平表面88,但仍有一处小的倒V字形部位,顶点为114。在最佳的低阻力形状下,则进一步演变成全跨度的基本上是平的船尾密封表面88,如图20中所示的一样。从使高速行驶的阻力减至最小的观点看,也希望左舷侧和右舷侧的内壁110、112融合此处的密封表面88中。
图30示出了某些典型的中间活动密封件106、107、108和密封件的铰销50。在本实施例中,活动密封件的底面可以处在各种高度上,就像它们浮在波动的水面一样。在图30中,为了简化起见,没有示出向下加力的构件(如上面图21中所示的弹簧)。
图31示出了一个单个的密封件106和铰销50,它由弹簧109和固定到船体37上的缓冲器或缓冲减震器63进行强行偏压和缓冲。缓冲器63和弹簧109(单独的或如图所示的综合的)是一种能对活动密封件106产生附加的向下压力的好机构,其他的机构也可使用,包括(但不限于)前面图16、17、18所示的产生力的装置。
权利要求
1.一种带有设置在双船体式舷侧船体内的支承气垫的船,所述的双船体式舷侧船体与船体连接结构机械连接在一起,所述的支承气垫由气体增压机构供给增压气体,其特征在于在每个双船体式舷侧船体内有一凹座,该凹座至少部分地限制着加压气垫,每个上述的双船体式舷侧船体具有内、外侧壁,若在该船的水平浸水平面上看去,至少一个上述的双船体式舷侧船体中的凹座在从其前头部分过渡到其后部的纵向长度的至少一部分长度上其宽度加宽,当上述的船在平静海面以大于25海里/小时的速度行驶时,其气垫增压到足以支承船的大部分重量。
2.根据权利要求1的船,其特征在于,所述的在一个双船体式舷侧船体中的凹座先加宽然后在纵向长度的至少一部分长度上宽度变成较为恒定。
3.根据权利要求1或2的船,其特征在于,所述的在上述的一个双体船式舷侧船体中的凹座从前头到后头宽度至少加宽25%。
4.根据权利要求1、2或3的船,其特征在于,如果在上述船的水平浸水平面上看去,至少一个上述的凹座是至少部分地不对称的。
5.根据权利要求1至4的任一项的船,其特征在于,至少一个上述的舷侧船体的内、外侧壁具有外浸水表面,该表面是至少部分地互相不对称的。
6.根据权利要求1至5中任一项的船,其特征在于,至少一个所述的凹座在双体船式舷侧船体龙骨的最低部分以上的平均高度比从双体船式舷侧船体龙骨的最低部分到上述船的浸水底板的距离的50%还小。
7.根据权利要求1至6中任一项的船,其特征在于,一个中央船头与上述的船体连接机构机械地连接。
8.根据权利要求1至7中任一项的船,其特征在于,至少一个基本上刚性的密封件设置在至少部分地靠近一个上述的双船体式舷侧船体凹座处,所述的基本上刚性的密封件的底面,若在船的至少一个垂直的横向剖面上看去,包含若干表面,该表面在所述密封件的大部分宽度上与水平面成一角度。
9.根据权利要求8的船,其特征在于,上述的基本上刚性的密封件是至少部分地不对称的。
10.根据权利要求8或9的船,其特征在于,上述的基本上刚性的密封件至少部分地包含若干下密封表面,若在船的一个垂直横向剖面上看去,该表面比上述的基本上刚性的密封件的靠近并在上述的下密封表面前面的表面大致更加水平些。
11.根据权利要求1至10中任一项的船,其特征在于,在至少一个上述的双船体式舷侧船体的侧面上垂直设置通风台阶。
12.根据权利要求11的船,其特征在于,若在上述的船的一个水平面上看,沿着上述垂直设置的通风台阶的至少一部分上,上述双船体式舷侧船体的上述侧表面,后部跨度要比靠近前部的跨度窄些。
13.根据权利要求1至12中任一项的船,其特征在于,第一个前活动密封件设置在靠近一个上述的双船体式舷侧船体凹座的前面部分,在该处,上述的第一前活动密封件相对于船是活动的。
14.根据权利要求1至13中任一项的船,其特征在于,一个中间活动密封件至少部分地安装在靠近一个双船体式舷侧船体凹座处,该中间活动密封件相对于船是活动的。
15.根据权利要求14的船,其特征在于,所述的中间活动密封件与一种对它施加向下的力的压力机构在机械上连接。
16.根据权利要求15的船,其特征在于,上述的压力机械是,至少部分是有弹性的。
17.根据权利要求14、15或16的船,其特征在于,上述中间活动密封件由多个独立的零件组成。
18.根据权利要求1至17中任一项的船,其特征在于,在至少一个双船体式舷侧船体中有第一凹座和第二凹座。
19.根据权利要求18的船,其特征在于,气体增压机构能够以不同的压力对所述的第一凹座和第二凹座供气。
20.根据权利要求1至19中任一项的船,其特征在于,如果在船的至少一个垂直横向剖面上看去,当船水平地行驶时,上述的双体式舷侧船体的上述外侧壁,平均说来,大致低于其内侧壁。
21.根据权利要求1至20中任一项的船,其特征在于,上述的双船体式舷侧船体的内侧壁,平均说来,大致比其外侧壁要窄些。
22.根据权利要求1至21中任一项的船,其特征在于,上述的双体船式舷侧船体的上述外侧壁有若干下表面,这些表面包含前头的斜角表面和后头的较弯曲表面。
23.一种带有设置在双体船式舷侧船体内的支承气垫的船,该双体船式舷侧船体与船体连接结构机械连接,所述的支承气垫由气体增压机构供给压缩气体,其特征在于,在每个双体船式舷侧船体中有一前凹座,该凹座至少部分地限制增压气垫,在每个双体船式舷侧船体中有一后凹座,该凹座至少部分地限制增压气垫,该凹座设置在至少有大部分位于上述前凹座的后部,上述的前凹座和后凹座至少部分地分开的,气体增压机构能够以不同的压力对所述的前凹座和后凹座供气。
24.根据权利要求23的船,其特征在于,在至少一个上述的双船体式舷侧船体中的前凹座,如果在上述船的一个水平浸水面上看,在其纵向长度的至少一部分长度上其宽度加宽。
25.根据权利要求23或24的船,其特征在于,至少一个基本上刚性的密封件至少部分地设置在靠近一个上述的双船体式舷侧船体凹座处,上述基本上刚性的密封件的底面,如果在船的至少一个垂直的横向平面上看,包括若干表面,这些表面在上述密封件的宽度的大部分上与水平面成一角度。
26.根据权利要求23、24或25的船,其特征在于,在至少一个上述的双船体式舷侧船体的一个侧表面上有垂直设置的通风台阶。
27.根据权利要求23至26中任一项的船,其特征在于,一个活动密封件设置在(至少部分地)靠近一个上述的双船体式舷侧船体的凹座,在该处,上述的活动密封件相对于船是活动的。
28.根据权利要求27的船,其特征在于上述的活动密封件与一种可对它施加向下的力的压力机构机械连接。
29.根据权利要求27或28的船,其特征在于,上述的活动密封件由多个独立的零件组成。
30.根据权利要求23至29中任一项的船,其特征在于,平均来说,其内侧壁比外侧壁要窄,该外侧壁至少部分地与至少一个上述的凹座相邻接。
31.根据权利要求23至30中任一项的船,其特征在于,平均来说,其内侧壁在高度上比外侧壁高,如果在船的一个垂直的横向平面上看,上述外侧壁至少部分地与至少一个上述的凹座相邻接。
全文摘要
一种改进性能的海船,包含设置在多船体(通常是双船体式舷侧船体)中的加压支承气垫,在航行中该加压气垫支承着船的大部分重量。本发明采用瘦而长的尖船头双船体式舷侧船体,它与船体连接结构用机械连接。舷侧船体气垫的外侧壁最好比内侧壁宽些、深些。其气垫侧壁在前头与较平直表面任意成一角度,然后向船尾过渡到较弯曲的形状。在舷侧船体之间设置中央船头,以提高在巨浪中行驶的稳定性。在舷侧船体的凹座中有固定的和/或活动的密封件。
文档编号B63B1/38GK1068300SQ92105569
公开日1993年1月27日 申请日期1992年7月10日 优先权日1991年7月10日
发明者唐纳德E·伯格 申请人:唐纳德E·伯格
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1