包括立体角单元的薄片及逆向反射片的制作方法

文档序号:4488130阅读:264来源:国知局
专利名称:包括立体角单元的薄片及逆向反射片的制作方法
技术领域
本发明涉及包括立体角单元的薄片、包括薄片组件的工具及其复制品,特别是包括逆向反射片的所述工具的复制品。
背景技术
逆向反射材料的特征在于它能够使入射到材料上的光朝其起始光源返回。这种性质已经导致逆向反射片广泛地应用于各种交通和个人安全方面。逆向反射片通常应用于各种制品中,例如路标、路障、执照牌、路面标志、斑马胶带以及用于车辆和衣服的逆向反射胶带。
两种已知类型的逆向反射片是微球型片材和立体角片材。基于微球的片材有时称为“珠状的”片材,其采用大量的微球体,所述的微球体通常至少部分嵌入粘合剂层中,并且具有相关的镜面反射或漫反射材料(例如颜料颗粒、金属小薄片或蒸镀层等),从而使入射光发生逆向反射。由于珠状逆向反射器的对称性几何结构,所以不管什么取向,即当绕与所述片材的表面垂直的轴旋转时,基于微球的片材都表现出相同的全光返回现象。因此,这种基于微球的片材对片材放置于表面上的取向具有比较低的敏感性。然而,一般而言,这种片材的逆向反射率低于立体角片材的逆向反射率。
立体角片材通常包括薄的透明层,所述的透明层具有基本平坦的前表面和包括多个几何结构的后结构表面,一些或所有的几何结构包括构成一个立体角单元的三个反射面。
通常,通过首先制造具有结构表面的标准模具来制造立体角逆向反射片,所述结构表面对应于成型的片材中所需的立体角部分或者其阴(反向)模复制品,这取决于成型的片材要具有立体角锥体还是具有立体角腔(或者二者都具有)。然后,使用任何适合的技术例如传统的镍电铸来复制模具,以通过如压花、挤压或浇铸和固化等工艺来产生形成立体角逆向反射片的工具。对于形成用于制造立体角逆向反射片的工具的方法,美国专利第5,156,863号(Pricone等人)给出了示例性的概述。用于制造标准模具的已知的方法包括针形元件束(pin-bundling)技术、直接机加工技术和层压技术。
在针形元件束技术中,将多个小模块组合在一起,以形成母模,所述多个小模块中的每一个在其一端上都具有几何形状例如立体角单元。美国专利第1,591,572号(Stimson)和第3,926,402号(Heenan)给出了示例性例子。因为每个小模块是独立地加工的,所以针形元件束技术使得在单一一个模具中能够制造许多种立体角几何结构。然而,因为大量的小模块需要精确地加工,并且这些小模块的尺寸也要逐渐缩小,然后又要将它们按捆排列以形成模具,所以对于制造小的立体角单元(例如那些立方体高度低于大约1毫米的立体角单元),这种技术是不能实施的。
在直接机加工技术中,一系列凹槽形成在平坦的基底(例如金属板)的表面上,以形成包括截角的立体角单元的母模。在一项众所周知的技术中,三组平行的凹槽以60度的夹角彼此相交形成立体角单元的阵列,每个立体角单元具有等边三角形底面(参见美国专利第3,712,706号(Stamm))。在另一项技术中,两组凹槽以大于60度的角彼此相交,第三组凹槽以小于60度的角与其它两组中的每一组相交,从而形成斜置的立体角单元配对的阵列(参见美国专利第4,588,258号(Hoopman))。在直接机加工中,大量的独立面通常沿同一凹槽形成,所述的凹槽通过切削刀具的连续运动而形成。因此,这样的独立面在模具制造的整个过程中保持它们的排列。由此,直接机加工技术使得能够精确地加工非常小的立体角单元。然而,直接机加工的缺点在于,可制造的立体角几何形状类型中的设计灵活性已经降低了,相应地,这种灵活性的降低又影响全光返回。
在层压技术中,将被称为薄片的多个片材(即板材)组合在一起,以形成标准模具,所述薄片具有在一个纵向边上形成的几何形状。因为在层压技术中独立地加工较少的部件,所以它通常比针形元件束技术耗费的劳动量少。例如,每个小模块仅有一个立体角单元,与之相比,一个薄片通常包括400-1000个独立的立体角单元。然而与针形元件束技术可达到的设计灵活性相比,层压技术的设计灵活性较低。在下列文献中可找到层压技术的示例性例子EP 0 844 056 A1(Mimura等人);美国专利第6,015,214号(Heeman等人);美国专利第5,981,032号(Smith);以及美国专利第6,257,860号(Luttrell)。
通常,截角的立体角阵列的相邻立体角单元的底边是共面的。其它被描述为“全立方体”或“优选几何(PG)立体角单元”的立体角单元结构通常包括至少两个非共面的非二面边。与截角的立体角单元相比,这样的结构通常表现出较高的全光返回。某些PG立体角单元可通过对一系列基底进行直接机加工来制造,如WO 00/60385中所述。然而,在该多步骤的制造工艺中,很难保持几何精确度。在得到的PG立体角单元和/或这些立体角单元的排列中,还可能显然存在设计限制。相反,针形元件束技术和层压技术允许形成各种形状和排列的PG立体角单元。然而,与针形元件束技术不同,层压技术还有这样的优点,能够形成相对较小的PG立体角单元。
立体角的对称轴是将结构分成三等份并与所有的三个立方体面成相等的角的矢量。在上述的Stamm发明的截角的立方体中,对称轴与等边三角形底面垂直,从而这些立方体被认为是没有斜面或斜坡。在立体角领域中已经使用术语“向前倾斜”或“正倾斜”来描述按一定的方式倾斜的截角的立体角单元,即用来描述仅一个底面三角形夹角相对于60°增大的情形。相反,在立体角领域中已经使用术语“向后倾斜”或“负倾斜”来描述按一定的方式倾斜的截角的立体角单元,即用来描述底面三角形的两个夹角相对于60°增大的情形。参见美国专利第5,565,151号(Nilsen)和美国专利第4,588,258号(Hoopman)。在美国专利第6,015,214号(Heenan等人)中描述了PG立体角单元的倾斜。
倾斜的立体角向后或向前地增强入射的倾斜度(angularity)。对于给定的倾斜量,全立体角单元比截角的立体角单元具有更高的全光返回,但是,在较高的入射角,全立方体的全光返回消逝得更快。全立体角单元的一个好处是,在低入射角,具有较高的全光返回,并且在较高的入射角,其性能没有很大的损失。
用于提高某一方向的全光返回(TLR)的均匀性的通用方法是砌瓦(tiling),即将多个小的工具部分沿一个以上的方向放置在最终制品上,例如美国专利第4,243,618号(Van Arnam)、美国专利第4,202,600号和美国专利第5,936,770号(Nestegard等人)所述。砌瓦可能在视觉上令人不愉快。而且,该砌瓦法使制作用于所述逆向反射片制造的工具的加工步骤增多。
除了与TLR有关外,逆向反射片的性能还与该片的发散外形(divergence profile)或观察倾斜度有关。这与相对于光源即通常的车头灯的逆向反射的光的展宽有关。从立体角逆向反射的光的展宽主要由包括衍射、偏振和非正交性在内的这些因素决定。为此,通常引入角误差,例如美国专利第5,138,488号(Szczech)的第5栏中的表1所述。
同样,EP 0 844 056 A1(Mimura)中的例1描述了快速切削过程,其中,用金刚石切削刀具形成的V形凹槽的底角按规则的次序稍微发生变化,在与所述片材的主表面垂直的方向上,以141.4μm的重复间距连续重复地切削深度为70.6μm、70.7μm和70.9μm的三类对称的V形凹槽。因此,在片材的一个边缘上以重复模式形成具有三种不同垂直角89.9°、90.0°和91.0°的一系列连续屋顶形的投影。
虽然本领域描述了各种逆向反射设计及测量出的或计算出的逆向反射性能,但是工业上将寻找具有新立体角光学设计的逆向反射片及其制造方法的有利条件,尤其是那些有助于改善性能和/或提高制造效率的特征。

发明内容
在一个实施例中,本发明公开了一种包括立体角单元的薄片,所述立体角单元具有由凹槽形成的面,其中,相邻的凹槽在从名义上平行到小于1°的不平行的范围内。所述相邻的凹槽具有相差至少2°的夹角。一方面,所述凹槽的夹角按重复的模式设置。另一方面,所述立体角单元的面相交于公共峰顶点。又一方面,所述凹槽具有在从名义上相互平行到小于1°的不平行的范围内的二等分平面。
在另一实施例中,本发明公开了一种包括优选的几何立体角单元的薄片,其中,至少一部分立体角单元倾斜,并且具有从在45°和135°之间的校正角、在225°和315°之间的校正角及其组合中选择的校正角。优选地,第一立体角单元倾斜,并且具有在60°和120°之间的校正角,第二相邻立方体倾斜,并且具有在240°和300°之间的校正角。此外,优选地,所述第一立方体的校正角与0°或180°的差值与所述第二立方体的校正角与0°或180°的差值基本上相同。
在这些实施例的每个中,优选地,所述立体角单元包括由交替成对的侧凹槽形成的面。每对侧凹槽的夹角优选地具有基本上180°的总和。此外,第一凹槽的夹角优选地比90°大至少大约5°(例如大约10°至大约20°),第二相邻凹槽的夹角优选地比90°小大约相同的量。
在另一实施例中,本发明公开了一种具有包括立体角单元的微结构表面的薄片,所述立体角单元具有由侧凹槽组形成的面,其中,在所述组中至少两个凹槽不平行,该不平行的程度在从大于名义上平行至约1°的范围内。所述立体角单元优选地包括二面角误差,所述二面角误差的数值在1弧分和60弧分之间。所述二面角误差优选地按重复的模式设置。所述凹槽具有偏角(skew)和/或倾角(inclination),所述偏角和/或倾角在数值和符号方面可以变化。
在所有公开的实施例中,所述相邻的凹槽优选地是侧凹槽。此外,所述立体角单元优选地每个都具有在公共平面内限定主凹槽面的面。另外,所述立体角单元是优选的几何立体角单元。
在其它的实施例中,本发明公开了一种包括多个薄片的标准工具。所述多个薄片是所述薄片中的任何一种或组合。优选地,将所述薄片组合使得相邻的薄片的立体角单元取向相反。优选地,所述立体角单元在平面图中具有从梯形、矩形、平行四边形、五边形和六边形中选择的形状。
在其它的实施例中,本发明公开了一种标准工具的复制品,所述复制品包括多代加工工具或逆向反射片。所述逆向反射片可从薄片得到,或者具有与薄片有关的所述光学特征相同的光学特征。逆向反射片可具有立体角单元、立体角腔或其组合。
因此,在其它的实施例中,本发明公开了一种包括由优选的几何立体角单元组成的列的逆向反射片,所述立体角单元具有由凹槽限定的面,其中,相邻的侧凹槽在从名义上平行到小于1°的不平行的范围内,并且具有相差至少2°的夹角。在其它的实施例中,所述逆向反射片包括立体角单元列,其中,第一立体角单元倾斜,并且具有在45°和135°之间的校正角,第二相邻立方体倾斜,并且具有在225°和315°之间的校正角。在其它的实施例中,所述逆向反射片包括由优选的几何立体角单元组成的列,所述立体角单元具有由侧凹槽组限定的面,其中,所述组中至少两个凹槽不平行,所述不平行的程度在从大于名义上平行至大约1°的范围内。在这些实施例的每个中,所述逆向反射片优选地还包括与单层薄片或多层薄片有关的所述特征。
另一方面,本发明公开了一种包括由优选的几何立体角单元组成的列构成的相邻列对的逆向反射片,其中,列中的相邻立体角单元具有至少一个二面边,所述至少一个二面边在从名义上平行到小于1°的不平行的范围内,其中,所述列对包括至少两种类型的配对。
在优选的实施例中,公开的所述逆向反射片具有改善的特性。在一个实施例中,所述逆向反射片表现出至少为1的均匀指数。可获得这种均匀性,而无需在一个以上的方向上砌瓦。所述均匀指数优选地至少为3,更优选地至少为5。在其它的优选实施例中,所述逆向反射片包括由优选的几何立体角单元组成的列,根据ASTMD4596-1a,对于-4°的入射角和0.5°的观测角,所述立体角单元在0°和90°的取向所表现出的平均亮度至少为375堪德拉/勒克斯/m2。优选地,所述逆向反射片在其它的观察角也表现出较高的亮度。
本发明还公开了这里所述特征的任何组合。


图1是立体角单元形成之前的示例性单层薄片的透视图。
图2是第一凹槽组形成之后示例性单层薄片的端视图。
图3是第一凹槽组形成之后示例性单层薄片的侧视图。
图4是第一凹槽组和第二凹槽组形成之后示例性单层薄片的顶视图。
图5是第一凹槽组和主凹槽面形成之后示例性单层薄片的顶视图。
图6是包括第一凹槽组和第三主凹槽的四层薄片的示例性组件的顶平面图,其中,立体角是侧向倾斜的。
图7是示出在薄片上一对相邻的侧向倾斜的立方体的对称轴的侧视图。
图8是四层薄片的透视图,其中,立体角是侧向倾斜的。
图9是四层薄片的透视图,其中,立体角是侧向倾斜的,这些薄片是按相反取向组合的。
图10a表示向后倾斜的立体角单元。
图10b表示侧向倾斜的立体角单元。
图10c表示向前倾斜的立体角单元。
图11是薄片组件的顶平面图,其中,在与薄片的边缘垂直的平面上立体角是向前倾斜的。
图12是薄片组件的顶平面图,其中,在与薄片的边缘垂直的平面上立体角是向后倾斜的。
图13是显示配对的立体角单元的预测光返回曲线的等强度曲线图,所述立体角单元包含聚碳酸酯,并且向前倾斜9.74°。
图14是显示配对的立体角单元的预测光返回曲线的等强度曲线图,所述立体角单元包含聚碳酸酯,并且向后倾斜7.74°。
图15是显示两个反向薄片的预测光返回曲线的等强度曲线图,所述薄片包括侧向倾斜4.41°的聚碳酸酯立方体。
图16是显示两个反向薄片的预测光返回曲线的等强度曲线图,所述薄片包括侧向倾斜5.23°的聚碳酸酯立方体。
图17是显示两个反向薄片的预测光返回曲线的等强度曲线图,所述薄片包括侧向倾斜6.03°的聚碳酸酯立方体。
图18是显示两个反向薄片的预测光返回曲线的等强度曲线图,所述薄片包括侧向倾斜7.33°的聚碳酸酯立方体。
图19是显示两个反向薄片的预测光返回曲线的等强度曲线图,所述薄片包括侧向倾斜9.74°的聚碳酸酯立方体。
图20是校正角与均匀指数的曲线图。
图21是具有偏角的侧凹槽的薄片的顶平面图。
图22示出代表性立体角单元的每个二面角。
图23是显示薄片的立体角单元的侧视图,显示了正的倾角和负的倾角。
图24是立方体的点列图,该立方体向后倾斜7.47度,主凹槽的角误差在2至10弧分的范围内。
图25是立方体的点列图,该立方体向后倾斜7.47度,主凹槽的角误差在0至-20弧分的范围内。
图26是立方体的点列图,在主凹槽和侧凹槽角误差的结合下,该立方体向后倾斜7.47度。
图27是立方体的点列图,该立方体向后倾斜7.47度,其中,侧凹槽包括7弧分的恒定偏角、+1.5弧分的侧凹槽角误差和在每四个凹槽上以重复模式变化的倾角。
图28显示的是与图29的几何结构相同的立方体的点列图,不同之处在于所述侧凹槽的偏角为-7弧分而不是+7弧分。
图29示出的是图27和图28的组合的点列图。
图30包括与图29相同的角误差、偏角和倾角,除了立方体向前倾斜7.47度外。
图31是立方体的点列图,该立方体侧向倾斜6.02度,并且具有各种不同的偏角和倾角。
附图尤其薄片是解释性的,因而不必非得代表实际的尺寸。例如,附图可能是放大的薄片或者薄片的放大部分。
具体实施例方式
本发明涉及包括立体角单元的单层薄片和多层薄片以及包括薄片和复制品的组件的工具。本发明还涉及逆向反射片。
优选地,用通过层压技术而制造的标准模具来制备逆向反射片。因此,薄片和逆向反射片的至少一部分并且优选基本上所有的立体角单元是未被截去顶端的全立方体。一方面,在平面图中全立方体单元的底面不是三角形。另一方面,全立方体单元的非二面边的特征是并不都在同一平面上(即不共面)。这些立体角单元优选地是“优选几何(PG)立体角单元”。
PG立体角单元可限定在沿参比平面延伸的立体角单元的结构面的环境中。为了本申请的目的,PG立体角单元指的是具有至少一个非二面边的立体角单元,所述非二面边(1)与参比平面不平行;(2)与邻近的立体角单元的相邻非二面边基本上平行。三个反射面包括矩形(包括正方形)、梯形或五角形的立体角单元是PG立体角单元的例子。关于定义PG立体角单元的“参比平面”指的是一平面或其它表面,该平面或表面接近一组相邻的立体角单元或其它几何结构的一个平面,所述立体角单元或几何结构沿该平面设置。在单层薄片中,相邻的立体角单元组由单一一列或由列构成的列对组成。在组合起来的薄片中,相邻的立体角单元组包括单层薄片和相邻的接触薄片的立体角单元。在片材中,相邻的立体角单元通常包括人眼可见的区域(例如,优选地,至少1mm2),优选地,包括片材的整个尺寸。
“入射角”指的是参比轴(即逆向反射样品的法向矢量)和入射光的轴之间的角。
“取向”指的是样品从基准点的起始零度方向起可绕参比轴旋转通过的角。
薄片指的是至少两个薄片层。“薄片层”指的是长度和高度至少为厚度的大约10倍(优选地至少为厚度的100、200、300、400、500倍)的薄板。本发明不局限于任何特定尺寸的薄片。关于旨在用于逆向反射片的制造中的薄片,可通过最终设计(例如立体角结构)的光学要求来限制最佳尺寸。薄片的厚度通常小于0.25英寸(6.35mm),优选地小于0.125英寸(3.175mm)。薄片的厚度优选地小于大约0.020英寸(0.508mm),更优选地小于大约0.010英寸(0.254mm)。通常,薄片的厚度小于大约0.001英寸(0.0254mm),更优选地小于大约0.003英寸(0.0762mm)。薄片的长度范围为大约1英寸(25.4mm)至大约20英寸(50.8cm),通常小于6英寸(15.24cm)。薄片的高度范围通常为大约0.5英寸(12.7mm)至大约3英寸(7.62cm),更优选地小于大约2英寸(5.08cm)。
参照图1-8,薄片10包括第一主表面12和相对的第二主表面14。薄片10还包括工作面16和在第一主表面12和第二主表面14之间延伸的相对底面18。薄片10还包括第一端面20和相对的第二端面22。在优选实施例中,薄片10是直角矩形多面体(right rectangularpolyhedron),其中,相对面基本上平行。然而,应该明白,薄片10的相对面不必非得平行。
通过将笛卡尔坐标系重叠到薄片10的结构上,薄片10可用三维空间来描述。第一参比平面24居中位于主表面12和14之间。称为x-z平面的第一参比平面24以y轴作为其法向矢量。称为x-y平面的第二参比平面26与薄片10的工作面16基本上共平面地延伸,并且以z轴作为其法向矢量。称为y-z平面的第三参比平面28居中位于第一端面20和第二端面22之间,并且以x轴作为其法向矢量。为了清楚起见,本发明的各种几何结构属性将参照在此阐述的笛卡尔参比平面来描述。然而,应该明白,这些几何结构属性可使用其它的坐标系或参照薄片的结构来进行描述。
本发明的薄片优选地包括立体角单元,所述立体角单元具有用第一凹槽组、可任选的第二凹槽组及优选的第三凹槽组(例如主凹槽组)形成的面,因而本发明的薄片包括所述的第一凹槽组、可任选的第二凹槽组及优选的第三凹槽组(例如主凹槽组)。
图2-9示出了在薄片10的工作面16上包括多个立体角单元的结构面。一般而言,包括至少两个(优选多个)凹槽30a、30b、30c等(集体称为30)的第一凹槽组在薄片10的工作面16上形成。形成凹槽30使得各个凹槽顶点33和各个第一参比边36沿与薄片10的第一主表面12和工作面16相交的轴延伸。虽然薄片10的工作面16可包括未发生改变的(即未被做出结构的)部分,但是优选的是,工作面16基本上没有未被做出结构的表面部分。
用凹槽顶点排成一行的矢量来定义具体凹槽的方向。凹槽方向矢量可通过其x、y和z方向上的分量来定义,x轴垂直于参比平面28,y轴垂直于参比平面24。例如,用凹槽顶点33b排成一行的矢量来定义凹槽30b的凹槽方向。注意,重要的是,即使凹槽不平行(即不同的z方向分量),凹槽顶点在顶视图中也可能看起来相互平行。
本文中所用的术语“凹槽组”指的是形成在薄片10的工作面16上并在从与凹槽组中的相邻凹槽名义上平行到与凹槽组中的相邻凹槽不平行的1°角的范围内的凹槽。作为对此的一种选择或者补充,凹槽组的凹槽可以是在从与具体参比平面名义上平行到与具体参比平面不平行的1°角的范围内,随后将会对所述的参比平面进行描述。因此,应该知道,关于单一一个凹槽和/或凹槽组中的凹槽的每个特性(例如垂线、角度等)都具有相同程度的潜在偏差。名义上平行的凹槽是其中在起槽机的精确度中尚未引入有意变化(purposefulvariation)的凹槽。为了引入多重非正交性(MNO)(multiplenon-orthogonality),凹槽组的凹槽还可包括小的有意变化,例如夹角误差和/或偏角和/或倾角,随后将会对此进行更加详细地描述。
参照图3-9,第一凹槽组包括凹槽30a、30b、30c等(集体用标记30表示),所述凹槽30a、30b、30c等限定相交于凹槽顶点33b、33c、33d等(集体称为33)的第一凹槽表面32a、32b、32c等(集体称为32)和第二凹槽表面34b、34c、34d等(集体称为34)。在薄片的边缘,起槽操作可形成单一一个凹槽表面32a。
在图4所示的另一实施例中,薄片10还可任选地包括第二凹槽组(集体称为38),该第二凹槽组包括至少两个(优选地多个)相邻的凹槽,并且也形成在薄片10的工作面16上。在本实施例中,第一凹槽组和第二凹槽组近似沿第一参比平面24相交,以形成包括多个交替的峰和V形谷的结构面。或者,峰和V形谷可以彼此相对偏移(off-set)。凹槽38限定相交于凹槽顶点41b、41c等(集体称为41)的第三凹槽表面40a、40b等(集体称为40)和第四凹槽表面42b、42c等(集体称为42),如图所示。在薄片的边缘上,起槽操作可形成单一一个凹槽表面40a。
在本文中这些第一凹槽组和第二凹槽组还都可称为“侧凹槽”。本文所用的侧凹槽指的是其中凹槽在其相应的方向矢量上从与侧凹槽组中的相邻侧凹槽名义上平行到与侧凹槽组中的相邻侧凹槽不平行的1°角内的范围内的凹槽组。作为对此的一种选择或者补充,侧凹槽指的是在从与参比平面28名义上平行到与参比平面28不平行的1°角的范围内的凹槽。在平面图中,侧凹槽通常以该相同的偏差度与参比平面24垂直。根据侧凹槽是名义上平行还是1°内的不平行,当用显微镜观看平面图或者用于涉仪测量侧凹槽的二面角或平行度时,复制、组合起来的母模的各个立体角单元通常具有梯形、矩形、平行四边形、五边形和六边形的形状。随后将描述适合的干涉仪。
虽然立体角单元的第三面包括工作面12或14,例如EP 0 844056 A1(Mimura等人)所述,但是薄片优选地包括基本上在薄片的整个长度上延伸的主凹槽面50。不管第三面是薄片的工作面(即12或14)还是主凹槽面,一列中的每个立体角单元的第三面优选地共享共用平面。参照图5-6和图8-9,主凹槽面50为从与面32、34、40和42名义上垂直到与面32、34、40和42不垂直的1°内的范围。主凹槽面50的形成产生结构面,所述结构面包括在薄片上的单一一个立体角单元,这些立体角单元具有三个垂直或近似垂直的光学面。单层薄片可包括单一一个主凹槽面、在相对侧上的一对凹槽面和/或沿工作面16和参比平面24的相交线的主凹槽,所述主凹槽同时提供一对主凹槽面(例如图4)。该主凹槽优选地是从与参比平面26平行到1°内。
通常将一对具有相反取向的单层薄片(优选地具有相反取向的多层薄片)组合成标准工具,使得它们的相应主凹槽面形成主凹槽。例如,如图6和图8-9所示,四个薄片(即薄片100、200、300和400)优选地组合在一起,从而薄片的每隔一对按相反的取向定位(即薄片100的立体角单元与薄片200的立体角单元具有相反的取向,薄片300的立体角单元与薄片400的立体角单元具有相反的取向)。此外,对具有相反取向的成对的薄片进行定位,使得它们的相应主凹槽面50形成主凹槽52。优选地,按一定的构造定位相反的薄片,从而使垂直壁的形成最小化。
在形成凹槽组之后,对工作面16进行微结构化。本文所用的“微结构”是指包括侧向尺寸(例如立体角结构的凹槽顶点之间的距离)小于0.25英寸(6.35mm)的结构的片材的至少一个主表面,优选地,所述侧向尺寸小于0.125英寸(3.175mm),更优选地,所述侧向尺寸小于0.04英寸(1mm)。立体角单元的侧向尺寸优选地小于0.020英寸(0.508mm),更优选地小于0.007英寸(0.1778mm)。因此,除了由于非平行的凹槽而产生的小变化外,各个凹槽顶点33和41在整个凹槽中优选地间隔该相同的距离。微结构的平均高度范围为大约0.001英寸(0.0254mm)至0.010英寸(0.254mm),最通常的高度是小于0.004英寸(0.1016mm)。此外,立体角微结构的侧向尺寸通常至少为0.0005英寸(0.0127mm)。立体角微结构可包括立体角腔或优选地包括具有峰的立体角单元。
在一个实施例中,如图3-9所示,本发明涉及包括侧凹槽组的单层薄片和多层薄片,在所述的侧凹槽组中相邻的凹槽包括不同的夹角。“夹角”指的是相交于凹槽顶点的V形凹槽的两个面之间形成的角。夹角通常是金刚石切削刀具的几何结构及其相对于切削方向的位置的函数。因此,通常,对于每个不同的夹角,使用不同的金刚石刀具。或者,更费时间的是,可通过在同一凹槽中进行多次切削来形成不同的夹角。第一凹槽(例如侧凹槽)的夹角与相邻的凹槽(例如第二侧凹槽)相差至少2°(例如3°、4°、5°、6°、7°、8°、9°),优选地相差至少10°(例如11°、12°、13°、14°),更优选地相差至少15°(例如16°、17°、18°、19°、20°)。因此,夹角差基本上大于由于为了非正交性而引入的有意角误差所引起的夹角差。此外,夹角差通常小于70°(例如65°、60°、50°),优选地小于55°,更优选地小于50°,甚至更优选地小于40°。
一方面,按重复的模式设置不同的夹角(例如相邻侧凹槽的不同夹角),以使所需的不同金刚石切削刀具的数目最小化。在这种实施例中,相邻的侧凹槽角之和为大约180°。在优选的实施例中,薄片包括夹角大于90°的侧凹槽的第一子集,所述第一子集与夹角小于90°的侧凹槽的第二子集交替。在这样操作过程中,第一凹槽的夹角通常比90°至少大大约5°,优选地比90°大大约10°至大约20°;然而相邻的凹槽的夹角比90°小大约相同的数量。
虽然薄片还可包括两个以上的子集和/或夹角名义上为90°的侧凹槽,但是优选地,薄片基本上没有夹角名义上为90°的侧凹槽。在优选的实施例中,薄片包括交替成对的侧凹槽(例如75.226°和104.774°),从而只能必须使用两个不同的金刚石以形成所有的侧凹槽。因此,参照图6-9,每隔一个的侧凹槽即30a、30c、30e等具有75.226°的夹角,与夹角为104.774°的其它侧凹槽即30b、30d等交替。随后将会进一步详细描述,以这种方式采用不同的夹角会提高均匀指数。
另一方面,作为一种选择,或者结合以重复模式设置的不同夹角(例如相邻的侧凹槽的不同夹角),所得到的立体角单元具有相交于公共峰顶点的面,这说明立方体峰(例如36)在同一平面的3-4微米内。据推测,当通过均匀地分布负荷来对工具或片材进行处理时,公共峰顶点有助于提高耐久性。
作为一种选择或者对此的一种结合,薄片包括侧向倾斜的立体角单元。对于仅向前倾斜或仅向后倾斜的立体角单元,对称轴在与参比平面28平行的倾斜平面上倾斜或歪斜。立体角单元的倾斜平面是不但与参比平面26垂直而且包括立方体的对称轴的平面。因此,对于仅向前倾斜或向后倾斜的立体角单元,定义倾斜平面的法向矢量具有近似为零的y分量。对于仅侧向倾斜的立体角单元,立方体的对称轴在与参比平面24基本上平行的平面上倾斜,因此,定义倾斜平面的法向矢量具有近似为零的x分量。
或者,对称轴在x-y平面上的投影可用来描述倾斜的方向。对称轴被定义为将三个立体角面分成三等份并且与这三个面中的每个面成相同的角的矢量。图10a-10c示出了在平面图中分别仅向后倾斜、仅侧向倾斜或仅向前倾斜的三个不同的立体角几何结构。在这些图中,立方体峰朝页面外延伸,并且对称轴(从立方体峰向页面里延伸)在x-y平面上的投影用箭头示出。在该图中,从二面边11(例如二面角2-3)起逆时针地测量校正角,所述二面边11与平面图中的立方体的侧面基本上垂直。在没有侧向倾斜的向后倾斜的情况下,校正角是0度,然而在没有侧向倾斜的向前倾斜的情况下,校正角是180度。对于没有向前倾斜或向后倾斜而已侧向倾斜的立方体,校正角是90°(如图10b所示)或270°。当对称轴点朝右边投影时,校正角是90°,当对称轴点朝左边投影时,校正角是270°。
或者,立方体可倾斜成使得倾斜平面法向矢量既包括x分量又包括y分量(即x分量和y分量都不等于零)。当校正角在0°和45°之间或者在0°和315°之间时,向后倾斜分量是主要的,并且当校正角为45°或315°时,向后倾斜分量等于侧向倾斜分量。此外,当校正角在135°和225°之间时,向前倾斜分量是主要的,并且当校正角为135°或225°时,向前倾斜分量等于侧向倾斜分量。因此,当校正角在45°和135°之间或者在225°和315°之间时,倾斜平面包括主要的侧向倾斜分量。所以,当倾斜平面法向矢量的y分量的绝对值大于倾斜平面法向矢量的x分量的绝对值时,立体角单元主要是侧向倾斜。
关于其中根据具有不同夹角的立方体的交替成对的侧凹槽来形成侧向倾斜的立方体的实施例,其中,倾斜平面平行于参比平面24,在给定的薄片中相邻的立方体在同一或平行的平面内倾斜。然而,一般而言,如果倾斜平面法向矢量有x分量,那么具体薄片中的相邻的立方体不会在同一平面内倾斜。相反,立体角配对在同一或平行平面(即α-α′或β-β′)内倾斜。优选地,任何给定的薄片的立体角单元仅有两个不同的校正角,例如从包括不同的夹角的相邻的侧凹槽中得到的。图10b中的侧向倾斜的例子的校正角是90°,对应于图6中的β-β′立方体。类似地,图6中的α-α′侧向倾斜的立方体的校正角是270°(未示出)。
图11示出其中立方体是向前倾斜的薄片;然而图12示出其中立方体是向后倾斜的薄片。以这种方式倾斜的立方体设计导致单一一种类型的相配的相反立方体对。具有面64a和62b的图11的立方体54a与具有面64b和62c的立方体54b相同,具有面64b和62c的立方体54b与具有面64c和62d的立方体54c相同等等。因此,在同一列中的所有立方体是相同的,并且列与参比平面24平行。立方体54a与具有面66e和68d的立方体56a是相配的相反立方体对。此外,立方体54b与立方体56b是相配的相反立方体对。同样,立方体54c与立方体56c是相配的相反立方体对。类似地,图12的立方体57与立方体58是相配的相反立方体对。当第一立方体绕与结构面的平面垂直的轴旋转180°得到可重叠到第二立方体上的立方体时,结果产生相配的对。相配的对不必非得是立体角单元组中直接相邻的或接触的。通常,相配的对提供了相对于相反取向的入射角的正或负变化而对称的逆向反射性质。
相反,侧向倾斜会导致在同一列中包括两个不同的立方体取向并因而由同一侧凹槽组产生的立方体设计。对于包括第一组侧凹槽和第二组侧凹槽的单层薄片或一对按相反取向组合的相邻薄片,薄片包括四个明显不同的立方体和两个不同的配对,如图6,8-9所示。这四个明显不同的立方体表示为具有面32b和34c的立方体α、具有面32c和34d的立方体β、具有面40c和42d的立方体α′和具有面40b和42c的立方体β′。当立方体(α,α′)旋转180°使得立方体面平行时,立方体(α,α′)是具有相同几何结构的配对,当立方体(β,β′)旋转180°使得立方体面平行时,立方体(β,β′)同样是具有相同几何结构的配对。此外,相邻薄片上的立方体(例如100、200)按相反取向设置。虽然立方体的对称轴是侧向倾斜,但是侧凹槽的二分平面(即将凹槽分成二等分的平面)优选地在从与相邻的侧凹槽的二分平面名义上平行到与相邻的侧凹槽的二分平面不平行的1°的范围内。此外,每个二分平面在从与参比平面28名义上平行到与参比平面28不平行的1°的范围内。
图13-14是示出由折射率为1.59的材料制成的逆向反射立体角单元配对的预测的全光返回随入射角和取向角而变化的等亮曲线图。在图13中,配对向前倾斜9.74°(例如图11的立体角单元54、56)。在图14中,配对向后倾斜7.47°(例如图12的立体角单元57、58)。图15-19是示出由折射率为1.59的材料制成的逆向反射立体角单元配对的预测的全光返回随入射角和取向角而变化的等亮曲线图,其中对于校正角为90°和270°,立体角单元分别侧向倾斜4.41°、5.23°、6.03°、7.33°和9.74°。对于图17,使用交替成对的侧凹槽(即75.226°和104.774°)以产生侧向倾斜6.03°的立体角单元。侧向倾斜阵列包括两种类型的配对,如图6中所示的β-β′和α-α′。这些配对分别具有90°和270°的校正角。在图15-19中的每个中,等亮曲线图是针对如图6、11和12中所示的具有相同(即垂直)取向的薄片而言的。
可根据百分比有效面积和光线强度来计算立体角配对的预测全光返回。全光返回定义为百分比有效面积和光线强度的乘积。Stamm的美国专利第3,712,706号描述了直接机加工的立体角阵列的全光返回。
对于起初归一的光线强度,损失来自于两次通过片材的前表面的透过率和在三个立方体表面中的每个上的反射损失。对于折射率为大约1.59的片材并近似直角入射,前表面透射损失为大约0.10(大约0.90的透过率)。被反射式涂覆的立方体的反射损失取决于例如涂层的类型和相对于立方体面的法线的入射角。对于反射性式涂铝的立方体面,在每个立方体面上通常反射系数是大约0.85至0.9。对于依赖全内反射的立方体,反射损失基本上是零(基本上100%反射)。然而,如果光线相对于立方体面法线的入射角小于临界角,那么全内反射可能会中止,并且大量的光可通过立方体面。临界角是立方体材料的折射率和立方体背后材料(通常空气)的折射率的函数。标准光学课本,例如1978年Addison Wesley出版的由Hecht编写的第2版“Optics”,解释了前表面透射损失和全内反射。单一一个或独立的立体角单元的有效面积可取决于并等于这三个立体角面在与折射的入射光线垂直的平面上的投影与第三反射的像面在同一平面上的投影的拓扑交集(topological intersection)。例如,Eckhardt,AppliedOptics,v.10,n.7,July 1971,pg.1559-1566讨论了一种用于确定有效孔径的方法。Straubel的美国专利第835.648号也讨论了有效面积或孔径的概念。于是,单一一个立体角单元的百分比有效面积定义为有效面积除以立体角面的投影的总面积。可使用光学领域的普通技术人员知道的光学模型技术来计算百分比有效面积,或者可使用传统的光线跟踪技术来定量地确定。立体角配对阵列的百分比有效面积可通过对该配对中两个独立的立体角单元的百分比有效面积取平均来计算。或者,百分比有效孔径等于逆向反射光的立体角阵列的面积除以阵列的总面积。例如立方体几何结构、折射率、入射角和片材取向影响百分比有效面积。
参照图13,矢量V1表示与参比平面26垂直并包括图11中的立体角单元54、56的对称轴的平面。例如,V1位于与由主凹槽面50的相交而形成的主凹槽顶点51基本上垂直的平面上。同心的等亮曲线表示在入射角和取向角的各种组合下立体角单元54、56的阵列的预测全光返回。从图的中心起的径向运动表示提高入射角,然而圆周运动表示相对于光源改变立体角单元的取向。最里面的等亮曲线是划分立体角单元54、56的配对表现出70%全光返回的入射角集的分界线。连续远离中心的等亮曲线用连续下降的百分比来划分入射角和取向角的分界线。
单一一个向前或向后倾斜的立方体配对通常具有两个宽入射倾斜度的平面(即V1和V2),所述两个平面基本上相互垂直。向前倾斜会导致入射倾斜度的主平面水平或垂直,如图13所示。在较高入射角的光返回量随着取向明显地变化,并且在最佳入射倾斜度的平面之间尤其低。类似地,向后倾斜会导致入射倾斜度的主平面(即V3和V4)的取向与薄片的边缘成大约45°,如图14所示。同样,在较高入射角的光返回量随着取向明显地变化,并且在最佳入射倾斜度的平面之间尤其低。依赖于倾斜的度数,可产生两个以上或是两个以下的宽入射倾斜度的平面。
图15-19示出一对具有侧向倾斜立方体的相反薄片的预测全光返回(TLR)等强曲线。与图13和图14的向前和向后倾斜的立方体的等强曲线图相比,该光返回更加均匀,如图区近圆形的形状所示。图15-19示出了在图13和14中明显低的光返回的位置上基本上较高的光返回。因此,预测在较高入射角(高达至少45°的入射)上保持好的TLR。该改善的取向性质对标记产品是有用的,因为标签通常以0°、45°和90°的取向进行定位。在本发明之前,提高相对于取向的全光返回的均匀性的常见方法是砌瓦,即将多个小的工具部分放置在一个以上的方向上,例如美国专利第5,936,770号中所述。侧向倾斜的立体角阵列可提高全光返回的均匀性,并无需砌瓦,所以,该阵列在一个以上的方向上基本上没有砌瓦。
为了比较各种光学设计的全光返回(TLR)的均匀性,在固定的入射角下,可将取向为0°、45°和90°的平均TLR除以取向为0°、45°和90°的TLR的范围,即在这些角的最大TLR和最小TLR之间的差。入射角优选地至少为30°或更大,更优选地为40°或更大。优选的设计表现出平均TLR相对于TLR范围的最大比值。分别对图13和14的向前和向后倾斜的立方体以及对图15-19的各种倾斜度的侧向倾斜的立方体,针对40°的入射角来计算该比值即“均匀指数(UI)”。关于表1,侧凹槽的间距等于薄片的厚度(即纵横比=1)。计算的均匀指数总结于如下的表1中。
表1


当均匀指数大于1时就会产生改善的取向均匀性。优选地,均匀指数大于3(例如4),更优选地,大于5(例如6、7、8)。均匀指数根据如立方体几何结构(例如倾斜的类型及其量、立方体类型。平面图中的立方体形状、孔径内立方体峰的位置、立方体尺寸)、入射角和折射率等之类的变量的函数而变化。
图20示出随着倾斜量的变化及立体角阵列的倾斜平面法向矢量的x和y分量的变化均匀指数相对于倾斜立体角阵列的校正角的曲线图。虽然这些阵列具有两种类型的配对,类似于图6中所示的β-β′和α-α′,但是这些立方体和/或配对可能不会彼此相邻。每个配对中的立方体基本上具有相同的校正角。该两种类型的配对的校正角与0°或180°相差相同的量。例如,如果第一立方体或第一配对的校正角为100°(与180°相差80°),第二(例如相邻的)立方体或第二配对就会具有260°的校正角(也与180°相差80°)。
图20表明了聚碳酸酯(其折射率为1.59)的平均TLR和均匀指数对于具有主要侧向倾斜分量的立方体几何结构是最大的,即该范围的中心大约在90°和270°的校正角附近。注意,在图20的X或水平轴上从左向右表示0°和180°之间的校正角。从右向左图示出从180°上升到360°的校正角。
优选地,校正角大于50°(例如51°、52°、53°、54°),优选地大于55°(例如56°、57°、58°、59°),甚至更优选地大于60°。此外,校正角优选地小于130°(例如129°、128°、127°、126°),更优选地小于125°(例如124°、123°、122°、121°),甚至更优选地小于120°。类似地,校正角优选地大于230°(例如231°、232°、233°、234°),更优选地大于235°(例如236°、237°、238°、239°),甚至更优选地大于240°。此外,校正角优选地小于310°(例如309°、308°、307°、306°),更优选地小于305°(例如304°、303°、302°、301°),甚至更优选地小于300°。
立方体对称轴相对于与立方体平面垂直的矢量的倾斜量至少为2°,优选地大于3°。此外,倾斜量优选地小于9°。因此,优选倾斜量在从大约3.5°到大约8.5°的范围内,包括具有从3.6°、3.7°、3.8°、3.9°、4.0°、4.1°、4.2°、4.3°、4.4°和4.5°中选择的端点以及结合从7.5°、7.6°、7.7°、7.8°、7.9°、8.0°、8.1°、8.2°、8.3°和8.4°中选择的端点的任何间隔。可用来产生这些不同量的侧向倾斜的几何结构总结于表2中。对于每种倾斜量,校正角可以是90°或270°。
表2

虽然相对于在一定入射角的范围内改变取向角,仅不同的夹角或者不同的夹角与上述的侧向倾斜的结合提高了TLR的亮度均匀性,但是优选地是,改善了片材的观察倾斜度或发散外形。这与提高相对于光源(通常车头灯)的逆向反射光的展宽有关。如上所述,由于如衍射(由立方体尺寸控制)、偏振(在没有涂覆镜面反射器的立方体中是重要的)和非正交性(立体角二面角与90°的偏差量小于1°)等之类的效应,从立体角逆向反射的光扩展开。由于非正交性而引起的光的展宽在使用薄片产生的立方体(例如PG)中是尤其重要,因为需要相对薄的薄片来制造其中返回光主要由于衍射而扩展的立方体。这种薄的薄片在制造过程中尤其难以处理。
作为一种选择,或者对上述特征的补充,在另一实施例中,本发明涉及独立的薄片、包括组合薄片的标准工具以及其复制品,所述复制品包括逆向反射的复制品,其包含侧凹槽,其中,侧凹槽包括“偏角”和/或“倾角”。偏角和/或倾角提供了具有各种受控的二面角误差或多重非正交性(MNO)的立方体,从而改善了成型产品的发散外形。本文所用的“偏角”指的是偏离参比平面28的平行面的角度。
图21示出了在单个薄片和一列包括偏角的凹槽的立体角单元的平面图中的放大例子。将侧凹槽80a和80b切削成具有正的偏角,凹槽80c和80e没有偏角,凹槽80d具有负的偏角。为了清楚起见,侧凹槽80的通道在图21中延伸。假如侧凹槽80a、80c和80e具有相同的夹角(例如75°,第一凹槽子集),则可用同一切削刀具或金刚石来形成所有这些凹槽。此外,如果交替的凹槽即80b和80d具有相同的夹角(例如105°,第二凹槽子集),则可用第二金刚石切削80b和80d。如果对于第一或第二子集而言,主凹槽半角十分接近侧凹槽半角,则也可用这些金刚石中的一个来切削主凹槽面50。可任选地,为了达到正确的主凹槽半角,在主凹槽面的切削过程中,可旋转切削刀具中的一个。主凹槽面优选地与薄片的侧面对准。因此,可仅使用两个金刚石来切削整个薄片,以产生MNO。在用以产生一定范围内的二面角的加工过程中,可容易地改变每个凹槽组中的偏角。一般而言,由于三个立方体面的相交,立体角具有三个二面角。这些角与90°的偏差通常称为二面角误差,可用二面角1-2、二面角1-3和二面角2-3来表示。按照一种命名法则,如图22所示,通过凹槽表面82和主凹槽面50的相交来形成立方体二面角1-3,通过凹槽表面84和主凹槽面50的相交来形成立方体二面角1-2,通过凹槽表面84和凹槽表面82的相交来形成立方体二面角2-3。或者,当其中第三面是工作面12或14而不是主凹槽面时,可采用相同的命名法则。对于给定的凹槽,正偏角(80a,80b)导致二面角1-3减小、二面角1-2增大,然而负偏角导致二面角1-3增大、二面角1-2减小。
例如,参照图21,形成四个不同的立方体。第一立方体86a具有凹槽表面(即正面)82a和84b,第二立方体86b具有凹槽表面82b和84c,第三立方体86b具有凹槽表面82c和84d,第四立方体86d具有凹槽表面82d和84e。凹槽表面82a、82b和84d与凹槽面50的相交小于90°,然而凹槽表面84b和82d与凹槽面50的相交大于90°。因为凹槽80c和80e没有偏角,所以凹槽表面82c、84c和84e与凹槽面50的相交是90°。上述的讨论假定了图21中所有的侧凹槽的倾角是相同的并且等于零。在加工过程中使用偏角的凹槽的结果是,在平面图中(例如PG)立体角单元是梯形或平行四边形。
作为对上述特征的一种选择或补充,侧凹槽可具有正倾角或负倾角。“倾角”指的是在参比平面28上具体侧凹槽的斜坡度偏离名义直角斜坡度(即与主凹槽面垂直的矢量的斜坡度)的角度。用所述凹槽的顶点排成一行的矢量来定义侧凹槽的方向。直角斜坡度定义为这样的斜坡度,即其中偏角等于零,凹槽的顶点90平行于凹槽面50的法向矢量(与凹槽面50垂直)。按照一种可行的命名法则,对于给定的侧凹槽,正倾角92导致二面角1-3和二面角1-2都减小,然而负倾角94导致二面角1-3和二面角1-2都增大。
在加工过程中偏角和倾角的结合提供了在给定的薄片上改变立体角单元的二面角误差的显著的灵活性。由此,在未倾斜的立方体、向前倾斜的立方体、向后倾斜的立方体以及侧向倾斜的立方体中可采用偏角和/或倾角。偏角和/或倾角的使用提供了明显的好处,即在独立薄片的加工过程中可将它们引入,而无需改变用以切削侧凹槽的刀具(例如金刚石)。这可显著地减少了加工时间,因为通常在刀具更换之后需要花费数个小时来正确地设置角。此外,使用偏角和/或倾角可相对地改变二面角1-2和二面角1-3。本文所用的“相对地改变”或“相对的改变”定义为在薄片上给定的立体角中有意地设置不同的数值和/或符号的二面角1-2和1-3误差(与90°的差)。数值的差通常至少为1/4弧分,更优选地至少为1/2弧分,最优选地至少为1弧分。因此,凹槽不平行的程度为比名义上平行大的量。此外,偏角和/或倾角是这样,使得该数值只是大约1°(即60弧分)。此外,沿单一一个薄片,凹槽(例如侧凹槽)可包括各种不同分量的偏角和/或倾角。
还可通过在加工过程中改变主或侧凹槽的半角来改变二面角误差。侧凹槽的半角定义为由凹槽面和包括凹槽顶点并与参比平面26垂直的平面形成的锐角。主凹槽或凹槽面的半角定义为由凹槽面和参比平面24形成的锐角。改变主凹槽的半角会导致凹槽面50的斜坡度按照绕x轴旋转的方式变化。改变侧凹槽的半角可通过改变凹槽的夹角(由相对的凹槽面例如82c和84c形成的角)或将凹槽绕其轴旋转来实现。例如,改变主凹槽面50的角会增大或减小沿给定的薄片的所有二面角1-2和二面角1-3误差。这和改变倾角的情况形成对照,其中,在沿给定的薄片的每个凹槽中,可不同地改变二面角1-2和二面角1-3误差。类似地,可改变侧凹槽的半角,从而导致二面角2-3的相应改变。注意,由于侧凹槽与主凹槽面正交或近似正交(在大约1°内),所以二面角1-2和二面角1-3对侧凹槽半角的改变非常不敏感。结果,在加工过程中改变主或侧凹槽的半角不会使得在给定的立体角中相对地改变二面角1-2和二面角1-3。可将加工过程中改变主或侧凹槽的半角结合偏角和/或倾角来一起使用,以在刀具更换数目最小的情况下对立体角二面角误差提供尽可能的最大幅度的控制。虽然半角误差、偏角或倾角中任一个的数值可高达大约1°,但是总体来说,对于任一给定的立方体,所得到的二面角误差只是大约1°。
在制造过程中,为了简便起见,优选地引入偏角和/或倾角使得二面角误差按一定式样设置。优选地,该式样包括在给定的立体角中相对地改变的二面角误差1-2和1-3。
点列图是基于几何光学示出由于立体角阵列的非正交性而产生的逆向反射光的展宽的一种有用方法。已知立体角将入射光分裂成六个不同的返回光点,这六个返回光点与从三个立方体面反射的光线的六个可能的序列相关。一旦定义了三个立方体二面角误差,就可计算来自光源束的返回光点的径向展宽以及光源束周围的周边位置(例如,参见Eckhardt,“Simple Model of Cube Corner Reflection”,AppliedOptics,V 10,N7,July 1971)。返回光点的径向展宽与观察角有关,然而返回光点的周边位置与显示角有关,如美国联邦测试方法标准370(1977年3月1日)进一步所述的。非正交立体角可用其三个面的表面法向矢量来定义。通过当光线入射到三个立方体面中的每个面并且从该三个立方体面中的每个面反射时连续地跟踪该光线来确定返回光点位置。如果立方体材料的折射率大于1,那么还必须考虑入射到前表面立方体和从前表面立方体射出的折射。很多作者已经描述了与前表面反射和折射有关的公式(例如Hecht and Zajac,“Optics”,2ndedition,Addison Wesley 1987)。注意,点列图是基于几何光学,所以忽略了衍射。因此,在点列图中不考虑立方体尺寸和形状。
对于五个向后倾斜7.47度的不同立方体(图12)的返回光点列图示于图24中,其中五个连续的凹槽的主凹槽半角误差为+2、+4、+6、+8和+10弧分。在本例子中侧凹槽的半角误差是零(二面角2-3=0),偏角和倾角也是零。所有侧凹槽夹角是90°。图24中垂直轴和水平轴分别对应于参比平面28和24。注意,主凹槽面的斜坡度的改变导致返回光点主要位于沿垂直轴和水平轴的位置。
在表3中示出作为主凹槽半角误差的函数的二面角误差,与此相同的误差用以产生图24。注意,二面角1-2和二面角1-3具有相同的数值和符号,从而不会相对地改变。
表3

在图25中示出相同类型的向后倾斜的立方体的返回光点列图,其中二面角2-3为-20、-15、-10、-5和0弧分。在本例子中主凹槽的半角误差是零(二面角1-3=二面角1-2=0),偏角和倾角也是零。如上所述,侧凹槽的半角的变化可用来产生二面角2-3误差。二面角2-3误差导致返回光点主要位于沿水平轴的位置。
图26示出对于与参照图24-25所述的相同类型的向后倾斜的立方体将主凹槽半角误差和侧凹槽的半角的变化结合在一起所产生的返回光点列图。在本例子中,主凹槽半角误差是10弧分,然而对于在薄片上的四个不同的相邻立方体,二面角2-3误差分别是0、2、4和6弧分。+3弧分的恒定的夹角误差可用来产生这些侧凹槽,相对的半角误差如表4所示。返回光点再次主要位于沿垂直轴和水平轴的位置,由于二面角2-3的非零值而引起在水平面上的一些展宽。整个返回光点列图是局域的、非均匀的。
在表4中示出作为主凹槽半角误差的函数的二面角误差,这些误差用以产生图26。注意,二面角1-2和二面角1-3具有相同的数值和符号,从而不会相对地改变(即基本上没有相对地改变)。注意,通过两个相邻的侧凹槽以及优选地主凹槽面形成给定的立体角。图22中的上侧凹槽形成二面角1-3,然而下侧凹槽形成二面角1-2。上侧凹槽和下侧凹槽的相交形成二面角2-3。侧凹槽夹角是指形成相邻立方体的凹槽的上半角误差和下半角误差的和(例如,参照表14,总夹角是+3弧分,通过将第一立方体的上半角加上相邻立方体的下半角而得到的)。
表4

上述的例子(即图24-26)是关于具有变化的半角误差的向后倾斜立方体。以类似的方式,向前倾斜的立方体可被示出具有类似定性的返回光点列图,即光点基本上非均匀地尤其位于沿水平轴和垂直轴的位置。向前倾斜的立方体的二面角1-2和二面角1-3也具有相同的数值和符号,从而基本上没有相对的改变。在考虑使用立体角逆向反射片时,应该明白,局域的、非均匀的点列图(例如图24-26)通常是不希望有的。片材可按各种取向放置在标志上,既作为背景颜色,在某些情况下又作为禁令文字。此外,通常,标志可能会位于公路的右边、左边或者上面。对于为了明显起见而以逆向反射片标记的车辆,相对于观察者而言,该车的位置是经常变化的。车的左右车头灯都照射逆向反射靶,从而相对于这些车头灯,司机的位置是非常不同的(不同的观察角和显示角)。常用的车辆例如摩托车,其中,司机直接在车头灯之上。最后,定义观察几何结构的所有相关角随着司机/观察者相对于逆向反射片或靶的距离而变化。所有这些因素明显地说明了,在逆向反射片中相对均匀展宽的返回光点是非常需要的。由于容易引入宽范围的二面角误差的灵活性,包括相对地改变的二面角1-2和二面角1-3,所以可利用偏角和/或倾角来提供相对均匀的光点返回图。
图27示出在具有与图24-26中所用的向后倾斜的立方体相同的立方体的单一一个薄片上只发生倾角变化所得到的返回光点列图。在每侧上侧凹槽的半角误差是+1.5弧分(二面角2-3和侧凹槽角误差为+3弧分),主凹槽误差是零。在本例子中,偏角恒定地为+7弧分。倾角以重复的模式在每隔四个凹槽上变化(即两个凹槽为+5弧分,那么两个凹槽为-1弧分)。与图24-26相比,该光点图案在径向(观察)和周边(显示)上都更加均匀地分布。
在表5中示出了倾角变化的本例子的二面角误差。以重复的模式的倾角(弧分)的加工次序是-1、+5、+5、-1。例如,参照第1号立方体,第一侧凹槽的倾角为-1,第二侧凹槽的倾角为+5。注意,二面角1-2和二面角1-3以不同的数值(二面角误差的绝对值不相等)和符号而相对地改变。
表5

图28示出的是从与图27相同的几何结构得到的返回光点列图,与图27的不同之处在于所有的侧凹槽偏角为-7弧分而不是+7弧分。与图24-26相比,该点列图再次分布均匀,并且是对图27所示的点列图的补充。在表6中示出倾角变化的本例子的二面角误差。再次注意,二面角1-2和二面角1-3相对地改变,它们的数值和/或符号都不同。与表5相比,偏角符号的改变导致二面角1-2和二面角1-3的数值和符号的交换。
表6

可将上述两个例子的正负偏角组合在一起,从而提供图29的点列图。通过加工薄片的一半使其具有+7弧分的偏角,加工另一半使其具有-7弧分的偏角,可实现该组合。或者,在每个薄片中将正负偏角组合在一起,从而在给定薄片中同时产生变化的偏角和倾角。在后种情况中,小数目的其它返回光点将来自位于正偏角部分和负偏角部分的边界上的立方体。因为该点列图是由于图27和28中的点列图的组合而产生的,所以与图24-26相比,该点列图特别均匀地分布。表5和表6中所示的二面角误差的组合与该点列图有关,并且二面角1-2和二面角1-3相对地改变,它们的数值和符号不同。
图30示出除了向前倾斜7.47°的立方体外与图29相同的半角误差、偏角和倾角。虽然与图29的向后倾斜的点列图稍有不同,但是该点列图也均匀地分布。与该点列图相关的二面角误差总结于表7中,其中二面角1-2和二面角1-3也相对地改变,包括至少一个其中二面角1-2和二面角1-3的数值和/或符号不同的立方体。
表7

还可在结合侧向倾斜的立体角的情况下有利地使用相同的偏角和倾角组合,以提供均匀分布的点列图。如上所述的侧向倾斜的立方体在同一列中具有两个不同的立方体取向。优选地,为了在各种入射角和取向角组合中获得均匀的性能,应该注意地将偏角和/或倾角的组合相等地施加到给定的列中的两种类型的立方体(例如α和β)。在图31中示出使用偏角和倾角侧向倾斜6.03°的立方体(图6,校正角为90°或270°)的返回光点列图。将+7和-7弧分的偏角与-1和5弧分的倾角的相同组合相等地施加到α和β立方体。侧凹槽的半角误差在每侧上都是+1.5弧分(二面角2-3和侧凹槽角误差为+3弧分),主凹槽误差是零。在观察和显示角上,点列图分布非常均匀。与该点列图相关的二面角误差总结于表8中,其中二面角1-2和二面角1-3也相对地改变,包括至少一个其中二面角1-2和二面角1-3的数值和/或符号不同的立方体。
表8

表5-8的示例性立体角单元的特征在于在一列中形成至少一个(通常多个)PG立体角单元,所述立体角单元具有三个二面角误差,其中,二面角误差彼此不相同。另一个特征在于,二面角误差以及偏角和/或倾角在整个薄片或相邻的立体角单元的列中按重复的模式设置。此外,除了绕z轴旋转180°形成成对的薄片或成对的列外,相邻的薄片或列优选地是光学相同的。
加工薄片和形成包括多个薄片的标准工具的方法是已知的,如美国专利第6,257,860号(Lutrell等人)所述。关于其中侧凹槽基本上没有偏角和/或倾角的实施例,可在多个堆积的薄片中形成侧凹槽,如美国专利第6,257,860号(Lutrell等人)和美国专利第6,159,407号(Krinke等人)所述。
因此,这里进一步描述的是通过提供单层薄片或多层薄片并在薄片或薄片的工作面16形成V形凹槽来加工薄片的方法,其中,用上述特征中的组合或任何一个来形成凹槽。
一般而言,薄片可包括适合在边缘上形成直接机加工的凹槽的任何基底。适合的基底能干净地加工并没有毛刺形成,表现出低的柔软性和低的颗粒性,并且保持凹槽形成后的尺寸精确度。可以利用各种可加工的塑料或金属。适合的塑料包括热塑性或热固性材料,例如丙烯酸树脂或其它的材料。可加工的金属包括铝、黄铜、铜、无电镀镍及其合金。优选的金属包括非铁金属。可通过例如滚压浇铸化学沉积(rolling casting chemical deposition)、电沉积或锻压来将适合的薄片材料制成片材。通常,选择优选的加工材料,以使在凹槽形成过程中对切削刀具的磨损最小化。
适合使用的金刚石刀具(diamond-tooling machine)具有高质量,例如可从K & Y Diamond(位于美国纽约的Mooers)或Chardon Tool(位于美国俄亥俄州的Chardon)购买到金刚石刀具。具体而言,适合的金刚石刀具是距顶端的10密耳(mil)内没有划痕,这可用2000X白光显微镜来评定。通常,金刚石的顶端具有平坦的部分,所述部分的尺寸范围为大约0.00003英寸(0.000762mm)至大约0.00005英寸(0.001270mm)。此外,优选地,适合的金刚石刀具的表面抛光的粗糙度平均值至少为大约3nm,峰至谷的粗糙度至少为大约10nm。通过在可加工的基底上形成试验切口并用微干涉仪对试验切口进行评定,可对表面抛光进行评定,例如从Veeco的分部Wyko(位于美国亚利桑那州的Tucson)可购买到所述的微干涉仪。
用金刚石刀具形成V形凹槽,所述的金刚石刀具能够精细地形成每个凹槽。为此,美国康涅狄格州布里奇波特的Moore Special Tool公司、美国新罕布什尔州基涅的Precitech和美国宾夕法尼亚州匹兹堡的Aerotech Inc.制造了适合的机器。这些机器通常包括激光干涉定位装置。适合的精密旋转工作台可从AA Gage(位于美国密歇根州斯特林高地城)购买到;然而适合的微干涉仪可从Zygo Corporation(位于美国康涅狄格州三维Middlefield)和Veeco的分部Wyko(位于美国亚利桑那州的Tucson)购买到。凹槽间距和凹槽深度的精确度(即点到点的定位)优选地至少为+/-500nm,更优选地至少为+/-250nm,最优选地至少为+/-100nm。在切口的整个长度(例如薄片的厚度)上凹槽角的精确度至少为+/-2弧分(+/-0.033度),更优选地至少为+/-1弧分(+/-0.017度),更加优选地至少为+/-1/2弧分(+/-0.0083度),最优选地至少为+/-1/4弧分(+/-0.0042度)。此外,分辨率(即起槽机分辨当前轴位置的能力)通常至少为精确度的约10%。因此,对于+/-100nm的精确度,分辨率至少为+/-10nm。在短距离(即10个相邻的平行凹槽)内,精确度大约等于分辨率。为了在持续时间内连续地形成多个这样高精度的凹槽,工艺的温度保持在+/-0.1℃内,优选地在+/-0.01℃内。
虽然相对于单一一个立体角单元,由于偏角和/或倾角而引起的单一一个立体角单元的形状的变化是小的,但是显然的是,在一堆薄片中形成偏角/或倾角的凹槽可能会有问题。因为侧凹槽与平行偏离至多1°,所以可产生横跨堆积层的显著变化的立方体几何结构。随着堆积层尺寸增大,这些变化增大。经计算得出可同时加工(即在堆积层内)并不产生显著变化的立方体几何结构的最大数目的薄片是两个薄片(例如,对于1°偏角,0.020英寸(0.508mm)厚的薄片,侧凹槽间距为0.002英寸(0.0508mm))。
由于加工具有偏角的和/或倾角的侧凹槽的堆积层的困难,所以在这些实施例的实践中,优选地,用起槽机以独立的薄片形式形成侧凹槽。在2003年3月6日提交的名称为″Method of MakingMicrostructured Lamina and Apparatus″的美国专利申请第10/383039号中描述了一种优选的方法,即在独立的薄片的边缘部分上形成凹槽,将薄片组合成标准工具,然后复制组合的薄片的微结构表面。美国专利申请第10/383039号与本申请要求优先权的临时专利申请第60/452464号是同时提交的。
为了形成用于形成逆向反射片的适合尺寸的标准工具,通过电镀标准工具的表面以形成复制阴模,随后电镀复制阴模以形成复制阳模,再电镀复制阳模以形成第二代复制阴模等来形成多个工具(也称为瓦片)。复制阳模具有与标准工具相同的立体角单元结构,然而复制阴模是立体角腔的复制品。因此,利用复制阴模工具(例如图3)来制造复制阳模(即立体角单元)片材,然而利用复制阳模工具来制造复制阴模(即立体角腔)片材。此外,逆向反射片可包括立体角单元和立体角腔微结构的组合。如美国专利第4,478,769号和第5,156,863号(Pricone)以及美国专利第6,159,407号(Krinke)所述,电铸技术是已知的。将这些工具砌瓦在一起,这样可组合成希望的尺寸的标准工具。在本发明中,通常按相同的取向来砌瓦这些工具。
本文所用的“片材”指的是其上已经形成立体角微结构的聚合物(例如合成的)材料薄片。片材可以具有任何的宽度和长度,这样的尺寸仅受制造片材的装置(例如工具的宽度、狭缝式冲模孔的宽度等)限制。通常,逆向反射片的厚度的范围为大约0.004英寸(0.1016mm)到大约0.10英寸(2.54mm)。优选地,逆向反射片的厚度小于大约0.020英寸(0.508mm),更优选地,逆向反射片的厚度小于大约0.014英寸(0.3556mm)。关于逆向反射片,宽度通常至少为30英寸(122cm),优选地,至少为48英寸(76cm)。其长度高达大约50码(45.5m)至100码(91m)的片材通常是连续的,从而将该片材设置为方便操作的卷筒品的形式。然而,片材也可被制造成独立的薄片,而不是制造成卷筒品。在这些实施例中,片材的尺寸优选地与成型制品的尺寸一致。例如,逆向反射片可具有美国标准尺寸(例如30英寸×30英寸(76cm×76cm)),从而用以制备片材的微结构工具可具有近似相同的尺寸。较小的制品例如执照牌或反射钮扣可采用具有相应较小尺寸的片材。
逆向反射片优选地制造成整体材料,即其中立体角单元在模具的整个尺寸上以连续层的形式相互连接,独立的立体角单元及它们之间的连接包含相同的材料。与微棱镜表面相对的片材表面通常是光滑的、平坦的,也被称为“地面层”。地面层的厚度(即不包括由复制的微结构形成的部分的厚度)在0.001和0.100英寸之间,优选地在0.003和0.010英寸之间。通常,通过将流态树脂组合物浇铸到工具上然后使得该组合物硬化以形成薄片来实现这种片材的制造。在2003年3月6日提交的名称为″Method of Making RetroreflectiveSheeting and Slot Die Apparatus″的美国专利申请第10/382375号中描述了将流态树脂组合物浇铸到工具上的优选方法。美国专利申请第10/382375号与本申请要求优先权的临时专利申请第60/452464号是同时提交的。
然而,可任选地,所述工具可用作用以形成逆向反射制品的压花工具,例如美国专利第4,601,861号(Pricone)中所述的。或者,通过PCT申请第WO 95/11464号和美国专利第3,684,348号中所教导的在预成型的薄膜上铸造立体角单元,或者通过将预成型的薄膜层压到预成型的立体角单元,可将逆向反射片制造成层状的产品。在这样操作的过程中,独立的立体角单元通过预成型的薄膜而相互连接。此外,这些立体角单元和薄膜通常由各种不同的材料组成。
在逆向反射片的制造中,优选的是,使工具的沟槽大致与工具的前进方向对齐,如2003年3月6日提交的名称为″Method of MakingRetroreflective Sheeting and Articles″的美国专利申请第60/452605号进一步所述。美国专利申请第60/452605号与本申请要求优先权的临时专利申请第60/452464号是同时提交的。因此,在任何进一步的制造步骤之前,片材的主凹槽将基本上与片材卷的边缘平行。本发明者已经发现,沟槽以该沿网(downweb)的方式取向使得与主凹槽交叉网(cross web)地取向时相比复制得更快。据推测,主凹槽和其它的立方体结构组合以形成用于改善树脂流的沟槽。
适合本发明的逆向反射片的树脂组合物优选地是透明材料,所述的透明材料是空间上稳定的、耐久的、耐候的,并可易于形成需要的外形。适合的材料的例子包括丙烯酸树脂,其折射率为大约1.5,例如罗姆和哈斯公司制造的Plexiglas品牌的树脂;聚碳酸酯,其折射率为大约1.59;活性材料,例如热固性丙烯酸酯和环氧丙烯酸酯;聚乙烯基离聚物,例如由E.I.Dupont de Nemours and Co.,Inc.销售的商标名为SURLYN的那些聚乙烯基离聚物;(聚)乙烯共丙烯酸(polyethylene-co-acrylic acid);聚酯;聚氨酯;乙酸丁酸纤维素。由于聚碳酸酯的韧性及相对较高的折射率,这通常有助于改善在较宽入射角范围内的逆向反射性能,所以聚碳酸酯是特别适合的。这些材料还可包括染料、着色剂、颜料、UV稳定剂或其它的添加剂。
镜面反射涂层例如金属涂层可置于立体角单元的背面上。可通过已知的技术例如气相沉积或化学沉积金属比如铝、银或镍来施加金属涂层。底漆层可施加到立体角单元的背面,以提高金属涂层的粘附。除了金属涂层外,或者代替金属涂层,密封薄膜可施加到立体角单元的背面;例如,参见,美国专利第4,025,159号和第5,117,304号。密封薄膜在立方体的背面保持空气界面,从而能够在该界面上发生全内反射,并且抵制污染物例如泥土和/或湿气进入。此外,在片材的观看表面上可再利用单独的覆盖薄膜,以便提高(例如户外的)耐久性或者提供图像接受表面(image receptive surface)。这种户外耐久性表明了在较长的风化期(例如1年、3年)之后仍保持足够高的亮度,例如ASTM D49560-1a中所要求的。而且,在风化之前和之后CAP Y白度优选地大于30。
粘结剂层也可设置在立体角单元或密封薄膜的后面,以使立体角逆向反射片固定到基底。适合的基底包括木材、铝片、镀锌钢、聚合材料例如聚甲基丙烯酸甲酯、聚酯、聚酰胺、聚氟乙烯、聚碳酸酯、聚氯乙烯、聚氨酯以及由这些聚合材料和其它的材料制成的各种薄片。
参照图6,优选地,薄片垂直地对齐。在这样的操作过程中,当复制时从每个薄片中得到一列立体角单元。然而,这些相同的光学特征也可从水平对齐的薄片中得到。对于水平对齐的薄片,列中每个立体角单元的面在大约3-4微米内共享的公共平面可稍微地变化(例如小于1°)。显然的是,从薄片中得到一列立体角,虽然在垂直或水平方向上存在用例如扫描电子显微镜可观察到的细微的未对齐。
不管制造逆向反射片的方法或者从薄片技术中得到标准工具还是从其它的技术中得到标准工具,本发明的逆向反射片具有某些独特的光学特征,所述的光学特性可通过用如前所述的显微镜或干涉仪观察逆向反射片来检测到。此外,逆向反射片包括前面所述的有关薄片的特征的组合或这些特征中的任何一个。
一方面,逆向反射片包括立体角单元列和立体角单元阵列,其中,在一列中同时存在的第一立体角单元和第二立体角单元之间的夹角与一列中同时存在的第二立体角单元和第三立体角单元之间的夹角不同。关于逆向反射片,用立体角单元来定义列,其中,列中每个立体角单元的面共享公共的平面(例如主凹槽面,工作面12和14)。相邻立方体之间的夹角差的数值以及列或阵列中的其它优选特征(例如,以重复的模式设置,公共峰高度,从名义上相互平行到小于1°的不平行的二等分平面)与上文就薄片所述的是相同的。
作为对此的一种选择,或者与此的结合,逆向反射片包括立体角单元(例如PG立体角单元)的列或阵列,其中,列或阵列中的至少一部分立体角单元主要侧向倾斜,相对于平面图中与立体角单元列基本上垂直的二面边,这些立体角单元具有45°和135°之间的校正角和/或具有225°和315°之间的校正角。在优选实施例中,逆向反射片包括具有这些校正角中的每个校正角的立体角单元列或立体角单元阵列。这种阵列基本上没有主要向前倾斜的或者主要向后倾斜的立体角单元。包括主要侧向倾斜的立体角单元的逆向反射片还可包括上文就薄片所述的特征中的任何一个。
作为对此的一种选择,或者与此的结合,逆向反射片包括具有偏角和/或倾角的凹槽。因此,在列或阵列中的凹槽组(例如侧凹槽组)的至少两个相邻的凹槽不平行,并且优选所有的凹槽不平行,所述不平行的程度在从大于名义上平行至大约1°的范围内,所述的列或阵列还可包括就包括该特征的薄片所述的各种属性。
另一方面,逆向反射片可只包括其中侧凹槽的凹槽名义上相互平行的阵列或立体角单元或列,或者还可与不同的夹角和/或侧向倾斜结合,所述阵列或立体角单元或列在与参比平面28名义上平行到与参比平面28不平行的范围内。
由于逆向反射片的高逆向反射亮度,所以它可用于各种应用中,例如交通标记、路面标记、车辆标记和个人安全制品。根据美国联邦测试方法标准370,在-4°入射角、0°取向、各种观测角的条件下可测量逆向反射系数RA。所得到的逆向反射片满足在ASTM D4956-1a“The Standard Specification for Retroreflective Sheeting for TrafficControl”中关于第1X类逆向反射片的所述要求的亮度。或者,在-4°入射角、0°和90°的平均取向、0°显示角和各种观测角的条件下,明显超出规定的亮度最小值。在0.2°观察角的亮度优选地至少为625堪德拉每勒克斯每平方米(CPL),更优选地至少为650CPL,甚至更优选地至少为675CPL,最优选地至少为700CPL。作为对此的一种选择,或者作为对此的一种补充,在0.33°观察角的亮度优选地至少为575CPL,更优选地至少为600CPL,甚至更优选地至少为625CPL,最优选地至少为650CPL。另外,或者作为对此的一种选择,在0.5°观察角的亮度优选地至少为375CPL,更优选地至少为400CPL,甚至更优选地至少为425CPL,最优选地至少为450CPL。此外,在1.0°观察角的亮度优选地至少为80CPL,更优选地至少为100CPL,最优选地至少为120CPL。同样,在1.5°观察角的亮度优选地至少为20CPL,更优选地至少为25CPL。逆向反射片可包括上文所述的这些亮度标准的任何组合。
对于从远离客车(passenger vehicle)大约200至400英尺的距离处观察交通标记(例如应安装在右边)以及从远离大卡车的司机大约450至900英尺的距离处观察交通标记(例如应安装在右边),提高在大约0.5观察角(即0.4至0.6)的区域内的亮度是尤其重要的。
通过下面的例子来进一步地说明本发明的目的和优点,但是在这些例子中所述的具体材料及其数值、其它的条件和细节不应该解释为过分地限制本发明。
例1A和例1B如前面2003年3月6日提交的美国专利申请第10/383039号中所述,凹槽在独立的薄片中形成,将独立的薄片组合在一起,然后复制微结构表面。美国专利申请第10/383039号与本申请要求优先权的临时专利申请第60/452464号是同时提交的。所有的加工薄片具有图6和图7中所示的几何结构,由于侧凹槽的偏角和倾角及半角误差的变化而导致所述的几何结构具有细微的变化。除了刚描述的这些细微变化之外,薄片厚度为0.0075英寸(0.1905mm),侧凹槽间距是0.005625英寸(0.1428mm)。八个立方体的重复模式依次地形成在每个薄片上。如下面表10-14所述,通过改变侧凹槽的半角误差、偏角和倾角来形成该重复模式的立方体。这些表中每列都定义在独立的侧凹槽的加工过程中所用的参数。通过与主凹槽表面相交以形成每个立方体的两个相邻侧凹槽来形成如图22所定义的立体角二面角误差。因此,在表中定义二面角误差的这些列是有偏差的,以便使它们相邻的侧凹槽更清楚。
形成八个薄片,针对侧凹槽的角误差和/或偏角和/或倾角而言,所述八个薄片各不相同,从而获得在下面表10-14中的每个表中所报告的二面角误差,但是表13与其它表不同的是其中一部分侧凹槽的偏角被修改了。
薄片1和薄片2第一薄片及第二薄片的侧凹槽参数分别报告于表10和11中,所述的第二薄片是与所述第一薄片相对的薄片。对于所有的主凹槽,主凹槽半角误差是-8弧分。侧凹槽的名义夹角(产生正交立方体所需的角)是75.226°和104.774°。对于所有的侧凹槽,夹角误差是-9.2弧分,从而实际的侧凹槽夹角为75.073°和104.621°。虽然对于侧凹槽,夹角误差是恒定不变的,但是半角误差是变化的。第一薄片的半角误差在-14.8弧分至5.6弧分的范围内,如表10的列3中所示。半角误差显示为与每个侧凹槽的两个半角对应的两个值(合计为-9.2弧分)。由相邻的侧凹槽上的半角误差的组合而产生的所述二面角2-3误差总结于第4列中。对于第一薄片,二面角2-3误差从-1.6弧分变到-16.8弧分。
在表10的第五列和第六列中分别阐述偏角和倾角。对于第一薄片,偏角在-8.0弧分至15.0弧分的范围内。倾角从-6.1弧分变到10.8弧分。由于侧凹槽的偏角和倾角而产生的二面角误差1-2和1-3示于最后两列中。注意,二面角1-2和1-3相对地改变,其中包括二面角误差1-2和1-3的薄片上的至少一个立方体具有不同的数值和/符号。
第二薄片的侧凹槽总结于表11中,并且与表10所列的薄片紧密相关。列出名义侧凹槽夹角和侧凹槽夹角误差的第一列和第二列与表10中的是相同的。与表10所列的结果相参照,侧凹槽参数(半角误差、偏角和倾角)及二面角误差的所有其它列都是反向的。这反映一个事实,即相反的薄片与其相对物除了绕z轴旋转180°外光学上是相同的。
薄片4、薄片6和薄片8为了简便起见,因为分别与第三、第五和第七薄片相对的第四、第六和第八薄片的侧凹槽参数与上文所述的相同凹槽参数具有反向关系,所以对第四、第六和第八薄片的侧凹槽参数不再进行赘述。
薄片3在表12中阐述第三薄片的侧凹槽参数。主凹槽半角误差为-8弧分。基本的几何结构(尺寸和侧凹槽的名义夹角)与第一薄片类型相同。对于所有的侧凹槽,实际的夹角误差也是-9.2弧分。关于第二薄片类型侧凹槽的半角误差在-14.8弧分至5.6弧分的范围内。二面角2-3误差在-1.6弧分至-16.8弧分之间变动。对于该薄片类型,偏角在-14.0弧分至21.3弧分的范围内,然而,倾角在-12.7弧分至16.8弧分之间变动。二面角1-2和1-3误差(示于最后两列中)相对地改变。
薄片5在表13中阐述第五薄片的侧凹槽参数。主凹槽半角误差为-4弧分。基本的几何结构(尺寸和侧凹槽的名义夹角)与上述薄片相同。对于所有的侧凹槽,夹角误差是-1.6弧分,从而导致实际的夹角为75.199°和104.747°。关于第三薄片类型的半角误差在-5.2弧分至3.6弧分的范围内。二面角2-3误差在-7.2弧分至4.0弧分之间变动。偏角在-7.0弧分至9.5弧分的范围内,然而,倾角在-8.2弧分至1.4弧分之间变动。二面角1-2和1-3误差(示于最后两列中)相对地改变。
薄片7在表14中阐述第七薄片的侧凹槽参数。主凹槽半角误差为-4.0弧分。基本的几何结构(尺寸和侧凹槽的名义夹角)与第一薄片类型相同。对于所有的侧凹槽,实际的夹角误差也是-1.6弧分。半角误差在-5.2弧分至3.6弧分的范围内。二面角2-3误差在-7.2弧分至4.0弧分之间变动。对于该薄片类型,偏角在-5.3弧分至5.3弧分的范围内,然而,倾角在-2.1弧分至4.6弧分之间变动。二面角1-2和1-3误差(示于最后两列中)相对地改变。
将总共208个薄片组合,使得相对薄片的立体角单元的非二面边彼此接触到一定精度,从而该组件基本上没有垂直壁(例如在侧向尺寸上大于0.0001的壁)。将薄片组合,使得薄片1-8的顺序在整个组件中依次重复,然后通过电铸来复制该组件的结构表面,以产生立方体腔工具。在上面所述的2003年3月6日提交的美国专利申请第10/383039号中进一步描述该组件及电铸过程。美国专利申请第10/383039号与本申请要求优先权的临时专利申请第60/452464号是同时提交的。
对于例1A,在压缩成型压挤工艺中使用该工具,其中在大约375°F(191℃)至385°F(196℃)的温度、大约1600psi的气压的条件下进行压挤,并且停留时间为20秒。然后,将模制的聚碳酸酯冷却5分钟以上,直到冷却为大约200°F(100℃)。
对于例2A,如2003年3月6日提交的美国专利申请第10/382375号所述,将熔融的聚碳酸酯浇铸到工具表面上。美国专利申请第10/382375号与本申请要求优先权的临时专利申请第60/452464号是同时提交的。
对于例1A和例1B,在连续的密封工艺中,通过将含无定形的共聚酯的表面接触微结构化的聚碳酸酯薄膜表面来将两层密封薄膜施加到立体角单元的背面,所述两层密封薄膜包括0.7密耳的聚酯和0.85密耳的无定形的共聚酯。使该结构连续地通过具有聚四氟乙烯套筒和加热的钢辊的橡胶咬送辊。橡胶咬送辊的表面是大约165°F,加热的钢辊的表面是大约405°F。辊隙气压为大约70磅/每英寸长,速度为20英尺每分钟。密封后亮度保持大约70%。
所得到的逆向反射片满足在ASTM D4956-1a“The StandardSpecification for Retroreflective Sheeting for Traffic Control”中关于第IX类逆向反射片的所述要求的亮度。或者,在-4°入射角、0°和90°的平均取向、0°显示角和各种观测角的条件下,明显超出规定的亮度最小值,如下表所列表9

表9表明了,与对比逆向反射片2和对比逆向反射片3相比,本发明的逆向反射片在每个指定的观察角上具有较高的亮度。对于从远离客车大约200至400英尺的距离处观察交通标记(例如应该安装在右边)以及从远离大卡车的司机大约450至950英尺的距离处观察交通标记(例如应该安装在右边),提高在大约0.5观察角的区域内的亮度是尤其重要的。
发现例1A的逆向反射片在2.0°观察内测量的全光返回均匀指数为2.04。
对于本领域的技术人员来说,可在不脱离本发明的范围和精神的情况下对本发明进行的各种修改和替换是显然易见的。
表10
表11
表12
表13
表14
权利要求
1.一种薄片,该薄片包括立体角单元,所述立体角单元具有由侧凹槽组形成的面,其中,所述组中至少两个凹槽不平行,该不平行的程度在从大于名义上平行至约1°的范围内。
2.根据权利要求1所述的薄片,其中,所述立体角单元是优选的几何立体角单元。
3.根据权利要求1所述的薄片,其中,所述侧凹槽与参比平面28不平行。
4.根据权利要求1所述的薄片,其中,所述立体角单元的至少一部分具有二面角误差,所述二面角误差的数值在1弧分和60弧分之间。
5.根据权利要求4所述的薄片,其中,所述二面角误差按重复的模式设置。
6.根据权利要求1所述的薄片,其中,所述凹槽具有偏角。
7.根据权利要求6所述的薄片,其中,第一凹槽具有正偏角,第二凹槽具有负偏角。
8.根据权利要求6所述的薄片,其中,第一凹槽的偏角与第二凹槽的偏角在数值上不同。
9.根据权利要求1所述的薄片,其中,所述凹槽具有倾角。
10.根据权利要求9所述的薄片,其中,第一凹槽具有正倾角,第二凹槽具有负倾角。
11.根据权利要求9所述的薄片,其中,第一凹槽的倾角与第二凹槽的倾角在数值上不同。
12.根据权利要求1所述的薄片,其中,所述侧凹槽具有偏角和倾角。
13.根据权利要求1所述的薄片,其中,所述立体角单元每个都具有第一面,并且所述第一面限定主凹槽面。
14.一种标准工具,其包括多个由权利要求1限定的薄片。
15.根据权利要求14所述的标准工具,其中,将所述的薄片组合,使得相邻的薄片的立体角单元具有相反的取向。
16.一种权利要求14所述的标准工具的阴模和阳模复制品。
17.根据权利要求16所述的复制品,其中,所述复制品是包括立体角单元阵列的逆向反射片。
18.根据权利要求16所述的复制品,其中,所述复制品是包括立体角腔阵列的逆向反射片。
19.一种薄片,该薄片包括立体角单元列,所述立体角单元具有由侧凹槽组形成的面,其中,所述凹槽名义上相互平行,并且与参比平面28不平行的程度在1°以内。
20.根据权利要求19所述的薄片,其中,所述立体角单元是优选的几何立体角单元。
21.一种包括优选的几何立体角单元的制品,其中,至少一个立方体具有1-2二面角误差和1-3二面角误差;其中,所述二面角误差相对地改变。
22.根据权利要求21所述的制品,其中,所述立方体具有二面角误差,所述二面角误差的数值在1弧分和60弧分之间。
23.根据权利要求21所述的制品,其中,所述立体角单元呈具有二面边的列的形式,所述二面边从名义上平行到小于1°的不平行的范围内。
24.根据权利要求21所述的制品,其中,所述二面角误差以重复的模式变化。
25.一种包括至少一个优选的几何立体角单元的制品,所述的几何立体角单元具有三个二面角误差,其中,所述二面角误差彼此不同。
26.根据权利要求25所述的制品,其中,所述二面角误差的数值在1弧分和60弧分之间。
27.根据权利要求25所述的制品,包括多个排成列的立体角单元,其中,所述立体角单元的至少一个二面边在从名义上平行到小于1°的不平行的范围内。
28.根据权利要求27所述的制品,其中,所述立体角单元的二面角误差以重复的模式变化。
29.根据权利要求27所述的制品,其中,所述制品包括薄片。
30.根据权利要求27所述的制品,其中,所述立体角单元每个都具有第一面,并且所述第一面限定主凹槽面。
31.根据权利要求27所述的制品,其中,所述制品包括工具。
32.根据权利要求27所述的制品,其中,所述制品包括逆向反射片。
33.根据权利要求32所述的制品,其中,所述逆向反射片包括立体角单元。
34.根据权利要求32所述的制品,其中,所述逆向反射片包括立体角腔。
35.一种逆向反射片,该逆向反射片包括由优选的几何立体角单元组成的列,所述立体角单元具有由侧凹槽组限定的面,其中,在所述组中至少两个凹槽不平行,该不平行的程度在从大于名义上平行至约1°的范围内。
36.根据权利要求35所述的逆向反射片,其中,所述立体角单元具有小于大约0.020英寸的侧向尺寸。
37.根据权利要求35所述的逆向反射片,其中,所述立体角单元具有小于大约0.010英寸的侧向尺寸。
38.一种逆向反射片,该逆向反射片包括由优选的几何立体角单元组成的列,所述立体角单元具有由侧凹槽组限定的面,其中,所述凹槽名义上相互平行,并且在与参比平面28名义上平行到与参比平面28在1°以内的不平行的范围内。
39.根据权利要求38所述的逆向反射片,其中,所述立体角单元具有小于大约0.020英寸的侧向尺寸。
40.根据权利要求38所述的逆向反射片,其中,所述立体角单元具有小于大约0.010英寸的侧向尺寸。
41.一种逆向反射片,该逆向反射片包括由优选的几何立体角单元组成的列,根据ASTM D4596-1a,对于-4°的入射角和0.5°的观测角,所述立体角单元在0°和90°的取向表现出的平均亮度至少为375堪德拉/勒克斯/m2。
42.根据权利要求41所述的逆向反射片,其中,所述平均亮度至少为400堪德拉/勒克斯/m2。
43.根据权利要求41所述的逆向反射片,其中,所述平均亮度至少为450堪德拉/勒克斯/m2。
44.根据权利要求41所述的逆向反射片,其中,对于-4°的入射角和0.2°的观测角,在0°和90°的所述平均亮度至少为625堪德拉/勒克斯/m2。
45.根据权利要求41所述的逆向反射片,其中,对于-4°的入射角和0.33°的观测角,在0°和90°的所述平均亮度至少为575堪德拉/勒克斯/m2。
46.根据权利要求41所述的逆向反射片,其中,对于-4°的入射角和1.0°的观测角,在0°和90°的所述平均亮度至少为80堪德拉/勒克斯/m2。
47.根据权利要求41所述的逆向反射片,其中,对于-4°的入射角和1.5°的观测角,在0°和90°的所述平均亮度至少为20堪德拉/勒克斯/m2。
48.根据权利要求41所述的逆向反射片,其中,所述逆向反射片还包括密封薄膜。
49.根据权利要求41所述的逆向反射片,其中,所述逆向反射片还包括镜面反射涂层。
50.一种包括立体角单元的薄片,所述立体角单元具有由凹槽形成的面,其中,相邻的凹槽在从名义上平行到小于1°的不平行的范围内,并具有相差至少2°的夹角,所述凹槽的夹角按重复的模式设置。
51.根据权利要求50所述的薄片,其中,所述相邻的凹槽是侧凹槽。
52.根据权利要求50所述的薄片,其中,所述立体角单元包括由交替成对的侧凹槽形成的面。
53.根据权利要求50所述的薄片,其中,所述立体角单元由主凹槽面和由交替成对的侧凹槽形成的面构成。
54.根据权利要求52所述的薄片,其中,每对侧凹槽的夹角具有基本上180°的总和。
55.根据权利要求50所述的薄片,其中,第一凹槽的夹角比90°至少大大约5°,第二相邻凹槽的夹角比90°小大约相同的量。
56.根据权利要求55所述的薄片,其中,第一凹槽的夹角比90°大大约10°至大约20°,第二相邻凹槽的夹角比90°小大约相同的量。
57.根据权利要求50所述的薄片,其中,所述立体角单元的至少一部分倾斜,使得所述立体角单元具有在45°和135°之间的校正角、在225°和315°之间的校正角及其组合。
58.根据权利要求50所述的薄片,其中,所述立体角单元每个都具有在公共平面内的限定主凹槽面的面。
59.根据权利要求50所述的薄片,其中,所述立体角单元是优选的几何立体角单元。
60.一种包括立体角单元的薄片,所述立体角单元具有由凹槽形成的面,其中,所述面相交于公共峰顶点,所述相邻的凹槽在从名义上平行到小于1°的不平行的范围内,所述相邻凹槽的夹角相差至少2°。
61.根据权利要求60所述的薄片,其中,所述相邻的凹槽是侧凹槽。
62.一种包括立体角单元的薄片,所述立体角单元具有由凹槽形成的面,其中,所述相邻的凹槽在从名义上平行到小于1°的不平行的范围内,并具有相差至少2°的夹角,而且具有在从相互名义上平行到小于1°的不平行的范围内的二等分平面。
63.根据权利要求62所述的薄片,其中,所述相邻的凹槽是侧凹槽。
64.一种包括优选的几何立体角单元的薄片,其中,至少一部分立体角单元倾斜,并且具有从在45°和135°之间的校正角、在225°和315°之间的校正角及其组合中选择的校正角。
65.一种标准工具,其包括多个由权利要求50限定的薄片。
66.根据权利要求65所述的标准工具,其中,在平面视图中所述立体角单元具有从梯形、矩形、平行四边形、五边形和六边形中选择的形状。
67.根据权利要求65所述的标准工具,其中,将所述薄片组合,使得相邻的薄片的立体角单元具有相反的取向。
68.一种权利要求65所述的标准工具的复制品。
69.一种标准工具,其包括多个由权利要求60限定的薄片。
70.根据权利要求69所述的标准工具,其中,将所述薄片组合,使得相邻的薄片的立体角单元具有相反的取向。
71.一种标准工具,其包括多个由权利要求62限定的薄片。
72.根据权利要求71所述的标准工具,其中,将所述薄片组合,使得相邻的薄片的立体角单元具有相反的取向。
73.一种权利要求71所述的标准工具的复制品。
74.一种标准工具,其包括多个由权利要求64限定的薄片。
75.根据权利要求74所述的标准工具,其中,将所述薄片组合,使得相邻的薄片的立体角单元具有相反的取向。
76.一种权利要求74所述的标准工具的复制品。
77.一种逆向反射片,该反射片包括由优选的几何立体角微结构组成的列,所述立体角微结构具有由凹槽限定的面,其中,所述列中相邻的凹槽在从名义上平行到小于1°的不平行的范围内,并具有相差至少2°的夹角,而且所述侧凹槽的夹角按重复的模式设置。
78.根据权利要求77所述的逆向反射片,其中,所述立体角微结构包括立体角单元。
79.根据权利要求77所述的逆向反射片,其中,所述立体角单元每个都具有第一面,所述第一面限定主凹槽面。
80.根据权利要求77所述的逆向反射片,该逆向反射片包括多个列,每列与相邻列的取向相反。
81.一种逆向反射片,该逆向反射片包括立体角单元的列,所述立体角单元具有由凹槽限定的面,其中,所述面相交于公共峰顶点,所述列中相邻的凹槽在从名义上平行到小于1°的不平行的范围内,并且相邻侧凹槽的夹角相差至少2°。
82.根据权利要求81所述的逆向反射片,其中,所述立体角单元每个都具有第一面,所述第一面限定主凹槽面。
83.根据权利要求81所述的逆向反射片,该逆向反射片包括多个列,每列与相邻列的取向相反。
84.一种逆向反射片,该逆向反射片包括立体角单元的列,所述立体角单元具有由凹槽限定的面,其中,所述列中相邻的凹槽在从名义上平行到小于1°的不平行的范围内,并具有相差至少2°的夹角,而且具有在从名义上相互平行到小于1°的不平行的范围内的二等分平面。
85.根据权利要求84所述的逆向反射片,其中,所述立体角单元每个都具有第一面,所述第一面限定主凹槽面。
86.根据权利要求84所述的逆向反射片,该逆向反射片包括多个列,每列与相邻列的取向相反。
87.一种逆向反射片,该逆向反射片包括由优选的几何立体角微结构组成的列,其中,第一立体角单元倾斜并具有在45°和125°之间的校正角,第二相邻立方体倾斜并具有在225°和315°之间的校正角。
88.根据权利要求87所述的逆向反射片,其中,所述立体角微结构包括立体角单元。
89.根据权利要求87所述的逆向反射片,其中,所述第一立体角单元倾斜并具有在60°和120°之间的校正角,所述第二相邻立方体倾斜并具有在240°和300°之间的校正角。
90.根据权利要求87所述的逆向反射片,其中,所述第一立方体的校正角与0°的差值与所述第二立方体的校正角与0°的差值基本上相同。
91.根据权利要求87所述的逆向反射片,其中,所述第一立方体的校正角与180°的差值与所述第二立方体的校正角与180°的差值基本上相同。
92.根据权利要求87所述的逆向反射片,其中,所述立体角单元每个都具有第一面,所述第一面限定主凹槽面。
93.一种逆向反射片,该逆向反射片包括由优选的几何立体角单元组成的阵列,所述立体角单元在至少30°的入射角表现出至少为1的均匀指数。
94.根据权利要求93所述的逆向反射片,其中,所述均匀指数是针对40°的入射角而言的。
95.根据权利要求93所述的逆向反射片,其中,所述阵列在一个以上的方向上基本上没有砌瓦。
96.根据权利要求93所述的逆向反射片,其中,所述均匀指数至少为3。
97.根据权利要求93所述的逆向反射片,其中,所述均匀指数至少为5。
98.根据权利要求93所述的逆向反射片,其中,所述立方体倾斜,并且具有从在45°和135°之间的校正角、在225°和315°之间的校正角及其组合中选择的校正角。
99.根据权利要求93所述的逆向反射片,其中,所述立方体倾斜,并且具有从在60°和120°之间的校正角、在240°和300°之间的校正角及其组合中选择的校正角。
100.一种逆向反射片,该逆向反射片包括由优选的几何立体角单元组成的列,相邻的列构成相邻列对,其中,所述列中的相邻立体角单元具有至少一个二面边,所述二面边在从名义上平行到小于1°的不平行的范围内,其中,所述列对包括至少两种类型的配对。
101.一种逆向反射片,该逆向反射片包括立体角单元阵列,根据ASTM D4596-1a,在-4°的入射角和在0°和90°的取向,所述立体角单元表现出的平均亮度,对于0.2°的观测角至少为625堪德拉/勒克斯/m2,对于0.5°的观测角至少为375堪德拉/勒克斯/m2,对于1.0°的观测角至少为80堪德拉/勒克斯/m2,其中,对于户外使用所述逆向反射片是经久耐用的。
102.一种逆向反射片,该逆向反射片包括立体角单元阵列,所述立体角单元具有观察面和背面,其中,根据ASTM D4596-1a,在-4°的入射角和在0°和90°的取向,所述立体角单元表现出的平均亮度,对于0.2°的观测角至少为625堪德拉/勒克斯/m2,对于0.5°的观测角至少为375堪德拉/勒克斯/m2,对于1.0°的观测角至少为80堪德拉/勒克斯/m2,所述背面包括镜面反射涂层。
103.根据权利要求102所述的逆向反射片,其中,所述观察面包括覆盖薄膜。
104.一种逆向反射片,该逆向反射片包括立体角单元的阵列,所述立体角单元具有观察面和背面,其中,根据ASTM D4596-1a,在-4°的入射角和在0°和90°的取向,所述立体角单元表现出的平均亮度,对于0.2°的观测角至少为625堪德拉/勒克斯/m2,对于0.5°的观测角至少为375堪德拉/勒克斯/m2,对于1.0°的观测角至少为80堪德拉/勒克斯/m2,所述背面包括在所述立方体的背面保持空气界面的密封薄膜。
105.根据权利要求104所述的逆向反射片,其中,所述观察面包括覆盖薄膜。
全文摘要
本发明涉及包括立体角单元的单层薄片或多层薄片、包括薄片组件的工具及其复制品。本发明还涉及逆向反射片。
文档编号B29D11/00GK1756971SQ200480006052
公开日2006年4月5日 申请日期2004年2月26日 优先权日2003年3月6日
发明者肯尼思·L·史密斯 申请人:3M创新有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1