连接工件的方法和复合制品与流程

文档序号:31402889发布日期:2022-09-03 05:07阅读:111来源:国知局
连接工件的方法和复合制品与流程

1.本发明涉及具有独立权利要求的前序部分的特征的用于连接工件的方法和复合制品。


背景技术:

2.在许多应用领域中,工件必须连接在一起。例如,比如在包装领域、在车辆工程领域或在医疗器械加工领域,塑料部件的连接是容易想到的。在一些情况下,金属工件也必须连接在一起,例如与电导体的触点部分。
3.将超声振动导入工件以连接它们是已知的。导入的超声振动形成将工件连接在一起的超声焊接。
4.然而,并非总是能够形成令人满意的超声焊接,尤其是采用不同的材料组合。尤其是采用由具有不同熔点的塑料材料制成的工件,难以进行焊接。即使采用不同的材料组合也能够获得具有满意性能的焊接效果的一种方式是增大接触压力、焊接时间和/或施加能量。但是,这会导致对敏感工件的破坏。
5.由塑料制成的焊接工件的一种典型应用是将倒出部紧固至包装,例如饮料包装。该倒出部应由尽可能不透氧的材料例如高密度聚乙烯(hdpe)制成。包装本身由主体组成,该主体由膜、尤其是层压膜制成。层压膜的外表面上具有塑料层,通常为低密度聚乙烯(ldpe)。纸板层提供了期望的强度。铝层提供了氧密封。但是,现在出现了当在焊接期间施加较大的力时铝层受损的情况。这会导致包装内容物(通常为饮料)出现质量问题。铝层的磨损会导致形成凹袋,并且由此还会导致卫生问题。


技术实现要素:

6.因此本发明的任务是避免已知缺点,尤其是创建一种用于连接工件的工艺,通过该工艺,由不同材料制成的工件能够以良好的焊接质量连接在一起。本发明的另一个任务是创建一种复合制品,其中也是尤其由不同材料制成的两个工件以良好的焊接质量连接在一起。
7.根据本发明,这些任务通过具有独立权利要求的特征部分的特征的方法和制品来解决。优选的实施例来自从属权利要求。
8.根据本发明的方法用于借助于超声连接工件。通常情况下,将两个工件连接在一起。但是,还能够想到将两个以上的工件连接在一起。
9.在第一步中,提供具有至少一个导能器的第一工件。在超声焊接过程中提供带有导能器的工件为现有技术已知。在导能器的区域中将超声振动导入工件。
10.第一工件通常为用于包装的倒出部。但是,也能够想到其他工件,例如在医疗技术中在注射模制部件上的密封隔膜或过滤隔膜。还能够想到在车辆保险杠中用于容置传感器的传感器支承座。
11.还提供了第二工件。具体地,该第二工件可以是用于制备包装的包装材料。但是,
还能够想到第二工件是保险杠,上文所述的传感器支承座将被施加至该保险杠。
12.该第一工件和该第二工件彼此接触,使得导能器与第二工件的第一表面接触。
13.接下来通过超声焊极的工作表面将超声振动导入其中一个工件内。超声焊极是在许多实施例中是经受超声振动的工具并且为本领域技术人员已知。
14.超声振动平行于与超声焊极的工作表面接触的工件的表面传播。通过此方式,基于两个不同的机制生成热。一方面,由超声焊极导入工件的运动在该(多个)工件部内引起发热。另一方面,工件之间的界面区域中的摩擦或运动也会导致生成热。
15.尤其当焊接塑料接合参数时,常用的做法是采用超声焊极沿着垂直于工件的接触表面的振动方向导入超声振动。已经表明,此种振动会对某些类型的接合配对件造成损害,或者在为了避免损坏而降低振幅的情况下无法制备出合格的焊缝。在膜状的接合参数的情况下尤其如此,例如单膜、由生物聚合物制成的膜或多层复合膜,例如用于包装领域的那些膜。
16.由此,本发明的另一方面涉及采用扭转超声振动来连接接合配对件,其中至少一个接合配对件在与另一个接合配对件的接触表面的区域中具有单膜、由生物聚合物(例如聚乳酸)制成的膜或多层复合膜。
17.虽然此应用尤其优选与下文描述的本发明的其他方面相关,但是应理解,还能够通过超声焊极和/或导能器的其他布置形式获得有利的效果。具体地,采用扭转振动能够在超声焊极和接合参数之间的接触表面的区域中增加振动振幅直至产生足够的焊缝。在扭转振动的例子中,可通过增大焊接表面相对于轴线的半径来提高振幅。传统的垂直于工件的纵向振动不太容易实现类似的振幅提高。由于振动方向平行于接触表面,增大的振幅不会损坏工件/接合参数,这与垂直于接触表面的传统振动有所不同。
18.尤其是,当连接厚度小于100微米(μm)、尤其约为50μm的膜时,采用扭转超声振动进行焊接是尤其有利的。
19.根据本发明,采用的超声焊极的轮廓在其工作表面上具有接触线。超声焊极关于第一工件定位,以使接触线横向于导能器延伸。横向通常表示处于+/-45
°
的角度、优选约为85
°‑
95
°
、尤其优选约为90
°
。这样,超声仅在接触线和导能器之间的相交位置处引入工件、尤其引入第二工件。由此,尤其作用在第二工件上的载荷较低。因为由施加至相交位置的力的限制导致整体力较小,避免了由于施加的力造成的损坏。
20.优选地,超声焊极的工作表面与第二工件的与第一表面相对的第二表面接触,即该第一表面与导能器接触。
21.通常情况下,由此第二工件例如包装材料的膜与超声焊极的工作表面接触。
22.根据优选实施例,所采用的超声焊极的工作表面呈环形。但是,根据工件的形状,还能够想到超声焊极的工作表面的其他形状。在此情况下,接触线在工作表面上关于中心位置呈星形布置。工作表面不必包括整圆,而是也可呈环形。
23.根据待连接的工件,还能够想到超声焊极的工作表面呈矩形或方形。在此情况下,接触线通常横向于超声焊极的振动方向延伸,从而由于振动而形成了驱动效果。接触线关于工件的、尤其是导能器的轮廓的夹角尤其是在扭转振动的情况下由此可为非恒定的。尤其在扭转振动的情况下,由此建议接触线呈星形。在纵向振动的情况下,还能够想到接触线彼此平行,每根接触线接下来横向于振动方向延伸。
24.优选地,所采用的超声焊极中接触线形成在位于两个相邻凹部之间的肋上。通常情况下,超声焊极的工作表面可设置有在肋上形成接触线的端面齿盘。
25.优选地,如沿径向观察,在焊接区域中,肋的横截面在垂直于径向的平面中是不变的。这确保了即使工件未关于超声焊极的工作表面精确定位,作用至对应工件的工作表面与接触凹部的保持相同。尤其在环形工件和超声焊极的环形工作表面的情况下,能够想到没有精准对齐(即工件和超声焊极的轴线之间一致)。在非精准对齐的情况下,肋的横截面在焊接区域中沿径向保持恒定确保了在导能器的区域中、在与工件接触的位置处接触线的形状总是相同。
26.通常情况下,肋的横截面在垂直于径向的平面中呈v形。v形横截面的两条腿之间的夹角通常为40
°‑
70
°
、尤其为60
°
。肋的高度即接触线和凹部的基部之间距离通常为0.1mm至1.5mm、优选为0.4至1mm。尤其优选地,该距离约为0.6mm。
27.接触线彼此之间的距离约为0.1至2.5、优选为0.8至2mm。优选地,它们间隔约1mm。很明显这些尺寸能够根据待焊接的工件的尺寸改变。
28.优选地,导能器设计为周向隆起。通常情况下,导能器布置在圆上或者至少部分布置在圆上。如果第一工件也呈环形,例如成形为倾倒嘴,那么这是尤其优选的。
29.根据尤其优选的实施例,以横截面观察,所采用的导能器具有相对宽的接触表面以接触其他工件。现有技术中已知的导能器设有约呈三角形的横截面。已经表明,尤其是在第二工件为层压件、箔和隔膜形式时,采用具有梯形的横截面和相对宽的接触表面的横向导向器能够防止对第二工件造成损坏。这尤其与包装应用相关。根据另一方面,导能器由此优选具有梯形横截面并且尤其设有接触表面,接触表面的宽度至少为导能器的高度的五倍、优选至少七倍。
30.在振动方向垂直于连接参量的接触面的传统焊接工艺中,采用具有三角形横截面和尽可能尖锐的接触面的导能器。在扭转焊接中,通常在平坦表面上执行焊接,从而能够完全省去导能器。通过采用根据本发明的具有宽接触面积的导能器,可以优化扭转焊接中的焊缝,而没有导能器进入另一个接合配对件的风险。
31.在传统纵向焊接工艺中,不可能在不损坏膜的情况下对该膜施加足够高的能量。因此,到目前为止人们一直认为不能采用超声对单膜进行可靠焊接。但是,单膜还能够采用平行于声导入表面的超声振动、尤其是扭转超声振动进行焊接。在扭转或其他线性焊接工艺中不一定会出现压力峰值,压力峰值由于纵向焊接工艺中尖锐的导能器而出现并且导致单膜的破坏。然而,如果导能器具有足够大的接触面积,那就仍然可以采用。由生物聚合物制成的材料也有类似的优点。否则,当加热材料时也存在损坏材料的问题。
32.接触线优选关于导能器呈90
°
角布置。这导致尤其精确限定的声导入点。
33.超声振动可作为扭转振动、纵向振动或扭转振动和纵向振动的组合引入。此种振动的生成为本领域技术人员已知。尤其优选的是由归于同一申请人的未决申请ep1920953201中描述的超声焊极产生的扭转振动和纵向振动的组合。此申请的内容通过交叉引用并入本文。
34.尤其优选地,所提供的工件由不同材料构成或者具有不同材料。尤其是,第一工件至少在导能器的区域中由hdpe构成。第二工件至少在其第一表面上具有ldpe。
35.已经表明,如果第一工件以其背离导能器的侧面布置在支承座上,该支承座具有
还设有接触线的支承座表面,则是尤其有利的。此支承座还被称作砧座。具有接触表面的砧座另外确保了在砧座和工件之间产生尽可能少的摩擦,从而由于尤其在第一工件和第二工件之间的界面的区域中发生的摩擦而导致产生热。尤其优选地,支撑表面的轮廓与结合上文的超声焊极描述的轮廓相同。但是,还能够想到肋具有其他尺寸或形状。
36.已经表明,由于优化的能量输入,相对短的焊接时间是可能的。通常情况下,焊接时间在50至60毫秒的焊接工艺足以例如将由塑料材料制成的倾倒嘴焊接到平坦的包装材料上。更长时间的焊接会导致对包装材料造成损坏,即使是采用根据本发明的具有相对宽的导能器以及具体布置的接触线的结构。因此,优选采用发生器生成超声振动,以允许非常精确地控制焊接时间。尤其是,应该能够将焊接时间设置到至少5毫秒的精度。当采用平行于第一工件和第二工件之间界面的扭转振动或纵向振动时,足够的能量仍然被引入工件以使得即使在短的焊接时间内也能够获得可靠的接缝。
37.根据本发明的另一方面,提供了一种方法,其中也提供了第一工件和第二工件,二者以上文所述的方式接触,其中通过超声焊极的工作表面将超声振动引入其中一个工件。根据本发明的这个方面,在导能器的区域中、在至少一个声导入点将超声振动导入第一工件或第二工件。从声导入点起,至少其中一个工件的材料发生融化直至与该声导入点间隔开的融化区。通过在远离实际焊接区域的声导入点处选择性地引入振动,即使工件在声导入点处由于其接触超声焊极而受到损坏,也能够形成令人满意的焊接。
38.根据本发明的又一方面,提出了一种复合制品。该制品通常由第一工件和第二工件组成。通常情况下,通过如上所述的方法执行组装。具体地,该制品是包装。例如,第一工件是通常注塑成型的倒出部。第二工件通常是多层包装膜。此膜为现有技术已知并且具有铝层、纸板层和塑料层。但是,也能够想到单层膜。
39.第一工件和第二工件借助于超声焊接连接在一起。第一工件在面向第二工件的侧面上具有导能器。然而,应当理解,导能器可在焊接过程中完全或部分地消失。
40.根据本发明,第二工件上的制品在沿着导能器的区域中具有声导入印记。该声导入印记通过焊接区彼此间隔开并且彼此分开。该声导入印记横向于导能器延伸。通过在各个位置处导入超声,可能如上所述以更小的振幅和/或更短的焊接时间进行工作。这确保了即使是压力敏感的工件也能够不受损坏地可靠、尤其是牢固且紧密地焊接。
41.本发明的另一方面涉及复合制品,替代地或补充地,其中导能器具有优化的横截面形状。尤其是,同样在此实施例中,该复合制品是包括第一工件和第二工件的包装。优选地,这是如上文所述的制品。
42.第一工件和第二工件通过超声焊接连接在一起。第一工件在面向第二工件的侧面上具有导能器。该导能器的横截面尤其呈梯形并且具有用于连接至第二工件的接触表面。该接触表面尤其是平坦的。接触表面具有宽度,导能器具有垂直于接触表面的高度。根据本发明的这个方面,接触表面的宽度是导能器的高度的至少五倍、优选至少七倍。具体地,接触表面的宽度约为导能器的高度的十倍。这样,提供了平坦且相对宽的接触表面。由此防止了导能器穿入包装材料,该进入可能损伤包装材料。同时,已经表明,具有此种横截面的导能器足以产生出可靠的焊接。尤其优选地,导能器的宽度为0.5mm至2mm,尤其优选0.7mm至1.2mm。导能器的高度优选为0.5mm至1.2mm并且优选约为0.1mm。
43.第一工件通常包括第一塑料材料或由第一塑料材料构成。具体地,该材料可为
hdpe。第二工件至少在面向第一工件的侧面上通常具有不同于第一塑料材料的第二塑料材料。通常情况下,第二塑料材料为ldpe。
44.具体地,可采用不同的塑料材料,它们具有彼此之间相差不大的不同熔点。通常情况下,熔点不会相差超过约40
°

45.具体地,如果第二工件为层压件,声导入印记可基本上延伸穿过层压件的最上层。在包装膜的情况下,声导入印记尤其延伸穿过最上方塑料层到达纸板层的高度。
46.优选地,在上文所述的所有实施例示例中,导能器横向于接触线延伸。具体地,关于上文所述的导能器,还能够想到导能器几乎平行于接触线延伸。另外,接触线和导能器之间的夹角也会沿着导能器改变。具体地,能够想到例如采用具有环形工作表面和以星形布置的接触线的扭转超声焊极来焊接非环形轮廓,例如方形轮廓。在此情况下,例如,导能器和接触线之间的夹角可在45
°
至90
°
之间变化(在方形的拐角的区域中为45
°
,在方形的侧面的中心区域中为90
°
)。
47.本发明的又一方面涉及用于连接由不同材料制成的工件的替代方法。尤其优选地,此工艺结合上文所述的工艺执行。但是,其也可有利地应用于其他方面。根据本发明,将由不同材料制成的工件连接在一起。第一工件至少在面向第二工件的界面区域中具有第一结晶程度。第二工件至少在面向第一工件的界面区域中具有第二结晶程度。第二结晶程度不同于第一结晶程度。工件在声导入表面处经受扭转振动,由此工件彼此结合。已经表明,如果工件具有不同的结晶程度,那么传统的纵向焊接工艺几乎无法在由不同材料制成的部件之间形成可靠的焊缝。只有在工件中的非晶和结晶组分在焊接过程中同时软化,才能够产生充分焊接。具体地,具有高结晶含量的工件需要高能并且由此还需要高的振幅,以在足够短的时间内实现进入焊接区域的最大能量输入。同时,在纵向振动引入的情况下,为了不损坏已经以较小振幅被软化的具有更大非晶含量的工件,不能引入足够高的振幅。在扭转振动开始时不存在此问题。
48.例如当将ldpe焊接至ldpe与将ldpe焊接至hdpe进行比较时,可以看到本发明的此方面的效果。采用30μm的振幅,在将ldpe焊接至ldpe时可获得65%的连接比例。在不损坏工件的情况下采用纵向振动也能够获得30μm的振幅。另一方面,在ldpe与hdpe结合的情况下,30μm的振幅仅能获得20%的结合比例(即仅在临近界面的20%的体积中形成了接合配对件之间的结合)。这不足以形成可靠的焊缝。
49.将振幅提高到40μm会导致两个工件中非晶和晶体组分融化。ldpe和hdpe材料在分子水平形成了足够强的结合。
50.此发现使得在各种应用中焊接不同的材料对成为可能:传统应用包括在保险杠中焊接传感器支承件,焊接传感器壳体或者在用于咖啡的包装中焊接香气防护阀。
51.在声导入表面的区域中由此尤其优选振幅至少为40μm的扭转振动。
52.第一结晶程度优选为10%至60%,第二结晶程度为60%至90%。
53.基于上述发现,根据本发明的工艺可尤其优选用于在界面的区域中连接具有ldpe和hdpe的工件。该工件可由ldpe或hdpe制成一体件。然而,还能够想到的是仅在界面的区域中为工件设置对应材料,例如塑料图层包装材料(带有ldpe层的铝和纸板基板)就是这样。
54.本发明的又一方面涉及包括至少两个工件的复合制品。第一工件至少在面向第二工件的界面区域中具有第一结晶程度。第二工件至少在面向第一工件的界面的区域中具有
第二结晶程度,第二结晶程度不同于第一结晶程度。工件通过由扭转超声振动产生的、位于界面之间的焊缝彼此连接。借助于扭转超声振动形成的焊缝可借助于布置在声导入界面上的声导入印记识别出来,该声导入印记至少部分显现出旋转对称性。
附图说明
55.本发明在以下实施例示例附图的基础上进行更加详细的说明。附图示出:
56.图1:带有用于工件的支承座的根据本发明的超声焊极的立体图。
57.图2:呈分解视图的图1的结构的侧视图。
58.图3:从工作表面观察的根据本发明的超声焊极的立体图。
59.图4:根据本发明的超声焊极的侧视图。
60.图5:沿着超声焊极的纵轴线穿过根据本发明的超声焊极的横截面图。
61.图6:超声焊极的工作表面视图。
62.图7:图6的部段a的放大视图。
63.图8:两个工件的放大部段,其在立体图中暴露于超声焊极的工作表面。
64.图9:通过根据本发明的超声焊极和根据本发明的工件的径向平面中的横截面图。
65.图10:在图5的放大部段b中的根据本发明的超声焊极的工作表面的侧视图。
66.图11:超声焊极的工作表面的部段的立体图。
67.图12:在垂直于导能器的平面中连接至包装材料的倒出部的剖视图。
68.图13:沿着导能器连接至包装材料的倾倒嘴的剖视图。
69.图14a和b:带有替代形状的支承的导能器的替代实施例的图示。
70.图15a和b:以立体图并且以横截面示出的图14a和14b的导能器的图示。
71.图16a和b:第一实施例中的砧座的支承座和支承面的示意图。
72.图17a和b:根据第二实施例的砧座的容置面的示意图,和
73.图18:具有相同以及具有不同的结晶部分的用于工件的接合部件的图形示意图。
具体实施方式
74.图1以立体图示出了超声焊极10和支承座18。在超声焊极10和支承座18之间示出了呈包装材料箔40和倾倒嘴(图1中未示出,见图2)的形式的两个工件。超声焊极10和支承件18能够以现有技术中已知的方式相对彼此运动,从而这些工件可被夹持在二者之间。为实现该目的,超声焊极可被固定在机架内,其能够通过驱动器、通常为气动驱动器或电磁驱动器进行调节。
75.超声焊极10以已知方式设置为超声振动。为实现此目的,提供有超声发生器和超声换能器(图1中未示出),二者为本领域技术人员已知。超声焊极10设置成沿着绕其纵轴线l的振动方向s进行扭转振动。超声发生器和超声换能器为本领域技术人员已知。另外,可存在沿纵向l的纵向振动。
76.在运行时,焊接以已知方式执行。例如,生成20、30或35千赫兹(khz)的超声振动。该振动通常通过具有现有已知的压电元件的换能器生成。
77.图2示出了根据图1的结构的分解视图。呈倒出部30形式的第一工件和呈包装材料箔40形式的第二工件布置在超声焊极10和支承座18之间。
78.图3以立体图示出了从其工作表面11观察的超声焊极10。工作表面11呈环形。在该环形工作表面11内是凹空17。该凹空17形成了用于倾倒嘴30的轮廓的空隙。在工作表面11上沿着关于纵轴线l的径向布置接触线12。接触线12从纵轴线l延伸至工作表面11。接触线12从工作表面11的内边缘延伸至工作表面11的外边缘。
79.图4和5以侧视图和沿着超声焊极10的纵轴线l的横截面图示出超声焊极10。在侧视图中,可以看到,工作表面11具有呈端面齿盘形式的轮廓表面。图5还示出了用于倒出部30(在图5中未示出)的凹空17。
80.图6示出了超声焊极10的工作表面11的详细视图。接触线12是由从超声焊极10的纵轴线l沿径向r延伸的肋13形成。
81.图7示出了图6的部段a的放大视图。肋13沿着径向r延伸并且在它们的最上方位置处具有接触线12。沿垂直于径向r的平面穿过肋13的横截面在焊接区域15中是不变的。焊接区域15指代这样的区域,在该区域中,超声焊极10的工作表面11能够在位于倒出部30(参见图8和9)处、临近导能器31的区域中接触包装材料40。
82.图8示出了超声焊极10、倾倒嘴30和包装材料40的一部分的放大截面。
83.倾倒嘴30具有凸缘33,包装材料40将连接至该凸缘。导能器31设置于凸缘33上面向包装材料40的一侧32。导能器具有现有技术中已知形式的三角形横截面。
84.导能器的高度通常为0.3毫米(mm)。
85.包装材料40具有第一表面41,其朝向倾倒嘴30并且尤其朝向凸缘30的侧面32。包装材料40的第二表面42朝向超声焊极的工作表面11。由此,超声焊极10的工作表面11的接触线12沿着第二表面42延伸。
86.超声焊极10关于倾倒嘴30定位,以使接触线12和导能器31在声导入点43处呈直角相交。导能器31以环形周向的方式布置于凸缘33。焊接在一起的倾倒嘴30和包装材料40一起形成包装20,在图8中可见包装的一个部段。通常情况下,此种包装是食品包装,例如饮料包装。但是,也能够想到用于其他产品、尤其是液体或散装物质的包装。
87.图9以横向截面示出了类似于图8的视图。超声焊极10以其工作表面11和其接触线12与包装材料40的第二表面42接触。包装材料40以第一表面41在导能器31的区域中接触倾倒嘴30。
88.图10示出了根据图5中截面b的超声焊极的工作表面11的放大截面。该工作表面11设有类似于端面齿盘的结构。结果,在工作表面11上存在带有v形横截面的肋13,v形肋的顶端形成了接触线12。在多个肋之间形成带有基部16的凹部14。凹部的高度,即接触线12和基部16之间的距离h为0.6mm。在示出的示例中,两个相邻的接触线12之间的距离a为1mm。
89.图11示出了类似于图10的部段的立体图。在图11中,可以看到,肋13的横截面沿径向r基本上未发生改变。另一方面,凹部14以及它们的基部16的形状、尤其是宽度在各个肋13之间发生变化。肋13的两条腿19之间的夹角α为60
°

90.图12示出了已经焊接到倒出部30上的一层包装材料40的剖视图。该剖切是沿着垂直于导能器31的方向、即沿着与图9中示出的剖切类似的方向进行的。导能器31仍然是可识别的,但是相比于初始形状(见图8和9)有些变平。在包装材料40和倾倒嘴30之间具有连续且一致的焊接。
91.包装材料40具有铝层48和纸板层47,它们在两侧由ldpe层46所封闭。如图12所示,
铝层48未损坏。靠下方的ldpe层49紧密地结合至倾倒嘴30的材料(在示出的示例中为hdpe)。
92.图13示出了沿着导能器经过制品的横截面,该制品包括倾倒嘴30和包装材料40。又一次观察到中间的铝层48未损坏。在包装材料40的面向超声焊极10的第二表面42上能够辨别出声导入印记45。该声导入印记45基本上穿过ldpe的顶层46并且几乎延伸至纸板层47。在焊接区44中,底部ldpe层49紧密地结合至分配器30。焊接区44在多个声导入印记45之间延伸。
93.图14a和14b示出了将包装材料40焊接至倒出部30的立体图的第二实施例。类似于上文描述的实施例,倒出部30通过其凸缘33布置在支承座18上。支承座18具有用于凸缘33的接触表面21。在导能器31的区域中,倒出部30和包装材料40之间产生接触(参见图14b)。类似于前述内容,超声焊极10具有用于容置倒出部30的螺纹部分的凹空17。如此前的实施例,超声焊极10的工作表面11设有接触线12(见图14b)。
94.支承座18的接触表面21设有波形纹19。
95.图15a和15b示出了倒出部30的凸缘33且尤其是导能器31的放大图。导能器31在凸缘33上成形为环形轮廓。导能器31具有平坦的环形接触表面34,包装材料40布置且焊接至该平坦的环形接触表面。在横截面中,导能器呈带有倒圆侧面的梯形。
96.接触表面34呈环形并在径向上具有1mm的宽度b。在垂直于接触表面34的方向上,导能器31的高度h为0.1mm。由于平坦且相对宽的接触表面34,防止或者至少最小化导能器31穿透包装材料40(见图14b)。
97.图16a和16b示出了在支承座18的接触表面21上的波形纹19的第一实施例。在根据图16a和16b的实施例示例中,这些波形纹22形成类似于根据图10和11的超声焊极11的接触线12,尤其是在腿之间具有类似夹角α并且在肋的基部和顶端之间具有类似高度h。与超声焊极的波形纹相比,在两个相邻的肋23之间在谷底设置另一种更小的波形纹,以补偿由于环形几何而造成的不同高度。
98.图17a和17b示出了支承座18的支撑表面21的替代实施例。在此肋23通过u形谷连接。在此同样设置了更小的肋以补偿两个相邻的肋23之间不同高度。如在根据图16a和16b的实施例中,夹角和尺寸分别对应于相关的超声焊极的夹角和尺寸。
99.图18示出了用不同材料焊接接合配对件的测试的图形表示。
100.图18中的上方视图示出了由ldpe制成的两个相同塑料部件之间的连接。图18中的下方视图示出了不同塑料件的连接,其中一个部件是由ldpe制成,一个部件是由hdpe制成。两个左侧的柱示出了接合配对件的非晶体和结晶比例。由此可见,在根据图18的下方视图中,两个接合配对件(左ldpe,右hdpe)中非晶体部分和结晶部分是不同的。
101.在30微米(μm)的纵向适用振幅下,由于相对高且相等的非晶含量,在ldpe和ldpe之间的结合中(上图)能够实现结合量为65%的足够良好的结合。当振幅增加到40μm时,获得几乎完全的结合。
102.相比之下,当采用30μm的振幅将ldpe结合至hdpe时(下方视图)可以仅获得20%的结合。这是不够的。但是,通过将振幅提高到40μm,在此同样能够获得几乎100%的复合量。此振幅尤其可以通过上述扭转启动来实现,而不损害敏感的接合对象。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1