本发明涉及一种空调系统,具体地说是涉及一种空调塔机,其具有单一结构并且在不使用大量管道网络的情况下给大面积提供冷却效果。
背景技术:
如图1所示,传统的分体式空调系统一般包括一室内空调单元100p和一室外压缩机单元200p。室内空调单元100p位于室内,而室外压缩机单元200p位于室外环境。它们通过多个导管300p连接。
上述分体式空调系统有几个缺点。第一,传统的分体式空调系统必须使用制冷剂在室内空调单元100p和室外压缩机单元200p之间循环。制冷剂从室内空间带走热能并释放热能到室外环境。制冷剂的冷却是通过制冷剂和环境空气之间的热交换来实现的。一般来说,一台典型的分体式空调系统的性能系数(c.o.p)不高(通常大约在3.0-3.2左右)。在分体式空调系统中使用的蒸发器的效率也非常低。
第二,虽然分体式空调系统在某些情况下可能具有某些优点,但使用管道300p去连接室内空调单元100p和室外压缩机单元200p的意思则等于在制冷剂循环过程中会有大量的能量损失或浪费了。此外,必须使用大量的原材料来构建管道300p。
第三,由于室内空调单元100p和室外压缩机单元200p位于房屋的不同部位,这使得分体式空调系统的安装和维护都非常困难。在一些情况下,技术人员可能因室外压缩机单元200p被其他障碍物阻挡而无法进入室外压缩机单元200p。
技术实现要素:
本发明的一个目的是提供一种空调塔机,其具有单一壳体结构并且在不使用大量管道网络的情况下为大面积提供冷却效果。
本发明的另一个目的是提供一种包括多个集水盆的空调塔机,集水盆能够有效且均匀地引导冷却水以与热换管进行热交换。
本发明的另一目的是。提供一种空调塔机,其可以简单方便地安装在墙体结构上。值得注意的是,本发明的空调塔机可以站立在地面上,因此可以将本发明的安装程序保持在最低限度。
本发明的一方面,本发明提供一种空调塔机,其包括:
一塔壳,其具有一前部,一后部,一第一侧部,一第二侧部和一收容腔;
一设置在塔壳内的压缩机;
一热换器,其设置在塔壳的收容腔内并连接压缩机,热换器延伸穿过塔壳的前部,第一侧部和第二侧部;
一蒸发式冷却系统,其包括至少一个多效蒸发式冷凝器,多效蒸发式冷凝器设置在塔壳的第一侧部和第二侧部中至少之一,多效蒸发式冷凝器具有进气口侧和相对的出气口侧,而蒸发式冷却系统包括:
一泵送装置,其设置在塔壳的底部并适用于以预设流速泵送预定量的冷却水;
一第一冷却单元,其包括:
一第一集水盆,用于收集沿自泵送装置的冷却水;
多条第一热换管,其连接热换器并浸于第一集水盆中;和
一第一填充材料单元,其设置于该第一热换管的下方,其中收集于该第一集水盆中的冷却水设置成依次流过该第一热换管和该第一填充材料单元的外表面;
一第二冷却单元,其包括:
一第二集水盆,其设置于该第一冷却单元的下方,用于收集沿自该第一冷却单元的冷却水;
多条第二热换管,其浸于该第二集水盆中并连接该热换器;和
一第二填充材料单元,其设置于该第二热换管的下方,其中收集于该第二集水盆中的冷却水设置成依次流过该第二热换管和该第二填充材料单元的外表面;
一底部集水盆,其设置于该第二冷却单元的下方,用于收集来自该第二冷却单元的冷却水;
收集在该底部集水盆中的冷却水设置成引导回流到该第一冷却单元的第一集水盆,预定量的制冷剂设置成循环流过该压缩机,该热换器和该蒸发式冷却系统之间,来自该热换器的制冷剂设置成流经该第一冷却单元的第一热换管和该第二冷却单元的第二热换管,使该制冷剂被预设为与冷却水进行高效的热交换过程,从而降低制冷剂的温度,一预定量的空气从该进气口侧抽进,使空气与流过该第一填充材料单元和该第二填充材料单元的冷却水进行热交换,从而降低冷却水的温度,该空气从该冷却水吸收热能后通过该出气口侧排出该第一填充材料单元和该第二填充材料单元之外;和
一个设置在该塔壳内的离心风扇,用于抽吸空气由该进气口侧流向该出气口侧。
本发明的另一方面是提供一种用于多效蒸发式冷凝器的集水盆,其包括:
一盆内构件,该盆内构件包括一内侧壁,从该内侧壁延伸的内底壁,和由该内底壁延伸的引导壁,以使该内底壁于该内侧壁和该引导壁之间延伸;和
一第一盆外构件,该盆外构件包括一外侧壁,设置在该内底壁下方并从该外侧壁延伸的外底壁,从而构成该盆外构件的大致l形横截面,该外侧壁的高度大于该引导壁的高度,该集水盆具有多个通孔间隔设置在该外底壁。
附图说明
图1是传统的分体式空调机组。
图2是根据本发明优选实施例的空调塔机的透视图。
图3是根据本发明优选实施例的空调塔机的透视图,示出空调塔机的内部结构。
图4是根据本发明优选实施例的空调塔机的后视图,示出了从空调塔机的后侧观察时的空调塔机的塔壳结构。
图5a是根据本发明优选实施例的空调塔机的第一冷却单元和第二冷却单元的第一示意图。
图5b是根据本发明优选实施例的空调塔机的第一冷却单元和第二冷却单元的第二示意图。
图6是根据本发明优选实施例的空调塔机的多个热换管的示意图。
图7是图2的空调塔机的截面图。
图8是图3的空调塔机的截面图。
图9是根据本发明优选实施例的空调塔机的示意图,示出制冷剂如何流过空调塔机的每个部件。
图10是根据本发明优选实施例的空调塔机的示意图,示出如何安装空调塔机。
图11是根据本发明优选实施例的空调塔机的热交换管的截面图。
具体实施方式
以下本发明较佳实施例的说明是本发明实施时的较佳方式,并不对本发明构成任何限制。本发明较佳实施例的说明只是作为本发明一般原理的说明。
如图2至图4,图5a,图5b和图6至图11,是本发明优选实施例的空调塔机。广义来说,空调塔机包括一塔壳10,一具有压缩机出口21和压缩机进口22的压缩机20,一具有热换器出口31和热换器进口32热换器30,一蒸发式冷却系统400,和一离心风扇50。预定量的制冷剂在这些部件之间循环,优选通过下面说明的连接管或热换管在这些部件之间循环。
塔壳10具有一前部103,一后部104,一第一侧部105,一相对第一侧部105的第二侧部106和一收容腔108。压缩机20是设置在塔壳10的的收容腔108中。
热换器30设置在塔壳10的收容腔108中并连接到压缩机20。热换器30延伸穿过塔壳10的前部103,第一侧部105和第二侧部106。热换器30位于蒸发式冷却系统400的前方。
蒸发式冷却系统400包括至少一个多效蒸发式冷凝器40,其设置在塔壳10的第一侧部105和第二侧部106中的至少一。多效蒸发式冷凝器40具有进气口侧41和相对的出气口侧42,并且包括泵送装置43,一第一冷却单元6,一第二冷却单元7和一底部集水盆46。
泵送装置43设置在塔壳10的底板102上并且适用于以预定流速泵送预定量的冷却水。
第一冷却单元6包括一第一集水盆61,多条第一热换管62和一第一填充材料单元63。第一集水盆61用于收集由泵送装置43泵送的冷却水。多条第一热换管62连接热换器30并浸在第一集水盆61中。预定量的制冷剂在热换器30和第一热换管62之间循环。第一填充材料单元63设置在第一热换管62的下方,其中收集在第一集水盆61中的冷却水被设置为依次流过第一热换管62和第一填充材料单元63的外表面。
第二冷却单元7包括一第二集水盆71,多条第二热换管72和一第二填充材料单元73。第二集水盆71设置于第一冷却单元6的下方,用于收集沿自第一冷却单元的冷却水。多条第二热换管72连接热换器30并浸在第二集水盆71中。第二填充材料单元73设置在第二热换管72的下方,其中收集在第二集水盆71中的冷却水被设置为依次流过第二热换管72和第二填充材料单元73的外表面。
底部集水盆46设置位于最低冷却单元(在此实例中为第二冷却单元7)的下方,用于收集来自第二冷却单元7的冷却水。
收集在底部集水盆46中的冷却水设置成引导回流到第一冷却单元6的第一集水盆61。同时,预定量的制冷剂设置成循环流过压缩机20,热换器30和蒸发式冷却系统400之间。来自热换器30的制冷剂设置成流经第一冷却单元6的第一热换管62和第二冷却单元7的第二热换管72,使制冷剂被预设为与冷却水进行高效的热交换过程,从而降低制冷剂的温度。预定量的空气从进气口侧41抽进,使空气与流过第一填充材料单元63和第二填充材料单元73的冷却水进行热交换,从而降低冷却水的温度。空气从冷却水中吸收热能后通过出气口侧42排出第一填充材料单元63和第二填充材料单元73之外。
因此,塔壳10还具有至少一个侧部开口109,其连通进气口侧41与塔壳10的外部。
离心风扇50设置在塔壳10中,用于抽吸空气由进气口侧41流向出气口侧42。因此,塔壳10可具有后部开口1091,其连通出气口侧42与塔壳10的外部。
根据本发明的优选实施例,塔壳10包括顶板件101,底板件102,设置在前部103的前板件1031,设置在后部104的后板件1041,设置在第一侧部105的第一侧板1051,以及设置在第二侧部106的第二侧板1061。收容腔108在顶板件101,底板件1021,前板件1031,后板件1041,第一侧板1051和第二侧板1061之间构成。
如图2至图4所示,蒸发式冷却系统400可以包括两个分别容纳在塔壳10的两个侧部105,106处的多效蒸发式冷凝器40。塔壳10具有大致矩形的横截面形状。
然而,重要的是要指出,多效蒸发式冷凝器40的具体布置可以根据空调塔机的操作环境而变化。
如图4所示,示出两个多效蒸发式冷凝器40。每个多效蒸发式冷凝器40实际上包括多个冷却单元(除了上述的第一冷却单元6和第二冷却单元7之外),其位于第一集水盆61和底部集水盆46之间。图3和图4示出了第三冷却单元8可以设置在第二冷却单元的下方。
如图2中所示,塔壳10还具有一回气进口11,一输气出口12和设置在塔壳10的前板件1031上的控制面板13。此外,塔壳10还可具有一冷却水入口14设置于第一侧板1051和第二侧板1061中之一。
对于每一个多效蒸发式冷凝器40,泵送装置43可以定位在塔壳10的底板件102中,并且通过一水管45连接到第一集水盆61。
根据本发明的优选实施例,每个多效蒸发式冷凝器40包括第一至第三冷却单元6,7,8。冷却单元的数量取决于空调塔机操作的环境情况。
当冷却水通过一个冷却单元时,其温度布置为通过从相关热换管吸收热能而增加,并且通过将热能提取到环境空气而被降低一预定的温度梯度(这称为冷却水的一个“温度冷却效果”),因此如果冷却水通过三个冷却单元6,7,8,则多效蒸发式冷凝器40对冷却水总共有三个温度效应,这是因为冷却水被热换管加热三次,并在相关填充材料单元中被环境空气冷却三次。如图4中所示,第三冷却单元8包括一第三集水盆81,多个浸入第三集水盆81中的第三热换管82和设置在第三集水盆81下方的第三填充材料单元83。
如图5a所示,第一集水盆61具有一第一热换室610和包括一第一盆内构件611和一第一盆外构件612。第一盆内构件611包括一第一内侧壁6111和一从第一内侧壁6111延伸的第一内底壁6112,以构成第一盆内构件611的大致l形横截面。第一盆内构件611还包括一由第一内底壁6112延伸的第一引导壁6113,以使第一内底壁6112于第一内侧壁6111和该第一引导壁6113之间延伸。而且,第一盆内构件611具有一连接到相对泵送装置43的第一进水口6114,以使来自底部集水盆46的冷却水能够通过第一进水口6114泵送到第一集水盆61。第一热换管62设置在第一盆内构件611内。第一盆内构件611还包括一于第一内侧壁6111间隔开的位置处从第一内底壁6112向上延伸的内隔壁6115。第一进水口6114在第一盆内构件611的底侧并于第一内侧壁6111和内隔壁6115之间构成。
另一方面,第一盆外构件612包括一第一外侧壁6121和一从第一外侧壁6121延伸的第一外底壁6122,以构成第一盆外构件6121的大致l形横截面。如图5a所示,第一外侧壁6121的高度大于第一引导壁6113的高度。同样地,第一内侧壁6111的高度大于内隔壁6115的高度。第一热换管62设置在内隔壁6115和第一引导壁6113之间形成的空间内。
第一集水盆61还包括一第一分流板件613,其设置在第一盆内构件611中并位于第一热换管62的上方的位置,用于转移冷却水的水流动路线。第一分流板件613的定位是使预定数量的热换管62位于第一分流板件613的一侧,而余下的第一热换管62则位于第一分流板件613的另一侧。
冷却水首先通过第一进水口6114进入第一集水盆61。冷却水然后通过在第一内侧壁6111和内隔壁6115之间形成的空间。然后冷却水流过内分隔壁6115并且与位于第一分流板件613的一侧处的第一热换管62接触。第一分流板件613阻挡并转移所有冷却水通过,因此迫使所有的冷却水朝向第一内底壁6112流动并且与位于第一分流板件613的另一侧处的那些第一热换管62接触。
换句话说,第一分流板件613将第一热换管62分成两组,其中一组位于第一分流板件613的一侧,另一组位于第一分流板件613的另一侧。第一分流板件613转移全部冷却水随后流过一组第一热换管62,然后再流过另一组第一热换管62。每组中的第一热换管62的数量可以根据本发明的操作环境情况而改变和确定。
在流过第一组的第一热换管62之后,冷却水被引导沿第一内底壁6112流动并且穿过位于第一分流板件613的另一侧的第一热换管62(第二组)。当冷却水填满内隔壁6115与第一引导壁6113之间构成的空间时,冷却水然后流过第一引导壁6113的顶部,并且流过在第一引导壁6113与第一外侧壁6121之间构成的通道,并最终到达位于第一内底壁6112下方的第一外底壁6122。
第一集水盆61还可以具有多个第一通孔6123,其间隔设置在第一外底壁6122上,使冷却水通过第一通孔6123流到第一填充材料单元63。
如图5a所示,第一冷却单元6还可包括一设置在第一填充材料单元63下方的第一导向托盘64,和一设置在第一导向托盘64下方用于引导来自第一填充材料单元63的冷却水的流动路径的第一导向板件65。具体来说,第一导向托盘64具有多个第一引导孔641设置在其上,其中,来自第一填充材料单元63的冷却水被布置成均匀地穿过第一引导孔641。第一导向板件65可包括一第一板件651和一由第一板件651的一端向上延伸的第一挡件652。第一板件651的另一端是自由端。第一导向板件65可以安装在第一导向托盘64下方,使得在导向板件65上流动的冷却水仅能通过第一板件651的自由端流入到第二冷却单元7中。冷却水到达第一挡件652后将被阻挡而流向第一板件651的自由端。
除了不包括内隔壁6115之外,第二集水盆71的构造类似于第一集水盆61的构造。如图5a所示,第二集水盆71具有一第二热换室710和包括一第二盆内构件711和一第二盆外构件712。第二盆内构件711包括一第二内侧壁7111和一从第二内侧壁7111延伸的第二内底壁7112,以构成第二盆内构件711的大致l形横截面。第二盆内构件711还包括一由第二内底壁7112延伸的第二引导壁7113,以使第二内底壁7112于第二内侧壁7111和该第二引导壁7113之间延伸。而且,第二盆内构件711具有一第二进水口7114,以使来自第一冷却单元6的冷却水能够流到第二集水盆71。第二热换管72设置在第二盆内构件711内。第二进水口7114在第二盆内构件711的顶侧构成。
另一方面,第二盆外构件712包括一第二外侧壁7121和一从第二外侧壁7121延伸的第二外底壁7122,以构成第二盆外构件712的大致l形横截面。如图5a所示,第二外侧壁7121的高度大于第二引导壁7113的高度。第二热换管72设置于第二内侧壁7111和第二引导壁7113之间形成的空间内。
第二集水盆71还包括一第二分流板件713,其设置在第二盆内构件711中并位于第二热换管72的上方的位置,用于转移冷却水的水流动路线。第二分流板件713的定位是使预定数量的热换管72位于第二分流板件713的一侧,而余下的第二热换管72则位于第二分流板件713的另一侧。
冷却水首先通过第二进水口7114进入第二集水盆71。然后冷却水与位于第二分流板件713的一侧处的第二热换管72接触。第二分流板件713阻挡并转移所有冷却水通过,因此迫使所有的冷却水朝向第二内底壁7112流动并且与位于第二分流板件713的另一侧处的那些第二热换管72接触。
换句话说,第二分流板件713将第二热换管72分成两组,其中一组位于第二分流板件713的一侧,另一组位于第二分流板件713的另一侧。第二分流板件713转移全部冷却水随后流过一组第二热换管72,然后再流过另一组第二热换管72。每组中的第二热换管72的数量可以根据本发明的操作环境情况而改变和确定。
在流过第二组的第二热换管72之后,冷却水被引导沿第二内底壁7112流动并且穿过位于第二分流板件713的另一侧的第二热换管72(第二组)。当冷却水填满第二内侧壁7111和第二引导壁7113之间构成的空间时,冷却水然后流过第二引导壁7113的顶部,并且流过在第二引导壁7113与第二外侧壁7121之间构成的通道,并最终到达第二外底壁7122,即第二内底壁7112下方的位置。
第二集水盆71还可以具有多个第二通孔7123,其间隔设置在第二外底壁7122上,使冷却水通过第二通孔7123流到第二填充材料单元73。
如图5b所示,第二冷却单元7还可包括一设置在第二填充材料单元73下方的第二导向托盘74,和一设置在第二导向托盘74下方用于引导来自第二填充材料单元73的冷却水的流动路径的第二导向板件75。具体来说,第二导向托盘74具有多个第二引导孔741设置在其上,其中,来自第二填充材料单元73的冷却水被布置成均匀地通过第二引导孔741流过第二导向托盘74。第二导向板件75可包括一第二板件751和一由第二板件751的一端向上延伸的第二挡件752。第二板件751的另一端是自由端。第二导向板件75可以安装在第二导向托盘74下方,使得在导向板件75上流动的冷却水仅能通过第二板件751的自由端流入到第二冷却单元7中。冷却水到达第二挡件752后将被阻挡而流向第二板件751的自由端。
第三冷却单元8的第三集水盆81在结构上与第二冷却单元7的第二集水盆71相同。
如图11所示,每条第一热换管62包括一第一管体621,多件间隔设置于第一管体621的第一保持构件622,和多件由第一管体621的内表面624延伸的第一热换翅片623。具体来说,第一管体621具有两个弯曲侧部625和在两弯曲侧部625之间延伸的大至平坦的中间部分626,以使在中间部分626构成矩形横截面形状,并在第一热换管62的两弯曲侧部625构成两个半圆横截面形状。
此外,第一保持构件622沿对应的第一管体621的横向方向间隔分布在中间部分626,以构成多个第一管腔627。每个第一保持构件622具有预定弹性,用于增强相应第一热换管62的结构整体性。另一方面,每个第一热换翅片623从第一管体621的内表面延伸。第一热换翅片623是沿第一管体621的内表面624间隔均匀分布,用于提高流经对应的第一热换管62的热换流体与冷却水之间的热换性能。
另一方面,第二热换管72在结构上与第二热换管72相同。如图11所示,每条第二热换管72包括一第二管体721,多件间隔设置于第二管体721的第二保持构件722,和多件由第二管体721的内表面724延伸的第二热换翅片723。具体来说,第二管体721具有两个弯曲侧部725和在两弯曲侧部725之间延伸的大致平坦的中间部分726,以使在中间部分726构成矩形横截面形状,并在第二热换管72的两弯曲侧部725构成两个半圆横截面形状。
此外,第二保持构件722沿对应的第二管体721的横向方向间隔分布在中间部分726,以构成多个第二管腔727。每个第二保持构件722具有预定弹性,用于增强相应第二热换管72的结构整体性。另一方面,每个第二热换翅片723从第二管体721的内表面延伸。第二热换翅片723是沿第二管体721的内表面724间隔均匀分布,用于提高流经对应的第二热换管72的热换流体与冷却水之间的热换性能。
值得一提的是,当多效蒸发式冷凝器400包括多个冷却单元时,例如上述第一至第三冷却单元6,7,8,第三热换管82在结构上与上述第一热换管62和第二热换管72相同。
根据本发明的优选实施例,每一条第一至第三热换管62,72,82是由铝构成,其可以非常方便和经济地再循环和再使用。为了使热换管抵抗腐蚀和不需要的氧化,每条热换管62,72,82具有在其外表面和内表面上的薄氧化层,以防止对应热换管的进一步腐蚀。薄氧化层可以通过阳极氧化法来形成。
而且,每条热换管62,72,82还可以具有一层在其外表面及/或内表面上形成的聚四氟乙烯薄层,以防止不需要的物质附着在热换管62,72,82的外表面上。
如图6所示,示出了第一热换管62和第二热换管72并联连接。结果,热换流体进入相关的多效蒸发式冷凝器40并同时通过第一至第三热换管62,72,82。在通过每一条第一至第三热换管62,72,82后,热换流体的温度将大大降低,然后热换流体被布置成离开多效蒸发式冷凝器40。
如图6所示,第一冷却单元6还包括一连接第一热换管62的第一引导系统66,以将第一热换管62分成多个管组以引导制冷剂以预定顺序流过各管组。
具体来说,第一引导系统66包括一在第一热换管62的外端之间延伸的第一进口收集管661,以及一在第一热换管62的内端之间延伸的第一引导管662。注意的是,第一进口收集管661和第一引导管662基本是彼此平行。第一引导系统66还可以包括设置在第一进口收集管661中的第一隔件663,用于阻挡制冷剂穿过第一隔件663。因此,第一隔件663将第一进口收集管661分成第一进口部分6611和第一出口部分6612。
如图5a和图6所示,在第一冷却单元6中有八个第一热换管62。八个热换管62被分成两个管组,其中每个管组包含四个热换管62,其在第一进口收集管661和第一引导管662之间延伸。
来自压缩机20的制冷剂布置成通过进口收集管661的第一进口部分6611进入四条第一热换管62(一组第一热换管)。然后制冷剂布置为流过对应的第一热换管62并且如上所述地与冷却水进行热交换。之后,制冷剂布置成进入第一引导管662并流入另外四条第一热换管62(第二组的第一热换管62)。之后,制冷剂被引导流入第一进口收集管661的第一出口部分6612并离开第一冷却单元6。
另外,第一引导系统66还包括多件在每两相邻的第一热换管62之间延伸的第一热换翅片623,用于大大增加第一热换管62与冷却系统之间的热交换表面面积,并且用于增强第一引导系统66的结构完整性。这些第一热换翅片623可以从第一热换管62的外表面一体延伸出来,或者是外部附接或焊接在第一热换管62的外表面上。
同样地,第二冷却单元7还包括一连接第二热换管72的第二引导系统76,以将第二热换管72分成多个管组以引导制冷剂以预定顺序流过各管组。
具体来说,第二引导系统76包括一在第二热换管62的外端之间延伸的第二进口收集管761,以及一在第二热换管72的内端之间延伸的第二引导管762。注意的是,第二进口收集管761和第二引导管762基本是彼此平行。第二引导系统76还可以包括设置在第二进口收集管761中的第二隔件763,用于阻挡制冷剂穿过第二隔件763。因此,第二隔件763将第二进口收集管761分成第二进口部分7611和第二出口部分7612。
如图5a和图6所示,在第二冷却单元7中有八个第二热换管72。八个热换管72被分成两个管组,其中每个管组包含四个热换管72,其在第二进口收集管761和第二引导管762之间延伸。
来自热换器20的制冷剂布置成通过进口收集管761的第二进口部分7611进入四条第二热换管72(一组第二热换管72)。然后制冷剂布置为流过对应的第二热换管72并且如上所述地与冷却水进行热交换。之后,制冷剂布置成进入第二引导管762并流入另外四条第二热换管72(第二组的第二热换管72)。之后,制冷剂被引导流入第二进口收集管761的第二出口部分7612并离开第二冷却单元7。
另外,第二引导系统76还包括多件在每两相邻的第二热换管72之间延伸的第二热换翅片723,用于大大增加第二热换管72与冷却系统之间的热交换表面面积,并且用于增强第二引导系统76的结构完整性。这些第二热换翅片723可以从第二热换管72的外表面一体延伸出来,或者是外部附接或焊接在第二热换管72的外表面上。
重要的是,上述第一引导系统66,第二引导系统76,第一热换管62,第二热换管72以及管组的数目的设定是仅用于说明用途,实际上可以根据操作本发明的情况而变化。
如图2,图3,图7至图9所示,本发明的空调塔机是用于在室内空间中提供空气调节。空调塔机可以嵌入在室内空间的墙壁80中。与传统的分体式空调机组不同,空调塔机不需要室内空调机组和室外压缩机组。塔壳10还包括分隔件60构设在塔壳10中,用于将整个收容腔108分成第一部分1081和第二部分1082。第一部分1081是由分隔件60的后侧602和塔壳10的后板件1041之间所设定的空间。第二部分1082是由分隔件60的前侧601和塔壳10的前板件1031之间所设定的空间。如图8所示,蒸发式冷却系统400(除了泵送装置43),离心风扇50和两个冷却风扇51位于塔壳10的第一部分1081中。另一方面,热换器30,压缩机20和泵送装置43位于塔壳10的第二部分1082。
空调塔机还包括一支撑于热换器30相邻位置上的除湿装置90,用于为输送到室内空间的空气提供除湿效果,和一连接于热换器30和蒸发式冷却系统400之间的辅助冷却装置。辅助冷却装置901支撑于塔壳10中。除湿装置90并联连接到热换器30。空调塔机还包括一连接在压缩机21和除湿装置90之间的控制阀,用于选择性地控制制冷剂从压缩机20到除湿装置90的流动。
如图9所示,示出了制冷剂的流动路径。处于其过热状态的制冷剂通过压缩机20输送并流入蒸发式冷却系统400的第一冷却单元6,第二冷却单元7和第三冷却单元8。制冷剂布置成与冷却水进行热交换(如上所述)并且被蒸发式冷却系统400冷却并冷凝。冷凝的制冷剂被布置成离开蒸发式冷却系统400并进入辅助冷却装置901以进一步冷却。然后,制冷剂布置成离开辅助冷却装置901,经过过滤器902,膨胀阀903并且通过热换器进口32进入热换器30。热换器30中的制冷剂布置成与进入的空气进行热交换并从其吸收热能。然后,制冷剂再次蒸发并通过热换器出口31离开热换器30。离开热换器30的制冷剂布置成通过压缩机进口22流回到压缩机20。这就完成了制冷剂的一个热交换循环。
空调塔机还包括一设置在塔壳上的加湿传感器100,用于感测室内空间中的空气湿度。当室内空间中的湿度达到一预定阈值时,控制阀904被启动以使从压缩机进口21排出的预定量制冷剂进入除湿装置90。制冷剂向通过除湿装置90的空气释放热能,并从通过的空气中抽取水分。制冷剂然后被冷凝并被引导离开除湿装置90,经过膨胀阀903并与来自辅助冷却装置901的制冷剂汇合。汇合后液态的制冷剂布置成进入热换器30,并且从通过其中的空气吸收热能。然后,制冷剂如以上述方式被引导回压缩机20。
如图10所示,本发明的空调塔机可以安装在墙壁80上。塔壳10还可以包括外壳体160和支撑壳体15支撑所有上述的空调塔机的部件,以及连接到支撑壳体15的底部的多个轮子161。支撑壳体15可以滑动式连接到外壳体160。当它滑出外壳体160时,全部空调塔机的部件都可以方便且容易地维护或修理。
可以理解的是,本发明的特征在于空调塔机可以容易地安装在房屋中。空调塔机不需要具有用于将塔壳10安装到墙壁80的任何安装装置。对于本发明的使用者而言,仅需要在墙壁80上形成开口,然后将空调塔机安在墙壁80的适当位置。
如图2和图8所示,当使用空调塔机时,只有前板件1031和塔壳10的第一侧板1051和第二侧板1061的一小部分是暴露于室内空间的。这样,冷空气将通过输气出口12输送到室内空间。室内空间中的空气布置为通过回气进口11进入塔壳10。一些室内空气被引导到通过在后板件104上形成的后板件开口1042排出周围环境。塔壳10还具有两个分别设置在第一侧板1051和第二侧板1061上的新鲜气源进口16。另一方面,热换器具有一热换器前部33和两个从热换器前部33的两侧延伸的热换器侧部34,其中两个热换器侧部34分别对应新鲜气源进口16而定位。因此,来自周围环境的新鲜空气被引导通过新鲜气源进口16进入塔壳10,并被布置成在热换器30中执行热交换。然后环境空气的温度将降低并通过输气出口12被输送到室内空间。
重要的是,需要强调本发明的空调塔机是可以与传统的中央空调单元区分开的,因为本发明不需要额外的管道网络来将冷空气输送到室内空间。本发明可以通过输气出口12将冷空气直接输送到室内空间。
本发明虽然根据优选实施例和若干备选方案进行说明和描述,但本发明不会被在本说明书中的特定描述所限制。其他另外的替代或等同组件也可以用于实践本发明。