智能环境控制机的制作方法

文档序号:30763719发布日期:2022-07-15 22:13阅读:170来源:国知局
智能环境控制机的制作方法

1.本实用新型涉及环境控制技术领域,具体涉及一种智能环境控制机。


背景技术:

2.目前电气设备或室内(房间或预制舱内)(以下简称电气设备)需要环境控制的原因包括以下几点:
3.1、散热的需求:需要把设备内部温度控制器设备或标准要求的温度以下,防止过高温造成设备停机或烧坏;
4.2、保温的需求:电气设备内的电气、电子装置,通常工作的温度需要》-10℃(根据特例设备可调整),大气温度≦-10℃(根据特例设备可调整),就应该保温防止温度低于电气、电子装置要求的温度;
5.3、防低温的需求:大气温度极低的苛刻天气,需要启动主动加热,来防低温,保证电气设备内的最低温度要求;
6.4、除湿的需求:电气设备温差变化及大气潮湿状况变化,均能造成电气设备内部潮湿凝露,造成隐患或故障,因此需要除湿防凝露;
7.5、防尘的需求:灰尘进入到电气设备内部,造成积累,造成电气、电子装置散热快速下降,从而热量不能散热而过温、烧毁;
8.6、节能、降低碳排放的需求;电气设备,散热所用空调耗能高,防低温所用加热器耗能高,除湿所用除湿机或加热器耗能高;
9.7、危害气体的控制需求:危害气体,如沼气(电缆够内腐殖质产生的沼气)、氢气(新能源电池储能设备电池充放电过程产生氢气)等等,在保温状况下,仍然需要检测和排出这些危害气体,保障电气设备的运行安全综上原因,电气设备需要一种电气设备内外气流交换式的新设备,既可以通风散热、散危害气体,还能适时关闭用以保温,还能主动加热,还能除湿和防尘的环控装置;
10.8、智能化的管控维系统;
11.9、便于安装和成本低。
12.现有的对电气设备进行内部环境(也称)进行管控的设备或系统,分为两大类型:
13.一、密闭隔离型
14.密闭隔离型的内外的空气是隔离的,没有对流,主要代表设备有空调(如中央空调、工业空调和机柜空调等)和除湿机,主要原因其压力是利用压缩机的热工原理进行制冷散热的。
15.1.空调
16.优点:功能齐全;
17.缺点:
18.1)能耗高
19.1.1)制冷散热能耗高:作为散热功能使用时,工业空调标称散1kw的发热功率,需
要0.5kw(按照常规的工业空调能效等级2,例如国际著名工业空调品牌德国百能堡的工业空调参数)的耗电量,散(散热量)耗(耗电量)比为2;在当前双碳目标下,已经严重不符合节能降碳的控制目标了;
20.1.2)除湿能耗高:空调除湿的原理是将常温空气吸入进空调,在压缩机制冷下,将吸入的空气降温直至到吸入空气中水蒸气凝结成水排出,来除湿,除湿量小,能耗高,通常一小时除湿量约150ml的工业空调耗电量1.5kw;
21.2)环控性能差,达不到电气设备内部环境的标准需求
22.2.1)高温天气时,制冷散热能力差,达不到标准要求,原因是空调是吸入电气设备内需要冷却热量,再通过压缩机压缩将含有这些热量的空气压缩升温到比电气设备外部大气温度高出≧10℃的温度来将热量散到大气中;
23.大气温度≦30℃时,空调容易制冷散热,但大气温度》30℃时,压缩机需要将需要散热的空气压缩升温到≧40℃,才能有效散热,但是空调外机在持续热源下,形成一个由空调外机为中心的热岛,温度由热岛中心到四周温度递减到大气温度30℃,这样散热能力就进一步下降,能耗也随之升高,通常造成电气设备内部温度超过了标准要求。
24.在一个典型的实施例中,某电气设备室内的电气设备发热量约90kw,配置4台大型空调制冷散热,每台空调制冷量26kw,4台空调的制冷量约104kw,耗电量总约40kw,即该电气设备室制冷量均约104kw。理论上制冷量大于发热量,温度应该能控制在比大气温度低,但实际上不能将温度控制在标准要求的温度以下,具体一次的现场勘察日期2021年7月8日15:30左右,当天当地室外大气温度29℃,该电气设备室内温度40℃,对应温升11k,夏季该地区温度能达到34℃以上,那么在室外温度达到34℃时,svg对应的室内温度分别为45℃和50℃,这样设备就存在过温的安全隐患了。
25.2.2)低温天气时,制热能力达不到技术要求
26.空调在大气低温状况下,制热能力差,大气温度≦0℃时,制热能力大幅下降,大气温度≦-20℃时,就几乎丧失了制热能力,而该温度以下恰应该加强制热的工况,却不能工作,因此达不到标准要求。
27.3)不能排出电气设备(电气室)内的危害气体,原因是空调是内气流和外气流隔离的设备,因此,不能将电气设备(电气室)的危害气体有效排出去,因此不适用于危害气体产生的工况。
28.2.除湿机方案
29.除湿机只具备除湿能能,不具有散热、保温和防低温的功能。
30.3.中央空调
31.中央空调用于楼宇和厂房等建筑,不能用于电气设备或电气室,同时也不满足电气设备的需求,主要是:
32.1)体积庞大,不能装在电气设备上;
33.2)价格太高,比电气设备的价格还高,没有经济实用性;
34.3)能耗高,原因同工业空调;
35.4)大气高温时,散热能力差,原因:中央空调用于内部几乎无热源的工况,热源就是人体的发热和电脑的发热,而工业中电气设备,发热量大且体积小,大气高温时,无法满足电气设备的技术需求;大气温度低时,也就不用空调散热了;
36.5)大气低温时,制热能力差,原因同工业空调;
37.6)没有除湿功能,没有且也没法配置除湿装置;
38.7)不能排危害气体,原因是中央空调是内外气流隔离的系统,因此危害气体不能排出电气设备;
39.8)没有适用于电气设备的智能控制。
40.二、开放对流型
41.开放对流型内外空气不是隔离的,可以自动或在强迫风冷状况下,主要代表设备或产品有风窗、过滤风扇、新风系统。
42.1.过滤风扇方案:
43.过滤风扇主要对电气设备进行通风散热。
44.优点:能耗低,散热量4kw,对应功耗0.13kw,散耗比约30,远远大于空调,有效节能,降低碳排放;具有防尘性能,解决通风时,灰尘隐患。
45.缺点:
46.1)不能保温,原因是过滤风扇属于气流交换式散热,因此即使安装过滤材料,但空气仍可内外流动,这样,在低温大气环境下,冷气从过滤风扇进入电气设备,从而不能保温,不能满足技术需求;
47.2)不能防低温,原因是过滤风扇没有加热装置,这样在苛刻低温环境下,不能对电气设备加热以防低温;
48.3)不能除湿,因为不能配置除湿装置。
49.2.新风系统
50.新风系统,能够通风散热,其对应缺点如下:
51.1)风量小,即散热能力低,不能满足电气设备散热量的需求,原因是新风系统面向的是楼宇,即家用、办公楼用、商业楼用;
52.2)不能保温,原因新风系统属于内外空气交流系统,极端户外低温状况下,不能满足使用;
53.3)不能除湿,因为没有除湿装置和对应除湿的控制。
54.综上目前的各种方案均不满足目前电气设备(电气室)的运行环境标准的需要,主要是由于新能源发电和5g通信快速建设,导致大量电气设备均放置户外,因此对电气设备内环境就要求越来越严格,而现在却没有能解决这一问题的对应产品或解决方案。
55.另外,双碳目标状况下,也没有一款节能降碳的产品来解决户外电气设备内运行环境的需求。
56.目前过高温、灰尘、潮湿和低温造成面积的户外电气设备的故障频发,甚至着火,为了保障运行稳定和安全亟需这种环控机以低碳排放和节能的性能来解决这些问题。


技术实现要素:

57.为此,本实用新型实施例提供一种智能环境控制机,以解决现有技术存在的各种方案均不能满足目前电气设备运行环境标准需要的问题。
58.为了实现上述目的,本实用新型实施例提供如下技术方案:
59.一种智能环境控制机,包括壳体,所述壳体上设有风窗,所述壳体内位于所述风窗
后面设置有风阀和风机,所述风阀包括风挡,所述风挡能可控的开或闭。
60.进一步的,所述风阀和所述风机之间设有风道构建装置,所述风道构建装置内设有内外气流风道分隔装置,所述内外气流风道分隔装置将风道分为外气流通道和内气流通道。
61.进一步的,所述壳体内还设有控制器,所述风阀还包括风挡驱动器,所述风阀与所述风挡驱动器传动连接,所述风机和所述挡驱动器分别与所述控制器电连接。
62.进一步的,所述风道构建装置内还设有加热器,所述加热器设置在内、外气流通道共用处与所述控制器电连接。
63.进一步的,所述风道构建装置内还设有气流参数传感器,所述气流参数传感器与所述控制器电连接。
64.进一步的,所述控制器上还设有用于通信的通信装置。
65.进一步的,所述控制器上还设有用于驱动风机反转的反转模块。
66.进一步的,还包括危害气体传感器,所述危害气体传感器安装在电气设备或室内与所述控制器电连接。
67.进一步的,还包括外部传感器,所述外部传感器安装在所述壳体外与所述控制器电连接。
68.进一步的,还包括内部传感器,所述内部传感器安装在电气设备或室内与所述控制器电连接。
69.进一步的,所述风窗上设有过滤器。
70.进一步的,还包括安装部件,所述安装部件设置在所述壳体外。
71.本实用新型至少具有以下有益效果:本实用新型提供一种智能环境控制机,包括壳体,壳体上设有风窗和外部传感器,壳体内位于风窗后面依次设置有风阀和风机,风阀和风机之间设有风道构建装置和安装板,风道构建装置内设有内外气流风道分隔装置、加热器和气流参数传感器,内外气流风道分隔装置将风道分为外气流通道和内气流通道,加热器设置在内、外气流通道共用处,壳体内还设有控制器,风阀包括风挡驱动器,外部传感器、风机、风挡驱动器、加热器和气流参数传感器均与控制器电连接;本实用新型提供的智能环境控制机解决了目前各类电气设备因大气环境变化、内部电气和电子装置运行变化等原因造成的电气和电子装置故障频发,甚至烧毁的问题。
附图说明
72.为了更清楚地说明现有技术以及本实用新型,下面将对现有技术以及本实用新型实施例描述中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是示例性的,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图引申获得其它的附图。
73.本说明书所绘示的结构、比例、大小等,均仅用以配合说明书所揭示的内容,以供熟悉此技术的人士了解与阅读,并非用以限定本实用新型可实施的限定条件,任何结构的修饰、比例关系的改变或大小的调整,在不影响本实用新型所能产生的功效及所能达成的目的下,均应仍落在本实用新型所揭示的技术内容能涵盖的范围内。
74.图1为本实用新型实施例提供的智能环境控制机整体结构示意图一;
75.图2为本实用新型实施例提供的智能环境控制机整体结构示意图二;
76.图3为本实用新型实施例提供的智能环境控制机内部结构示意图一;
77.图4为本实用新型实施例提供的智能环境控制机内部结构示意图二;
78.图5为本实用新型实施例提供的智能环境控制机配套使用结构示意图。
79.附图标记说明:
80.1-壳体;2-风窗;3-外部传感器;4-安装部件;5-托架;6-风机;7-风道构建装置;8-控制器;9-安装板;10-风挡驱动器;11-气流参数传感器;12-风阀;13-加热器;14-内外气流风道分隔装置;101-电气设备;102-第一智能环境控制机;103-第二智能环境控制机。
具体实施方式
81.为了使本技术的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本技术进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本技术,并不用于限定本技术。
82.在本实用新型的描述中,除非另有说明,“多个”的含义是两个或两个以上。本实用新型的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”“第四”等(如果存在)旨在区别指代的对象。对于具有时序流程的方案,这种术语表述方式不必理解为描述特定的顺序或先后次序,对于装置结构的方案,这种术语表述方式也不存在对重要程度、位置关系的区分等。
83.此外,术语“包括”、“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包括了一系列步骤或单元的过程、方法、系统、产品或设备不必限于已明确列出的那些步骤或单元,而是还可包含虽然并未明确列出的但对于这些过程、方法、产品或设备固有的其它步骤或单元,或者基于本实用新型构思进一步的优化方案所增加的步骤或单元。
84.本实用新型提供一种智能环境控制机(可以简称为“环控机”),是一种安装在电气设备或室内(房间内、预制舱内)(以下简称电气设备)上,用于电气设备内部环境(也称微环境)的管控,如通风散热、保温和加热防低温、除湿、排危害气体和防灰尘进入以及智能化自动控制和数据管理的设备或产品,用以解决目前各类电气设备所遇到的大气环境变化、内部电气和电子装置运行变化而带来的不良内部环境对电气和电子装置造成故障频发,甚至烧毁的难题。
85.环控机也是一种将不确定的大气环境和电气设备运行产生的不确定的对电气设备运行造成危害的变量,变成对电气设备运行稳定的良好的环境参数,保障电气设备安全、稳定运行,助力智能电网和各类智能电相关设备或系统稳定、可靠运行。
86.请参阅图1至图4,本实用新型提供一种智能环境控制机,具体包括壳体1,壳体1上设有风窗2和外部传感器3,风窗2是外气流的进口或出口,其具有防雨功能,风窗2可配置过滤器,实现防固体物进入电气设备内部的功能,是环控机的外部防护等级ip65,完全超越了空调防护等级ip54,可在性能上替换空调;壳体1内位于风窗2后面依次设置有风阀12和风机6,风阀12包括风挡或阀叶;风阀12的风挡具有可控的开、闭结构,风阀12的风挡具有可控地连续打开功能,即由完全闭合、可控打开量,至完全打开;外气流风道开启后,具有了电气设备外气流对流的条件,通过可控的连续打开,实现根据散热、除湿、保温等需求的匹配性,更好进行电气设备内环境管理和节能降碳放;风挡关闭时,外气流风道被关断,这样电气设
备内外气流不通,被相互隔离,可以实现电气设备保温的功能,可更好的节能降碳排放;风窗2、风阀12与风机6紧凑安装组合,形成开、闭可控的气流风道,即气流外气流风道,用于电气设备内、外气流的可控交换。
87.风阀12和风机6之间设有风道构建装置7和安装板9,风道构建装置7内设有内外气流风道分隔装置14、加热器13和气流参数传感器11,内外气流风道分隔装置14呈“z”型,将风道分为外气流通道和内气流通道,外气流通道用于电气设备的内外气流交换,内气流通道用于电气设备内部气流流动,同时风道构建装置7构建了内外气流共用的通道,风阀12打开时,外气流通道打开,内气流通道关闭,这样,气流内、外交换时,外部空气比内部空气干燥时,可直接用气流来对内部进行干燥除湿;风阀12闭合时,外气流通道关闭,内气流通道打开;加热器13设置在内外气流通道共用处,这样,内、外气流交换时,可对进来的潮湿空气加热除湿;内气流循环时,可根据电气设备内部环境参数对内气流加热,来实现露点控制加热除湿功能和内气流循环除湿功能,还能实现内气流加热,对电气设备内部加热、防低温功能。
88.具体的,本实用新型中的加热器13设计在了外气流风道和内气流风道的都经过的位置,利用了外气流风道和加热器13的设计解决了实际问题,也是对进入的高湿气流进行除湿。雨雪雾天气且电气需要散热,还需要解决电气设备潮湿凝露的工况,则可开启风阀、风机和加热装置,外气流风道的设计使外部进入的气流(这时湿度接近100%)必须经过加热装置,经加热升温的气流,湿度下降到满足电气设备微环境需要的湿度。
89.原理:温升1℃,湿度下降5%左右;
90.前提1:雨雾天,气温通常≦28℃,雪天气温更低;此时湿度接近100%,我们按照100%计算;
91.前提2:根据标准电气设备内允许的温度≦45℃,允许湿度≦90%;
92.过程:外部进入气流28℃,通过加热器升温至32℃,湿度下降到85%,这时利用温差13(45-32)℃,能非常好对电气设备散热,但是湿度已经下降到电气设备允许的湿度。
93.而且现有加热装置,均放电气设备内部,电气设备配置密闭隔离型散热设备时(即通过壳体,电气设备内部与外部大气环境隔离),其缺陷是加热除湿时,潮气并没有出去,而是还是在电气设备内部,因此除湿不彻底;则还需要额外配置除湿机,增加成本,同时增加电气设备的隐患,因为除湿机占用内部空间,还是需要导水管,时间久了水管及接头老化会造成水漏洒而造成隐患。而且在电气设备配置开放对流型散热设备时,再启动加热器后,大部分热量都被泄漏出电气设备了,因此加热耗能大,效果还微小,在户外过低温环境就完全无效了。
94.本实用新型设计了在风阀12的内侧,即通向电气设备的一侧配置加热器13,同时该加热器13还被设计在了外气流风道和内气流风道的都经过的位置,这种实用新型设计,既可以在风阀12打开时,进入潮湿空气加热除湿,还是可以在风阀关闭后,对设备加热防低温,而热量不会散出。
95.利用内气流风道和加热器13的设计解决的实际问题,对电气设备进行内部升温除湿,具体:内部露点控制升温除湿:根据内部传感器所检测的温度和湿度,可以自动得出凝露温度,在外部低温状况下,关闭外气流风道,利用内气流风道、加热器和风机,对电气设备内部进行送入热气流,就可以进行温度控制和湿度控制,潮气超过一定值,打开外气流风
道,将潮气排出,综合的方法实现潮湿和防凝露。
96.利用内气流风道和加热器的设计解决的实际问题,对电气设备进行内部加热防低温:外部低温时,关闭外气流风道,进行保温,但是外部环境温度过低时,利用电气设备内的装置运行产生的热量,不满足保温需求时,则开始内气流风道、加热器和风机,往电气设备内送热量进行加热防低温。
97.壳体内的安装板9上设有控制器8,风阀12还包括风挡驱动器10,风挡驱动器10与风阀12传动连接,外部传感器3、风机6、风挡驱动器10、加热器13和气流参数传感器11均与控制器8电连接,用于对电气设备内部环境的管理和控制。本实用新型提供的智能环境控制机,是各种设备均不具有的新型产品和系统,能有效解决更重电气设备目前面临微环境恶劣的难题。
98.控制器8上还设有用于通信的通信装置和用于驱动风机6反转的反转模块,通信装置可实现有线或无线的与上位系统的数据交换,风机6在控制器8和反转模块的控制下反转,产生风量,用于自动清理积累在风窗或滤材上的杂物和灰尘,减免人工维护;风挡驱动器10用于风挡开、闭控制和连续开闭控制;外部传感器3检测但不限于温度、湿度、灰尘浓度和危害气体等大气环境参数,内部传感器检测但不限于温度、湿度、灰尘浓度和危害气体等大气环境参数,气流参数传感器11检测但不限于风速、风压等参数。
99.本实用新型提供的智能环境控制机内部为模块化设计,可模块化扩展,用以增加散热量、除湿量等满足电气设备内部环境管控的需要;比如还可以设置风速传感器、危害气体传感器、内部传感器或显示屏;风速传感器安装在壳体1内外气流通道和内气流通道共用通道处并于控制器8电连接;危害气体传感器可以安装在电气设备或室内与控制器8电连接,危害气体传感器结合控制外气流风道的开和合,排出危害气体,保障电气设备免除危害气体的隐患;内部传感器可以安装在电气设备或室内与控制器8电连接,显示屏可以安装在室内与控制器8电连接。
100.本实用新型提供的智能环境控制机外部周围还配置有安装部件4,壳体1的下表面还设有托架5,壳体1实现对环控机内部器件防护、保护和紧凑型内部连接固定,形成整体环控机,安装部件4和托架5用于将环控机紧固密实和便利地安装在电气设备上,节约了占地空间和增加了电气设备的安全距离,提高了安全性。
101.本实用新型具有以下优势:
102.1.风窗、风阀和风扇的紧凑设计方案,通风效率最高,解决了体积大不紧凑而无法应用在电气设备上,也解决了匹配电气设备散热需求的风阀和风扇的联动控制,以通风散热、保温和智能控制的内外空气交换除湿;而且在风窗和风机基础上,设计了风阀,这样的设计构成了可控的气流通道,通过控制风阀开、闭,开时、具有气流交换功能,闭时,具有内外隔离功能,再和联动风机,来实现通风散热和保温功能;开时,通风散热功能,合时,进行保温。
103.2.加热器被紧凑的设计在了外气流风道和内气流风道的都经过的位置,解决了苛刻低温状况下,加热防低温;
104.3.外气流风道和内气流风道的紧凑设计和隔离设计,实现无耗能的保温功能、利用外部干燥空气对内部除湿的功能、露点及湿度控制加热器除湿功能和智能内部气流控制除湿的功能;外气流风道和内气流风道可联动控制和独立控制,实现不同大气环境和电气
设备运行工况的内环境管控;
105.4.设计了安装外壳和结构的设计,便于紧凑安装在电气设备上,节约了占地空间和增加了电气设备的安全距离,提高了安全性;
106.5.风窗部位配置了过滤器,解决通风散热时,灰尘进入的问题;
107.6.风阀和风扇联动控制及对应驱动器,解决联动、联调和联控的智能控制功能;
108.7.配置内外传感器、用于检测内外环境参数,实现智能控制的数据采集;
109.8.配置控制系统,将采集数据,进行智能自动的控制,实现所描述的功能;
110.9.配置通信部件,实现与用户其它系统进行通信,相互数据交换的功能;
111.10.模块化的设计,实现便于扩展,倍增散热量、除湿量,以匹配不同大小的电气设备;
112.11.环控机可以单独使用,也可以配套使用,成套使用时,分别组成进风和出风。
113.请参阅图5,环控机可以单独使用,也可以配套使用,成套使用时,分别组成进气流和出气流。具体的,将第一智能环境控制机102和第二智能环境控制机103安装在电气设备101上,具体功能如下:
114.1.散热功能的实现:根据传感器检测的环境参数,电气设备需要散热时,控制器控制风挡驱动器打开风阀的风挡后,外气流通道打开,这样内外气流可在温差作用下自然对流散热,如果自然对流仍不能满足电气设备的散热需求,则控制器启动风机,进行强迫气流对流,加大散热量,以满足电气设备散热需求。在一台或一组环控机强迫气流对流散热后,可扩展一台或一组环控机或环控机内部对应模块,以增大散热量,满足电气设备散热需求。
115.2.进气流除湿的功能实现:在雨雪雾天气时,需要散热时,同时需要对进入电气设备的气流进行除湿,我们经常遇到下雨天时,交通红绿灯容易失控,就是控制交通等电柜没有进气流的除湿功能造成的,还有一些停电事故也是这么引起的。
116.具体的,在环控机已经开始散热的工况下,控制器根据检测到的环境参数,启动加热器,由于加热器位于内外气流共用通道上,因此启动加热器后,就能对进入气流进行除湿,解决在雨雾雪天气时,大气潮湿对电气设备造成的危害或隐患。
117.3.保温功能的实现:大气环境低温时,如气温低于10℃,则应利用电气设备内部电气、电子装置运行所产生的的发热量,进行保温,无需启动加热装置(如空调制热或加热器制热),这样可大幅节能降碳。
118.具体的操作:根据传感器采集的数据,当需要保温时,控制器控制风挡驱动器关闭风阀,则实现电气设备内与大气环境的隔离,则利用电气设备运行自发热,来保温,大幅节能降碳。
119.4.加热防低温功能的实现:大气环境过低温时,如气温低于-10℃,这时,保温已经不能满足电气设备运行最佳状态所需要的的温度,同时这温度下,通常空调基本制热效率低下,甚至丧失制热能力。因此,利用环控机所配置的加热器,进行加热防低温。
120.具体的,在已经关闭风挡的状况下,开启内气流通道,控制器启动加热器,同时启动风机,电气设备内的气流在风机的带动下,经过内气流通道,在经过加热器加热,由返回到电气设备,气流这样往复循环,就能快速对电气设备加热防低温,解决了空调在过低温下,加热效果不加的问题,同时也解决了普通加热器不能大气流快速流动、快速均匀升温的难题。
121.5.气流外循环除湿功能的实现:春、秋、冬季节,外部空气多干燥,电气设备内部由于电缆地下进出的原因,潮气从底部产生,很容造成内部潮湿,该换空机可有效解决该问题。
122.具体的操作:根据传感器检测的内外温度、湿度,在保障电气设备不低温状况下,根据湿度差,控制器打开风阀,将干燥空气放入电气设备内部,同时将电气设备内部潮气排出去,湿度差大时,可控制风机启动将潮气加速排出。排出后,再根据湿度差,自动关闭风机和风阀。这样,就利用自然干燥空气进行除湿,既节能降碳、除湿更有效。
123.6.气流内循环露点控制的加热除湿功能的实现:在极低温的雪天气时,气流内循环除湿功能不能满足除湿功能,因此启动气流内循环加热除湿功能;
124.具体的实现:在启动气流内循环除湿后,控制器根据采集温湿度和对应露点温度启动加热器,对往复循环的气流加热升温,这样就把电气设备的温度升高,防止顶部凝露产生,同时可以把已形成的凝露烘干,来解决极低温的雪天气时顶部凝露和凝霜的难题。
125.7.危害气体的排出功能:危害气体,如沼气(电缆够内腐殖质产生的沼气)、氢气(新能源电池储能设备电池充放电过程产生氢气)等等,在保温状况下,仍然需要检测和排出这些危害气体,保障电气设备的运行安全;
126.具体实现:控制器根据检测到电气设备内部或其电缆沟的危害气体,在浓度为安装状况下,控制器通过风挡驱动器打开气流外通道,将危害气体从电气设备内排出。
127.8.节能、降低碳排放的功能:根据标准,电气设备内环境温度需要-10℃≦t≦40℃,这样大气温度≦35℃时,都可以采用通风散热,但需要满足空调具有的性能(防护等级:ip54,即防尘等级5,防水等级4;除湿性能);
128.本实用新型环控机防护等级ip65,满足并超越了空调的防护等级;同时本实用新型具有除湿功能,因此完全能替换空调,从而大幅节能和降低碳排放,具体如下:
129.8.1相同散热量所用的功耗节能:同样的散热量,环控机的耗能是空调的4%以下,节能率90%以上;大气温度35℃以下,根据检测到内外温湿度,控制器通过控制风阀风挡的开启和风扇运转强迫风冷散热,就可以实现有效散热和节能。
130.8.2通过空气风阀开闭自然对流散热的节能:由于电气设备运行时本身发热量大,属于自发高热源,与居民室内微或无热源不同,此外装有工业空调的电气设备均为密封的,因此无法空气自然对流散热,这样通常大气温度在10℃,就需要启动空调进行电气设备进行制冷散热。
131.但应用环控机方案时,室外大气温度≦25℃,均开采用打开风阀风挡,利用自然对流,就可以实现有效散热,因此在-10℃~25℃的大气温度下,可以大大的节能降碳排放。
132.8.3通过控制风阀开闭功能和电气设备自发热在低温环境下的节能:由于电气设备要求低温通常-10℃以上,预制舱等电气室无人时的温度要求10℃以上;预制舱等电气室无人时的温度要求18℃以上,因此需要空调或环控机在大气低温时加热来满足上述要求。
133.大气环境温度在-15℃~10℃,根据采集到电气设备内外的温度,通过控制器控制风阀风挡开、闭,再利用电气设备运行自发热,就能满足上述要求,并很好节能;
134.大气温度低于-15℃时,空调就基本就丧失制热能力了,因此采用空调方案时,在该温度状况下运行,能耗高,但还几乎没有制热能力,从而不能有效防低温。该状况下,采用环控机,控制器关闭风阀风挡后,启动加热器和风机对电气设备加热,能有效快速升温。
135.9.智能化运行的功能。
136.上述均是控制器根据传感器采集环境参数,进行智能自动控制;同时,还能实现散热余量的计算和数据提供,便于用户能智能的提前运维;风机开始在控制器的控制下,自动反转,产生风量,用于自动清理积累在风窗或滤材上的杂物和灰尘,减免人工维护。
137.以上几个具体的实施例可以相互结合,且实施例中的参数均可根据设备需求进行调整,对于相同或相似的概念或过程可能在某些实施例不再赘述。
138.以上实施例的各技术特征可以进行任意的组合(只要这些技术特征的组合不存在矛盾),为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述;这些未明确写出的实施例,也都应当认为是本说明书记载的范围。
139.上文中通过一般性说明及具体实施例对本实用新型作了较为具体和详细的描述。应当指出的是,在不脱离本实用新型构思的前提下,显然还可以对这些具体实施例作出若干变形和改进,这些都属于本技术的保护范围。因此,本技术专利的保护范围应以所附权利要求为准。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1