一种使用中压精馏塔降低空分能耗方法及装置与流程

文档序号:16850389发布日期:2019-02-12 22:41阅读:307来源:国知局
一种使用中压精馏塔降低空分能耗方法及装置与流程

本发明涉及的是一种使用中压精馏塔降低空分能耗方法与装置,更具体的说,通过增设一个中压精馏塔,即通过三塔精馏法降低氮氧产品比较高的空分装置的能耗方法与装置。



背景技术:

随着我国煤化工行业的迅速发展,下游煤化工工艺装置对空分装置的规模、产品压力和产品氮氧比的要求越来越高。部分大规模的煤化工装置对中高压氮气的需求量已经远远超出了其对中高压氧气的需求量,有些煤化工装置的氮氧产品需求比甚至超出了1.5。

目前,适用于特大型煤化工装置的特大型空分装置,主要是以内压缩空分流程为主,在生产过程中最主要的消耗之一是用于原料气体压缩机的能耗,内压缩空分装置提取大量的内压缩氮气或低压氮气产品会显著影响空分装置的提取率,使加工的原料空气量大幅度增加,能耗也随之大幅度增加。随着能源成本的不断上升,节能降耗成为空分装置最为重视的问题之一。采用内压缩低温精馏法的空分装置大多都采用双塔精馏工艺,该工艺具备流程简单,设备数量少,占地面积小,操作简便,运行稳定等特点,但是在氮氧产品比较大的情况下,内压缩双塔精馏工艺受限于其分离氮产品的能力,空分装置的整体提取率被大幅拉低,单位产品能耗偏高。



技术实现要素:

本发明的目的在于克服现有技术存在的不足,而提供一种以增设一个中压精馏塔的方法来提高内压缩空分装置提取率,大幅度减小原料气体的加工量,从而节省了原料气体压缩机的能耗使用中压精馏塔降低空分能耗方法与装置。

本发明的目的是通过如下技术方案来完成的,一种使用中压精馏塔降低空分能耗方法,所述的方法包括以下步骤:

a)来自大气的原料空气做为原料气体,经过空气透平压缩机增压,得到高温气体;高温气体经预冷纯化系统冷却吸附后,得到低压空气;

b)低压空气分为两部分,一部分进入冷箱内的主换热器,被返流气体冷却至饱和温度后进入低压精馏塔参与精馏;

c)另一部分低压空气则进入空气增压透平压缩机增压,增压后的空气分为三股,一股增压空气从增压透平压缩机一级叶轮后抽取,冷却后送入精馏系统的主换热器,冷却至接近液化点温度后,直接送入中压精馏塔;

d)一股增压空气从增压透平压缩机中部或末级抽出并冷却后,去中压膨胀机增压端继续增压冷却后送入精馏系统的主换热器或直接送入精馏系统的主换热器,从主换热器中部抽出,送入增压透平膨胀机的膨胀端去膨胀制冷,膨胀后的空气送入低压精馏塔或中压精馏塔参与精馏;

e)另一股增压空气从增压透平压缩机末级抽出并冷却后,去中压膨胀机膨胀端继续增压冷却后送入精馏系统的主换热器或直接送入精馏系统的主换热器,冷却至接近液化点温度后,送入液体膨胀机去膨胀或经高压夜空节流阀节流制冷,膨胀或节流后的液空一部分送入低压精馏塔参与精馏,一部分送入中压精馏塔冷凝蒸发器蒸发侧作为冷源;

f)经低压精馏塔精馏后,在低压精馏塔顶部获得低压液氮和低压氮气,在低压精馏塔底部获得富氧液空,在低压精馏塔中上部获得的低压污液氮;富氧液空、污液氮和液氮进入过冷器,与反流的氮气、污氮气换热后,节流至接近常压,分别送入常压精馏塔中部,上部和顶部;低压氮气直接进入主换热器,与正流低压空气进行热交换,复热到常温后送出冷箱,得到低压氮气产品;过冷后的低压液氮抽取一部分作为产品液氮;

g)经常压精馏塔精馏后,在常压精馏塔底部获得液氧,液氧分为两部分,一部分通过液氧泵增压后直接进入主换热器,与正流高压空气进行热交换,复热到常温后送出冷箱,得到高压产品氧气;一部分经过冷器过冷后送入贮槽作为液氧产品;

在常压精馏塔顶部获得常压氮气,经过冷器与主换热器复热至常温后送出冷箱,作为常压氮气产品;

在常压精馏塔上部获得污氮气,经过冷器与主换热器复热至常温后送出冷箱,去预冷纯化系统;

h)经中压精馏塔精馏后,在中压精馏塔顶部获得中压液氮,通过液氮泵增压后直接进入主换热器,与正流高压空气进行热交换,复热到常温后送出冷箱,得到高压产品氮气;在中压精馏塔顶部获得中压氮气,直接送入主换热器,与正流高压空气进行热交换,复热到常温后送出冷箱,得到中压产品氮气。

作为优选:精馏系统中的低压精馏塔与常压精馏塔通过一台低压冷凝蒸发器耦合以实现二者的热量交换,从而保持二者精馏过程的稳定进行,低压冷凝蒸发器的冷源来自于常压精馏塔底部的液氧;

中压精馏塔顶部设置了一台中压冷凝蒸发器,其冷源来自于节流后的中压精馏塔底部的中压富氧液空和高压液空膨胀或节流后的低压液空;

中压冷凝蒸发器中蒸发后的低压富氧空气去低压精馏塔底部参与精馏。

作为优选:中压精馏塔的顶部生产的中压液氮通过液氮泵增压后直接进入主换热器,与正流高压空气进行热交换,复热到常温后送出冷箱,得到高压产品氮气,该股液氮也可以节流后进入低压精馏塔参与精馏;

低压精馏塔的顶部生产的低压液氮可通过液氮泵增压后直接进入主换热器,与正流高压空气进行热交换,复热到常温后送出冷箱,得到高压产品氮气,也可以经液氮泵增压后进入中压精馏塔参与精馏。

一种用于所述使用中压精馏塔降低空分能耗方法的装置,所述的装置包括:一用于于获得压缩空气的原料空气压缩系统,该系统包括1台空气透平压缩机,1台空气透平增压机;

一用于原料空气冷却与吸附的预冷纯化系统,该系统包括1台水冷塔,1台空冷塔,2台分子筛及1台污氮气加热装置;一用于整个低温精馏装置冷量制取的膨胀制冷系统,该系统至少包括1台中压增压透平膨胀机;

一用于获得产品气体的低温精馏系统,该系统包括1套低温换热器,1台中压精馏塔,1台低压精馏塔,1台常压精馏塔与1套低温流程泵;一用于实现整个装置运行的自动控制系统,包括1套dcs系统,1套阀门,1套测量仪表和1套组分在线分析仪表。

本发明具有以下特点:

1)本发明通过增设一个中压精馏塔,降低了高氮氧比大型内压缩空分的能耗。本发明利用中压精馏塔底部的富氧液空在节流后作为自身冷源,蒸发后的富氧空气去低压塔进一步精馏,提高了内压缩空分装置的产氮能力,从而大幅度提高了高氮氧比大型内压缩空分装置的提取率,降低单位产品能耗。

2)本发明通过中压精馏塔生产中压液氮和中压氮气产品,在需要10bar左右产品氮气的情况下,可省去一台中压氮气压缩机或中压液氮泵,有效降低空分装置的能耗。

3)本发明氮气产品调配灵活,利用低压精馏塔生产的低压液氮可以作为液氮产品或去常压塔参与精馏,根据流程需要,当中压氮气产量需求较大时,也能通过增设中压液氮泵,将低压液氮增压后去中压精馏塔用于生产中压氮气产品。

本发明采用的三塔精馏法能够大幅度提高氮氧产品比较高的情况下的低温精馏空分装置的提取率,可以有效降低高氮氧产品比情况下大型空分设备的单位产品能耗。

附图说明

附图1是本发明的一个实施例的流程示意图。

具体实施方式

下面将结合附图对本发明作详细的介绍:一种使用中压精馏塔降低空分能耗方法,所述的方法包括以下步骤:

a)来自大气的原料空气做为原料气体,经过空气透平压缩机增压,得到高温气体;高温气体经预冷纯化系统冷却吸附后,得到低压空气;

b)低压空气分为两部分,一部分进入冷箱内的主换热器,被返流气体冷却至饱和温度后进入低压精馏塔参与精馏;

c)另一部分低压空气则进入空气增压透平压缩机增压,增压后的空气分为三股,一股增压空气从增压透平压缩机一级叶轮后抽取,冷却后送入精馏系统的主换热器,冷却至接近液化点温度后,直接送入中压精馏塔;

d)一股增压空气从增压透平压缩机中部或末级抽出并冷却后,去中压膨胀机增压端继续增压冷却后送入精馏系统的主换热器或直接送入精馏系统的主换热器,从主换热器中部抽出,送入增压透平膨胀机的膨胀端去膨胀制冷,膨胀后的空气送入低压精馏塔或中压精馏塔参与精馏;

e)另一股增压空气从增压透平压缩机末级抽出并冷却后,去中压膨胀机膨胀端继续增压冷却后送入精馏系统的主换热器或直接送入精馏系统的主换热器,冷却至接近液化点温度后,送入液体膨胀机去膨胀或经高压夜空节流阀节流制冷,膨胀或节流后的液空一部分送入低压精馏塔参与精馏,一部分送入中压精馏塔冷凝蒸发器蒸发侧作为冷源;

f)经低压精馏塔精馏后,在低压精馏塔顶部获得低压液氮和低压氮气,在低压精馏塔底部获得富氧液空,在低压精馏塔中上部获得的低压污液氮;富氧液空、污液氮和液氮进入过冷器,与反流的氮气、污氮气换热后,节流至接近常压,分别送入常压精馏塔中部,上部和顶部;低压氮气直接进入主换热器,与正流低压空气进行热交换,复热到常温后送出冷箱,得到低压氮气产品;过冷后的低压液氮抽取一部分作为产品液氮;

g)经常压精馏塔精馏后,在常压精馏塔底部获得液氧,液氧分为两部分,一部分通过液氧泵增压后直接进入主换热器,与正流高压空气进行热交换,复热到常温后送出冷箱,得到高压产品氧气;一部分经过冷器过冷后送入贮槽作为液氧产品;

在常压精馏塔顶部获得常压氮气,经过冷器与主换热器复热至常温后送出冷箱,作为常压氮气产品;

在常压精馏塔上部获得污氮气,经过冷器与主换热器复热至常温后送出冷箱,去预冷纯化系统;

h)经中压精馏塔精馏后,在中压精馏塔顶部获得中压液氮,通过液氮泵增压后直接进入主换热器,与正流高压空气进行热交换,复热到常温后送出冷箱,得到高压产品氮气;在中压精馏塔顶部获得中压氮气,直接送入主换热器,与正流高压空气进行热交换,复热到常温后送出冷箱,得到中压产品氮气。

作为优选的实施例:精馏系统中的低压精馏塔与常压精馏塔通过一台低压冷凝蒸发器耦合以实现二者的热量交换,从而保持二者精馏过程的稳定进行,低压冷凝蒸发器的冷源来自于常压精馏塔底部的液氧;

中压精馏塔顶部设置了一台中压冷凝蒸发器,其冷源来自于节流后的中压精馏塔底部的中压富氧液空和高压液空膨胀或节流后的低压液空;

中压冷凝蒸发器中蒸发后的低压富氧空气去低压精馏塔底部参与精馏。

作为进一步优选的实施例:中压精馏塔的顶部生产的中压液氮通过液氮泵增压后直接进入主换热器,与正流高压空气进行热交换,复热到常温后送出冷箱,得到高压产品氮气,该股液氮也可以节流后进入低压精馏塔参与精馏;

低压精馏塔的顶部生产的低压液氮可通过液氮泵增压后直接进入主换热器,与正流高压空气进行热交换,复热到常温后送出冷箱,得到高压产品氮气,也可以经液氮泵增压后进入中压精馏塔参与精馏。

一种用于所述使用中压精馏塔降低空分能耗方法的装置,所述的装置包括:一用于于获得压缩空气的原料空气压缩系统,该系统包括1台空气透平压缩机,1台空气透平增压机;

一用于原料空气冷却与吸附的预冷纯化系统,该系统包括1台水冷塔,1台空冷塔,2台分子筛及1台污氮气加热装置;一用于整个低温精馏装置冷量制取的膨胀制冷系统,该系统至少包括1台中压增压透平膨胀机;

一用于获得产品气体的低温精馏系统,该系统包括1套低温换热器,1台中压精馏塔,1台低压精馏塔,1台常压精馏塔与1套低温流程泵;一用于实现整个装置运行的自动控制系统,包括1套dcs系统,1套阀门,1套测量仪表和1套组分在线分析仪表。

实施例:图1所示为一套采用三塔精馏法降低氮氧产品比较高的空分装置的能耗的一种具体实施例,图中所示:

来自大气的原料空气1(其组分含量约o2:20.95%,ar:0.932%,n2:78.118%)经空气过滤器2滤去大颗粒杂质后被供给原料空气透平压缩机3(后称空压机),在其中被压缩至约6bar(绝对压力,下同)的压力,然后送入空冷塔4冷却至约16℃。

空冷塔4下段和水冷塔5的循环冷却水6来自公用工程系统,空冷塔4下段冷却水由冷却水泵7增压后进入空冷塔下段,空冷塔4上段冷冻水由循环冷却水6经水冷塔5,与返流污氮气8换热后,经冷冻水泵9增压,经冷水机组10降温后进入空冷塔上段。

冷却后的低压空气11进入分子筛吸附器12,吸附h2o,co2等杂质后分为两股,一股低压空气13直接送入低压板式换热器14冷却至接近饱和温度后出低压板式换热器14进入低压精馏塔15底部参与精馏。

另一股低压空气16进入增压透平空气压缩机17(后称增压机)继续增压后分为两股,一股从增压机17一级叶轮后抽出,约10bar,分为两部分:一部分作为仪表/工厂空气产品18,一部分作为中压空气19去高压板式换热器20,冷却至接近饱和温度后出高压板式换热器20,进入中压精馏塔21参与精馏。另一股增压至约50bar后从增压机末级抽出,经冷却器22冷却至常温后分为两部分。一部分作为膨胀空气23去高压板式换热器20,从高压板式换热器20中部抽出去中压透平膨胀机膨胀端24膨胀至约6bar,送入低压精馏塔15参与精馏;另一部分作为增压量25去中压透平膨胀机增压端26增压后,经增压端后冷却器27冷却后送入高压板式冷却至饱和温度后出高压板式换热器20,得到高压液空28,送入液体膨胀机29膨胀至约6bar,得到低压液空30。利用液体膨胀机29的膨胀功通过制动端发电机31发电。高压液空28也可通过旁路高压夜空节流阀32节流得到低压液空30。低压液空30分为两股,一股送入低压精馏塔15参与精馏,一股送入中压冷凝蒸发器33的蒸发侧。

中压空气19经中压精馏塔21精馏后,在中压精馏塔顶部获得中压液氮34,经高压液氮泵35增压后送入高压板式换热器20,复热至常温作为高压氮气产品36。在中压精馏塔底部获得中压富氧液空37,节流后送入中压冷凝蒸发器33的蒸发侧。在中压冷凝蒸发器33中节流后富氧液空作为冷源,冷凝中压塔顶部的中压氮气,富氧液空汽化出冷凝蒸发器得到富氧空气38,送入低压精馏塔15底部参与精馏。

多股原料气体经低压精馏塔15精馏后,在低压精馏塔顶部获得低压液氮39,在低压精馏塔底部获得低压富氧液空40,在低压精馏塔中部获得低压液空41及低压污液氮42。低压液氮39分为两部分一部分经液氮泵43增压后送入高压板式换热器20,复热至常温作为高压氮气产品44。一部分经过冷器45过冷后作为液氮产品46,送入贮槽。低压富氧液空40,低压液空41,低压污液氮41均经过冷器45过冷后送入常压塔47的相应部位参与精馏。

经常压塔47精馏后在常压塔底部获得液氧48,在常压塔顶部获得常压氮气49,在常压塔上部获得污氮气50。液氧48分为两部分一部分经液氧泵51增压后送入高压板式换热器20,复热至常温作为高压氧气产品52。一部分经过冷器45过冷后作为液氧产品53,送入贮槽。常压氮气49经过冷器45,低压板式换热器14复热至常温后出冷箱,作为常压氮气产品54。污氮气50经过冷器45复热后,分为两股,分别经低压板式换热器14和高压板式换热器20复热至常温后出冷箱,出冷箱后污氮气分为两部分,一部分作为分子筛系统再生污氮气55去分子筛系统,余下的去预冷系统水冷塔作为冷源8。

在低压精馏塔15顶部抽取一部分低压氮气56,经低压板式换热器14复热至常温后出冷箱,作为低压氮气产品57。

本发明提供一种可以实施的适合于氮氧产品比较高的情况下(n2(内压缩氮气+低压氮气)/o2(内压缩氧气)>1.3)的三塔内压缩空分低温精馏方法。该方法克服了现有的双塔精馏法在制取大量内压氮气时,空分装置提取率较低、能耗较高的不足,有效减少了制取低温精馏过程中的不可逆损失,充分利用了精馏塔的分离能力,大幅提高空分装置的提取率,从而显著降低单位产品的能耗指标。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1