一种深度冷凝乏汽的双级压缩热泵循环系统的制作方法

文档序号:18385216发布日期:2019-08-09 21:10阅读:306来源:国知局
一种深度冷凝乏汽的双级压缩热泵循环系统的制作方法

本实用新型涉及一种热泵循环系统,具体涉及一种深度冷凝乏汽的双级压缩热泵循环系统。



背景技术:

在需要利用蒸发浓缩工艺的工业生产中,大多采用传统的多效蒸发技术,会产生大量的低压二次蒸汽(乏汽),传统多效蒸发技术大多采取冷却冷凝的方式进行乏汽处理,而不进行热回收,会造成大量的能源浪费。采取以氟利昂为制冷剂的蒸汽压缩式热泵技术进行乏汽的热回收,是有一个非常好的节能技术。热泵的性能系数和效率与热泵的蒸发温度密切相关,蒸发温度越高,热泵性能系数和效率也越高。但是乏汽的废热由“凝结潜热”和“温降显热”两部构成,在回收乏汽“凝结潜热”时,属于凝结相变过程,乏汽的放热温度维持恒定不变,具备保障热泵在较高蒸发温度运行的条件;在乏汽全部凝结成液态水之后,进入回收乏汽“温降显热”阶段;在回收乏汽“温降显热”时,属于单相流体放热过程,乏汽凝结水的放热温度持续降低,必将导致热泵的蒸发温度跟随降低。对多效蒸发技术而言,乏汽凝结水温度越低越好,更能保证系统的真空度;但是乏汽凝结水温度越低,必然导致热泵蒸发温度也越低,热泵的性能系数和效率也随之降低,导致系统的节能性变差。

如上所述,采用常规热泵机组进行低压乏汽的凝结热回收,存在热泵蒸发温度偏低,热泵性能系数和效率偏低的问题,需要提供一种更高效的热泵循环系统结构和装置。



技术实现要素:

本实用新型为了解决现有常规热泵用于多效蒸发的末效低压乏汽的凝结热回收,存在的热泵蒸发温度偏低,热泵性能系数和效率偏低,节能性较差的问题,进而提出一种深度冷凝乏汽的双级压缩热泵循环系统。

本实用新型为解决上述技术问题采取的技术方案是:

方案一:一种深度冷凝乏汽的双级压缩热泵循环系统包括第一压缩机、热泵冷凝器、第二节流膨胀阀、热泵第一蒸发器、第三节流膨胀阀、热泵第二蒸发器、第二压缩机、第一载热介质管路、第二载热介质管路、第一乏汽管路、第二乏汽管路、第三乏汽管路、第一制冷剂管路、第六制冷剂管路、第七制冷剂管路、第八制冷剂管路、第九制冷剂管路和第十制冷剂管路,

第一载热介质管路的出口端与热泵冷凝器的热介质进口端连接,热泵冷凝器的热介质出口端与第二载热介质管路的进口端连接,

第一制冷剂管路的进口端与热泵冷凝器的制冷剂出口端连接,第一制冷剂管路的出口端分别与第六制冷剂管路的进口端和第七制冷剂管路的进口端连接,第六制冷剂管路上设置有第二节流膨胀阀,第六制冷剂管路的出口端与热泵第一蒸发器的制冷剂进口端连接,热泵蒸发器的制冷剂出口端与第八制冷剂管路的进口端连接,第七制冷剂管路上设置有第三节流膨胀阀,第七制冷剂管路的出口端与热泵第二蒸发器的制冷剂进口端连接,热泵第二蒸发器的制冷剂出口端与第九制冷剂管路的进口端连接,第九制冷剂管路上设置有第二压缩机,第九制冷剂管路的出口端与第八制冷剂管路的中部连接,第八制冷剂管路的出口端与第一压缩机的主进气口端连接,第一压缩机的出气口端与第十制冷剂管路的进口端连接,第十制冷剂管路的出口端与热泵冷凝器的制冷剂进口端连接,

第一乏汽管路的出口端与热泵第一蒸发器的放热进口端连接,热泵第一蒸发器的放热出口端与第二乏汽管路的进口端连接,第二乏汽管路的出口端与热泵第二蒸发器的放热进口端连接,热泵第二蒸发器的放热出口端与第三乏汽管路的进口端连接。

方案二:一种深度冷凝乏汽的双级压缩热泵循环系统包括第一压缩机、热泵冷凝器、第二节流膨胀阀、热泵第一蒸发器、第三节流膨胀阀、热泵第二蒸发器、第二压缩机、凝结水U型弯、第一载热介质管路、第二载热介质管路、第一乏汽管路、第二乏汽管路、第三乏汽管路、第一制冷剂管路、第六制冷剂管路、第七制冷剂管路、第八制冷剂管路、第九制冷剂管路和第十制冷剂管路,

第一载热介质管路的出口端与热泵冷凝器的热介质进口端连接,热泵冷凝器的热介质出口端与第二载热介质管路的进口端连接,

第一制冷剂管路的进口端与热泵冷凝器的制冷剂出口端连接,第一制冷剂管路的出口端分别与第六制冷剂管路的进口端和第七制冷剂管路的进口端连接,第六制冷剂管路上设置有第二节流膨胀阀,第六制冷剂管路的出口端与热泵第一蒸发器的制冷剂进口端连接,热泵蒸发器的制冷剂出口端与第八制冷剂管路的进口端连接,第七制冷剂管路上设置有第三节流膨胀阀,第七制冷剂管路的出口端与热泵第二蒸发器的制冷剂进口端连接,热泵第二蒸发器的制冷剂出口端与第九制冷剂管路的进口端连接,第九制冷剂管路上设置有第二压缩机,第九制冷剂管路的出口端与第八制冷剂管路的中部连接,第八制冷剂管路的出口端与第一压缩机的主进气口端连接,第一压缩机的出气口端与第十制冷剂管路的进口端连接,第十制冷剂管路的出口端与热泵冷凝器的制冷剂进口端连接,

第一乏汽管路的出口端与热泵第一蒸发器的放热进口端连接,热泵第一蒸发器的放热出口端与第二乏汽管路的进口端连接,第二乏汽管路上设置有凝结水U型弯,第二乏汽管路的出口端与热泵第二蒸发器的放热进口端连接,热泵第二蒸发器的放热出口端与第三乏汽管路的进口端连接。

方案三:一种深度冷凝乏汽的双级压缩热泵循环系统包括第一压缩机、热泵冷凝器、第二节流膨胀阀、热泵第一蒸发器、第三节流膨胀阀、热泵第二蒸发器、第二压缩机、第一载热介质管路、第二载热介质管路、第一乏汽管路、第二乏汽管路、第三乏汽管路、第一制冷剂管路、第六制冷剂管路、第七制冷剂管路、第八制冷剂管路、第九制冷剂管路和第十制冷剂管路,

第一载热介质管路的出口端与热泵冷凝器的热介质进口端连接,热泵冷凝器的热介质出口端与第二载热介质管路的进口端连接,

第一制冷剂管路的进口端与热泵冷凝器的制冷剂出口端连接,第一制冷剂管路的出口端分别与第六制冷剂管路的进口端和第七制冷剂管路的进口端连接,第六制冷剂管路上设置有第二节流膨胀阀,第六制冷剂管路的出口端与热泵第一蒸发器的制冷剂进口端连接,热泵蒸发器的制冷剂出口端与第八制冷剂管路的进口端连接,第七制冷剂管路上设置有第三节流膨胀阀,第七制冷剂管路的出口端与热泵第二蒸发器的制冷剂进口端连接,热泵第二蒸发器的制冷剂出口端与第九制冷剂管路的进口端连接,第九制冷剂管路上设置有第二压缩机,第八制冷剂管路的出口端与第一压缩机的主进气口端连接,第九制冷剂管路的出口端与第一压缩机的中间补气口端连接,第一压缩机的出气口端与第十制冷剂管路的进口端连接,第十制冷剂管路的出口端与热泵冷凝器的制冷剂进口端连接,

第一乏汽管路的出口端与热泵第一蒸发器的放热进口端连接,热泵第一蒸发器的放热出口端与第二乏汽管路的进口端连接,第二乏汽管路的出口端与热泵第二蒸发器的放热进口端连接,热泵第二蒸发器的放热出口端与第三乏汽管路的进口端连接。

进一步地,第二乏汽管路上设置有凝结水U型弯。

方案四:一种深度冷凝乏汽的双级压缩热泵循环系统包括第一压缩机、热泵冷凝器、第二节流膨胀阀、热泵第一蒸发器、第三节流膨胀阀、热泵第二蒸发器、第二压缩机、第一载热介质管路、第二载热介质管路、第一乏汽管路、第二乏汽管路、第三乏汽管路、第一制冷剂管路、第六制冷剂管路、第七制冷剂管路、第八制冷剂管路、第九制冷剂管路和第十制冷剂管路,

第一载热介质管路的出口端与热泵冷凝器的热介质进口端连接,热泵冷凝器的热介质出口端与第二载热介质管路的进口端连接,

第一制冷剂管路的进口端与热泵冷凝器的制冷剂出口端连接,第一制冷剂管路上设置有第二节流膨胀阀,第一制冷剂管路的出口端分别与第六制冷剂管路的进口端和第七制冷剂管路的进口端连接,第六制冷剂管路的出口端与热泵第一蒸发器的制冷剂进口端连接,热泵蒸发器的制冷剂出口端与第八制冷剂管路的进口端连接,第七制冷剂管路上设置有第三节流膨胀阀,第七制冷剂管路的出口端与热泵第二蒸发器的制冷剂进口端连接,热泵第二蒸发器的制冷剂出口端与第九制冷剂管路的进口端连接,第九制冷剂管路上设置有第二压缩机,第九制冷剂管路的出口端与第八制冷剂管路的中部连接,第八制冷剂管路的出口端与第一压缩机的主进气口端连接,第一压缩机的出气口端与第十制冷剂管路的进口端连接,第十制冷剂管路的出口端与热泵冷凝器的制冷剂进口端连接,

第一乏汽管路的出口端与热泵第一蒸发器的放热进口端连接,热泵第一蒸发器的放热出口端与第二乏汽管路的进口端连接,第二乏汽管路的出口端与热泵第二蒸发器的放热进口端连接,热泵第二蒸发器的放热出口端与第三乏汽管路的进口端连接。

进一步地,第二乏汽管路上设置有凝结水U型弯。

方案五:一种深度冷凝乏汽的双级压缩热泵循环系统包括第一压缩机、热泵冷凝器、第一节流膨胀阀、过冷换热器、第二节流膨胀阀、热泵第一蒸发器、第三节流膨胀阀、热泵第二蒸发器、第二压缩机、第一载热介质管路、第二载热介质管路、第一乏汽管路、第二乏汽管路、第三乏汽管路、第一制冷剂管路、第二制冷剂管路、第三制冷剂管路、第四制冷剂管路、第五制冷剂管路、第六制冷剂管路、第七制冷剂管路、第八制冷剂管路、第九制冷剂管路和第十制冷剂管路,

第一载热介质管路的出口端与热泵冷凝器的热介质进口端连接,热泵冷凝器的热介质出口端与第二载热介质管路的进口端连接,

第一制冷剂管路的进口端与热泵冷凝器的制冷剂出口端连接,第一制冷剂管路的出口端分别与第二制冷剂管路的进口端和第三制冷剂管路的进口端连接,第二制冷剂管路的出口端与过冷换热器的第一进口端连接,过冷换热器的第一出口端与第四制冷剂管路的进口端连接,第三制冷剂管路上设置有第一节流膨胀阀,第三制冷剂管路的出口端与过冷换热器的第二进口端连接,过冷换热器的第二出口端与第五制冷剂管路的进口端连接,第五制冷剂管路的出口端与第一压缩机的中间补气口端连接,第四制冷剂管路的出口端分别与第六制冷剂管路的进口端和第七制冷剂管路的进口端连接,第六制冷剂管路上设置有第二节流膨胀阀,第六制冷剂管路的出口端与热泵第一蒸发器的制冷剂进口端连接,热泵蒸发器的制冷剂出口端与第八制冷剂管路的进口端连接,第七制冷剂管路上设置有第三节流膨胀阀,第七制冷剂管路的出口端与热泵第二蒸发器的制冷剂进口端连接,热泵第二蒸发器的制冷剂出口端与第九制冷剂管路的进口端连接,第九制冷剂管路上设置有第二压缩机,第九制冷剂管路的出口端与第八制冷剂管路的中部连接,第八制冷剂管路的出口端与第一压缩机的主进气口端连接,第一压缩机的出气口端与第十制冷剂管路的进口端连接,第十制冷剂管路的出口端与热泵冷凝器的制冷剂进口端连接,

第一乏汽管路的出口端与热泵第一蒸发器的放热进口端连接,热泵第一蒸发器的放热出口端与第二乏汽管路的进口端连接,第二乏汽管路的出口端与热泵第二蒸发器的放热进口端连接,热泵第二蒸发器的放热出口端与第三乏汽管路的进口端连接。

进一步地,第二乏汽管路上设置有凝结水U型弯。

方案六:一种深度冷凝乏汽的双级压缩热泵循环系统包括第一压缩机、热泵冷凝器、第一节流膨胀阀、过冷换热器、第二节流膨胀阀、热泵第一蒸发器、第三节流膨胀阀、热泵第二蒸发器、第二压缩机、第一载热介质管路、第二载热介质管路、第一乏汽管路、第二乏汽管路、第三乏汽管路、第一制冷剂管路、第二制冷剂管路、第三制冷剂管路、第四制冷剂管路、第五制冷剂管路、第六制冷剂管路、第七制冷剂管路、第八制冷剂管路、第九制冷剂管路和第十制冷剂管路,

第一载热介质管路的出口端与热泵冷凝器的热介质进口端连接,热泵冷凝器的热介质出口端与第二载热介质管路的进口端连接,

第一制冷剂管路的进口端与热泵冷凝器的制冷剂出口端连接,第一制冷剂管路的出口端分别与第二制冷剂管路的进口端和第三制冷剂管路的进口端连接,第二制冷剂管路的出口端与过冷换热器的第一进口端连接,过冷换热器的第一出口端与第四制冷剂管路的进口端连接,第四制冷剂管路上设置有第二节流膨胀阀,第三制冷剂管路上设置有第一节流膨胀阀,第三制冷剂管路的出口端与过冷换热器的第二进口端连接,过冷换热器的第二出口端与第五制冷剂管路的进口端连接,第五制冷剂管路的出口端与第一压缩机的中间补气口端连接,第四制冷剂管路的出口端分别与第六制冷剂管路的进口端和第七制冷剂管路的进口端连接,第六制冷剂管路的出口端与热泵第一蒸发器的制冷剂进口端连接,热泵蒸发器的制冷剂出口端与第八制冷剂管路的进口端连接,第七制冷剂管路上设置有第三节流膨胀阀,第七制冷剂管路的出口端与热泵第二蒸发器的制冷剂进口端连接,热泵第二蒸发器的制冷剂出口端与第九制冷剂管路的进口端连接,第九制冷剂管路上设置有第二压缩机,第九制冷剂管路的出口端与第八制冷剂管路的中部连接,第八制冷剂管路的出口端与第一压缩机的主进气口端连接,第一压缩机的出气口端与第十制冷剂管路的进口端连接,第十制冷剂管路的出口端与热泵冷凝器的制冷剂进口端连接,

第一乏汽管路的出口端与热泵第一蒸发器的放热进口端连接,热泵第一蒸发器的放热出口端与第二乏汽管路的进口端连接,第二乏汽管路的出口端与热泵第二蒸发器的放热进口端连接,热泵第二蒸发器的放热出口端与第三乏汽管路的进口端连接。

进一步地,第二乏汽管路上设置有凝结水U型弯。

本实用新型与现有技术相比包含的有益效果是:

1、本实用新型通过热泵第一蒸发器6和热泵第二蒸发器8实现了制冷剂的梯级蒸发,通过第一压缩机1和第二压缩机9实现了制冷剂蒸汽的梯级压缩,避免了所有制冷剂蒸汽都需要进行深度压缩,通过乏汽废热的梯级回收和能量品质的梯级提升,最终实现了热泵循环系统性能系数的提高。

2、本实用新型通过设置凝结水U型弯10,阻隔了在热泵第一蒸发器6内未能完全凝结的乏汽进入热泵第二蒸发器8中,避免热泵第二蒸发器8的制冷剂蒸发量急剧增加,从而避免第二压缩机9的负荷急剧增加,避免造成系统运行不稳定。

3、本实用新型具有较大的设计灵活性,可以在较大范围内适应不同的乏汽凝结水降温幅度,当乏汽凝结水的降温幅度较大时,第二压缩机9的排气可以与热泵第一蒸发器6 产生的制冷剂蒸汽混合后,再从第一压缩机1的主进气口进入第一压缩机1;当乏汽凝结水的降温幅度较小时,第二压缩机9的排气可以从第一压缩机1的中间补气口直接进入第一压缩机1。

4、本实用新型针对载热介质出口温度比乏汽凝结水出口温度高出很多的特殊工艺要求,可以采用梯级节流的实施方式保障热泵循环系统的运行稳定性和性能系数。

5、本实用新型通过设置过冷换热器4,利用极小部分制冷剂的沸腾吸热,来实现绝大部分制冷剂获得很大的过冷度,从而提高单位制冷剂的制冷量和提高整个热泵循环系统的性能系数,一般性能系数可提高10%左右。

附图说明

图1是本实用新型的具体实施方式一的整体结构示意图;

图2是本实用新型的具体实施方式二的整体结构示意图;

图3是本实用新型的具体实施方式三的整体结构示意图;

图4是本实用新型的具体实施方式四的整体结构示意图;

图5是本实用新型的具体实施方式五的整体结构示意图;

图6是本实用新型的具体实施方式六的整体结构示意图;

图7是本实用新型的具体实施方式七的整体结构示意图;

图8是本实用新型的具体实施方式八的整体结构示意图;

图9是本实用新型的具体实施方式九的整体结构示意图;

图10是本实用新型的具体实施方式十的整体结构示意图;

其中箭头方向表示介质流动的方向。

具体实施方式

具体实施方式一:结合图1说明本实施方式,本实施方式所述一种深度冷凝乏汽的双级压缩热泵循环系统包括第一压缩机1、热泵冷凝器2、第二节流膨胀阀5、热泵第一蒸发器6、第三节流膨胀阀7、热泵第二蒸发器8、第二压缩机9、第一载热介质管路31、第二载热介质管路32、第一乏汽管路33、第二乏汽管路34、第三乏汽管路35、第一制冷剂管路41、第六制冷剂管路46、第七制冷剂管路47、第八制冷剂管路48、第九制冷剂管路49和第十制冷剂管路50,

第一载热介质管路31的出口端与热泵冷凝器2的热介质进口端连接,热泵冷凝器2 的热介质出口端与第二载热介质管路32的进口端连接,

第一制冷剂管路41的进口端与热泵冷凝器2的制冷剂出口端连接,第一制冷剂管路41的出口端分别与第六制冷剂管路46的进口端和第七制冷剂管路47的进口端连接,第六制冷剂管路46上设置有第二节流膨胀阀5,第六制冷剂管路46的出口端与热泵第一蒸发器6的制冷剂进口端连接,热泵第一蒸发器6的制冷剂出口端与第八制冷剂管路48的进口端连接,第七制冷剂管路47上设置有第三节流膨胀阀7,第七制冷剂管路47的出口端与热泵第二蒸发器8的制冷剂进口端连接,热泵第二蒸发器8的制冷剂出口端与第九制冷剂管路49的进口端连接,第九制冷剂管路49上设置有第二压缩机9,第九制冷剂管路 49的出口端与第八制冷剂管路48的中部连接,第八制冷剂管路48的出口端与第一压缩机1的主进气口端连接,第一压缩机1的出气口端与第十制冷剂管路50的进口端连接,第十制冷剂管路50的出口端与热泵冷凝器2的制冷剂进口端连接,

第一乏汽管路33的出口端与热泵第一蒸发器6的放热进口端连接,热泵第一蒸发器 6的放热出口端与第二乏汽管路34的进口端连接,第二乏汽管路34的出口端与热泵第二蒸发器8的放热进口端连接,热泵第二蒸发器8的放热出口端与第三乏汽管路35的进口端连接。

本实施方式的运行原理:

乏汽的放热过程:以饱和温度为60℃乏汽为例,乏汽通过第一乏汽管路33首先进入第一热泵第一蒸发器6进行凝结放热,乏汽凝结是一个相变过程,温度维持60℃不变,此时热泵第一蒸发器6的制冷剂蒸发温度一般设计为55℃。乏汽凝结成水之后,继续进入第二热泵蒸发器8进行降温放热,这是一个单相换热过程,乏汽凝结水温度持续降低,例如出口温度降至25℃,此时热泵第二蒸发器8的制冷剂蒸发温度一般设计为20℃。在热泵第一蒸发器6和热泵第二蒸发器8中,乏汽将其全部的凝结潜热和部分温差显热都传递给了热泵的制冷剂,实现了乏汽废热的回收。

制冷剂的热力循环过程:热泵第一蒸发器6中制冷剂的蒸发温度达到55℃,所以产生的制冷剂蒸汽压力比较高。由于热泵第二蒸发器8中制冷剂的蒸发温度只有20℃,所以产生的制冷剂蒸汽压力比较低,设置第二压缩机9对热泵第二蒸发器8产生的制冷剂蒸汽进行压缩升压,使之达到热泵第一蒸发器6产生的制冷剂蒸汽压力之后,两股制冷剂蒸汽汇合,进入第一压缩机1进行压缩升压,例如第一压缩机1压缩后的排气压力可以升高至90℃对应的制冷剂饱和压力,之后第一压缩机1的排气进入热泵冷凝器2进行凝结放热(将热量释放给载热介质),并冷凝成液态制冷剂流出热泵冷凝器2,

液态制冷剂通过第一制冷剂管路41流出热泵冷凝器2之后分成两路,其中流量较大的一路通过第六制冷剂管路46由第二节流膨胀阀5节流降压降温之后进入热泵第一蒸发器6,并在热泵第一蒸发器6中吸收乏汽的凝结潜热,蒸发为气态,

流量较小的另一路通过第七制冷剂管路47由第三节流膨胀阀7节流降压降温之后进入热泵第二蒸发器8,并在热泵第二蒸发器8中吸收乏汽凝结水的显热,蒸发为气态,之后气态制冷剂进入第二压缩机9进行压缩升压,达到热泵第一蒸发器6产生的制冷剂蒸汽压力,第二压缩机9的排气与热泵第一蒸发器6产生的制冷剂蒸汽汇合,再进入第一压缩机1进行压缩升压,如此完成了一个完整的制冷剂热力循环过程。

载热介质的吸热过程:载热介质从第一载热介质管路31进入热泵冷凝器2,由于载热介质温度比第一压缩机1的制冷剂排气的饱和温度要低一些,例如载热介质进口温度为 80℃,那么在热泵冷凝器2中,载热介质将被第一压缩机1排出的高压高温制冷剂蒸汽加热,一般载热介质可以被加热至85℃流出,实现乏汽被回收的热量转移至载热介质中,同时提高了热量的品位。

本实用新型节能的原因分析:

由于多效蒸发系统需要很高的真空度保障,因此需要乏汽凝结水的温度降至很低,例如25℃。如果采用常规热泵循环,必须按照乏汽凝结水的出口温度25℃来设计热泵的蒸发温度,一般为20℃;必须按照载热介质的出口温度85℃来设计热泵的冷凝温度,一般为90℃,热泵的冷凝温度与蒸发温度相差高达90-20=70℃,根据制冷常识,这样的热泵系统的性能系数是非常低的,理论计算的性能系数只有2.8左右,采用这样的热泵系统进行乏汽热回收的节能性和经济性很难得到体现。

常规热泵循环不经济的根本原因是只采用了一级蒸发,导致蒸发温度太低,没有充分利用乏汽相变时饱和温度较高和温度不变的优点。通过计算可以发现,热泵第一蒸发器6 承担了乏汽热回收中的绝大部分的凝结潜热,单位质量乏汽大约为2360kJ/kg,而热泵第二蒸发器8只承担了乏汽热回收中的较小部分的显热,单位质量乏汽大约为 4.18×(60-25)=146.3kJ/kg。也就是说乏汽的废热绝大部分是在较高的60℃条件下释放的,绝大部分的制冷剂蒸发温度应该设置在55℃才是合理的。只有一小部分的制冷剂可以通过深度节流后蒸发温度设置在20℃,用于回收只占小部分的乏汽凝结水显热。这一小部分的制冷剂蒸汽可以采用一个较小功率的第二压缩机9进行单独压缩,达到55℃对应的制冷剂饱和压力之后,再与绝大部分的制冷剂蒸汽混合,一起进入第一压缩机1进行压缩。可以发现第一压缩机1的排气饱和温度与吸气饱和温度之差只有90-55=35℃,第二压缩机9的排气饱和温度与吸气饱和温度之差也只有55-20=35℃。通过梯级蒸发和梯级压缩,实现了乏汽废热的梯级回收和和能量品质的梯级提升,避免了所有制冷剂蒸汽都需要进行深度压缩,从而实现了热泵循环系统性能系数的提高,实践表明本实用新型的性能系数可高达4.8以上。

本实用新型中的乏汽可以是各类蒸发浓缩工艺的各效低压二次蒸汽,也可以是蒸汽系统的闪蒸汽或二次蒸汽等。载热介质可以是水,也可以是载热油、空气等可用于工艺生产或供热的热媒介。制冷剂可以使用氟利昂类工质,或者氨、烷烃类等工质。

当乏汽凝结水的降温幅度较大时(一般乏汽凝结水出口温度比乏汽饱和温度低30℃以上),适合采用本实施方式。因为乏汽凝结水的降温幅度越大,热泵第二蒸发器8的蒸发压力与热泵第一蒸发器6的蒸发压力之间的差值就越大,第二压缩机9的排气压力可能达不到第一压缩机1的中间补气压力,因此第二压缩机9的排气只能与热泵第一蒸发器6 产生的制冷剂蒸汽混合后,再从第一压缩机1的主进气口进入第一压缩机1。

具体实施方式二:结合图2说明本实施方式,本实施方式所述一种深度冷凝乏汽的双级压缩热泵循环系统包括第一压缩机1、热泵冷凝器2、第二节流膨胀阀5、热泵第一蒸发器6、第三节流膨胀阀7、热泵第二蒸发器8、第二压缩机9、凝结水U型弯10、第一载热介质管路31、第二载热介质管路32、第一乏汽管路33、第二乏汽管路34、第三乏汽管路35、第一制冷剂管路41、第六制冷剂管路46、第七制冷剂管路47、第八制冷剂管路 48、第九制冷剂管路49和第十制冷剂管路50,

第一载热介质管路31的出口端与热泵冷凝器2的热介质进口端连接,热泵冷凝器2 的热介质出口端与第二载热介质管路32的进口端连接,

第一制冷剂管路41的进口端与热泵冷凝器2的制冷剂出口端连接,第一制冷剂管路 41的出口端分别与第六制冷剂管路46的进口端和第七制冷剂管路47的进口端连接,第六制冷剂管路46上设置有第二节流膨胀阀5,第六制冷剂管路46的出口端与热泵第一蒸发器6的制冷剂进口端连接,热泵第一蒸发器6的制冷剂出口端与第八制冷剂管路48的进口端连接,第七制冷剂管路47上设置有第三节流膨胀阀7,第七制冷剂管路47的出口端与热泵第二蒸发器8的制冷剂进口端连接,热泵第二蒸发器8的制冷剂出口端与第九制冷剂管路49的进口端连接,第九制冷剂管路49上设置有第二压缩机9,第九制冷剂管路 49的出口端与第八制冷剂管路48的中部连接,第八制冷剂管路48的出口端与第一压缩机1的主进气口端连接,第一压缩机1的出气口端与第十制冷剂管路50的进口端连接,第十制冷剂管路50的出口端与热泵冷凝器2的制冷剂进口端连接,

第一乏汽管路33的出口端与热泵第一蒸发器6的放热进口端连接,热泵第一蒸发器 6的放热出口端与第二乏汽管路34的进口端连接,第二乏汽管路34上设置有凝结水U型弯10,第二乏汽管路34的出口端与热泵第二蒸发器8的放热进口端连接,热泵第二蒸发器8的放热出口端与第三乏汽管路35的进口端连接。

本实施方式的运行原理:本实施方式与具体实施方式一的区别在于在第二乏汽管路 34上增设了凝结水U型弯10,其目的是为了阻隔在热泵第一蒸发器6内未能完全凝结的乏汽进入热泵第二蒸发器8中,避免热泵第二蒸发器8的制冷剂蒸发量急剧增加,从而避免第二压缩机9的负荷急剧增加,避免造成系统运行不稳定。其它如系统的工作原理、运行方式、适用条件等与具体实施方式一相同。

具体实施方式三:结合图3说明本实施方式,本实施方式所述一种深度冷凝乏汽的双级压缩热泵循环系统包括第一压缩机1、热泵冷凝器2、第二节流膨胀阀5、热泵第一蒸发器6、第三节流膨胀阀7、热泵第二蒸发器8、第二压缩机9、第一载热介质管路31、第二载热介质管路32、第一乏汽管路33、第二乏汽管路34、第三乏汽管路35、第一制冷剂管路41、第六制冷剂管路46、第七制冷剂管路47、第八制冷剂管路48、第九制冷剂管路49和第十制冷剂管路50,

第一载热介质管路31的出口端与热泵冷凝器2的热介质进口端连接,热泵冷凝器2 的热介质出口端与第二载热介质管路32的进口端连接,

第一制冷剂管路41的进口端与热泵冷凝器2的制冷剂出口端连接,第一制冷剂管路41的出口端分别与第六制冷剂管路46的进口端和第七制冷剂管路47的进口端连接,第六制冷剂管路46上设置有第二节流膨胀阀5,第六制冷剂管路46的出口端与热泵第一蒸发器6的制冷剂进口端连接,热泵第一蒸发器6的制冷剂出口端与第八制冷剂管路48的进口端连接,第七制冷剂管路47上设置有第三节流膨胀阀7,第七制冷剂管路47的出口端与热泵第二蒸发器8的制冷剂进口端连接,热泵第二蒸发器8的制冷剂出口端与第九制冷剂管路49的进口端连接,第九制冷剂管路49上设置有第二压缩机9,第八制冷剂管路 48的出口端与第一压缩机1的主进气口端连接,第九制冷剂管路49的出口端与第一压缩机1的中间补气口端连接,第一压缩机1的出气口端与第十制冷剂管路50的进口端连接,第十制冷剂管路50的出口端与热泵冷凝器2的制冷剂进口端连接,

第一乏汽管路33的出口端与热泵第一蒸发器6的放热进口端连接,热泵第一蒸发器 6的放热出口端与第二乏汽管路34的进口端连接,第二乏汽管路34的出口端与热泵第二蒸发器8的放热进口端连接,热泵第二蒸发器8的放热出口端与第三乏汽管路35的进口端连接。

本实施方式的运行原理:本实施方式与具体实施方式一的区别在于第二压缩机9的排气直接从第一压缩机1的中间补气口进入第一压缩机1,不再与热泵第一蒸发器6产生的制冷剂蒸汽混合后从主进气口进入第一压缩机1。

当乏汽凝结水的降温幅度较小时(一般乏汽凝结水出口温度比乏汽饱和温度低30℃以内),适合采用本实施方式。因为乏汽凝结水的降温幅度越小,热泵第二蒸发器8的蒸发压力与热泵第一蒸发器6的蒸发压力之间的差值就越小,第二压缩机9的排气压力可能高于热泵第一蒸发器6的蒸发压力太多,因此第二压缩机9的排气不能与热泵第一蒸发器 6产生的制冷剂蒸汽直接混合,只能从第一压缩机1的中间补气口进入第一压缩机1。

其它如系统的工作原理、运行方式等与具体实施方式一相同。

具体实施方式四:结合图4说明本实施方式,本实施方式所述第二乏汽管路34上设置有凝结水U型弯10。本实施方式中未公开的技术特征与具体实施方式三相同。

具体实施方式五:结合图5说明本实施方式,本实施方式所述一种深度冷凝乏汽的双级压缩热泵循环系统包括第一压缩机1、热泵冷凝器2、第二节流膨胀阀5、热泵第一蒸发器6、第三节流膨胀阀7、热泵第二蒸发器8、第二压缩机9、第一载热介质管路31、第二载热介质管路32、第一乏汽管路33、第二乏汽管路34、第三乏汽管路35、第一制冷剂管路41、第六制冷剂管路46、第七制冷剂管路47、第八制冷剂管路48、第九制冷剂管路49和第十制冷剂管路50,

第一载热介质管路31的出口端与热泵冷凝器2的热介质进口端连接,热泵冷凝器2 的热介质出口端与第二载热介质管路32的进口端连接,

第一制冷剂管路41的进口端与热泵冷凝器2的制冷剂出口端连接,第一制冷剂管路 41上设置有第二节流膨胀阀5,第一制冷剂管路41的出口端分别与第六制冷剂管路46 的进口端和第七制冷剂管路47的进口端连接,第六制冷剂管路46的出口端与热泵第一蒸发器6的制冷剂进口端连接,热泵第一蒸发器6的制冷剂出口端与第八制冷剂管路48的进口端连接,第七制冷剂管路47上设置有第三节流膨胀阀7,第七制冷剂管路47的出口端与热泵第二蒸发器8的制冷剂进口端连接,热泵第二蒸发器8的制冷剂出口端与第九制冷剂管路49的进口端连接,第九制冷剂管路49上设置有第二压缩机9,第九制冷剂管路 49的出口端与第八制冷剂管路48的中部连接,第八制冷剂管路48的出口端与第一压缩机1的主进气口端连接,第一压缩机1的出气口端与第十制冷剂管路50的进口端连接,第十制冷剂管路50的出口端与热泵冷凝器2的制冷剂进口端连接,

第一乏汽管路33的出口端与热泵第一蒸发器6的放热进口端连接,热泵第一蒸发器 6的放热出口端与第二乏汽管路34的进口端连接,第二乏汽管路34的出口端与热泵第二蒸发器8的放热进口端连接,热泵第二蒸发器8的放热出口端与第三乏汽管路35的进口端连接。

本实施方式的运行原理:本实施方式与具体实施方式一的区别在于进入热泵第二蒸发器8的制冷剂先后通过第二节流膨胀阀5和第三节流膨胀阀7进行了两级节流,实现了梯级节流。当要求载热介质出口温度比乏汽凝结水出口温度高出很多时,采用梯级节流可以保障热泵循环系统的运行稳定性和性能系数。

其它如系统的工作原理、运行方式等与具体实施方式一相同。

本实施方式在乏汽凝结水的降温幅度较小时,第二压缩机9的排气也可以从第一压缩机1的中间补气口进入第一压缩机1。

具体实施方式六:结合图6说明本实施方式,本实施方式所述第二乏汽管路34上设置有凝结水U型弯10。本实施方式中未公开的技术特征与具体实施方式五相同。

具体实施方式七:结合图7说明本实施方式,本实施方式所述一种深度冷凝乏汽的双级压缩热泵循环系统包括第一压缩机1、热泵冷凝器2、第一节流膨胀阀3、过冷换热器4、第二节流膨胀阀5、热泵第一蒸发器6、第三节流膨胀阀7、热泵第二蒸发器8、第二压缩机9、第一载热介质管路31、第二载热介质管路32、第一乏汽管路33、第二乏汽管路34、第三乏汽管路35、第一制冷剂管路41、第二制冷剂管路42、第三制冷剂管路43、第四制冷剂管路44、第五制冷剂管路45、第六制冷剂管路46、第七制冷剂管路47、第八制冷剂管路48、第九制冷剂管路49和第十制冷剂管路50,

第一载热介质管路31的出口端与热泵冷凝器2的热介质进口端连接,热泵冷凝器2 的热介质出口端与第二载热介质管路32的进口端连接,

第一制冷剂管路41的进口端与热泵冷凝器2的制冷剂出口端连接,第一制冷剂管路 41的出口端分别与第二制冷剂管路42的进口端和第三制冷剂管路43的进口端连接,第二制冷剂管路42的出口端与过冷换热器4的第一进口端连接,过冷换热器4的第一出口端与第四制冷剂管路44的进口端连接,第三制冷剂管路43上设置有第一节流膨胀阀3,第三制冷剂管路43的出口端与过冷换热器4的第二进口端连接,过冷换热器4的第二出口端与第五制冷剂管路45的进口端连接,第五制冷剂管路45的出口端与第一压缩机1 的中间补气口端连接,第四制冷剂管路44的出口端分别与第六制冷剂管路46的进口端和第七制冷剂管路47的进口端连接,第六制冷剂管路46上设置有第二节流膨胀阀5,第六制冷剂管路46的出口端与热泵第一蒸发器6的制冷剂进口端连接,热泵第一蒸发器6的制冷剂出口端与第八制冷剂管路48的进口端连接,第七制冷剂管路47上设置有第三节流膨胀阀7,第七制冷剂管路47的出口端与热泵第二蒸发器8的制冷剂进口端连接,热泵第二蒸发器8的制冷剂出口端与第九制冷剂管路49的进口端连接,第九制冷剂管路49 上设置有第二压缩机9,第九制冷剂管路49的出口端与第八制冷剂管路48的中部连接,第八制冷剂管路48的出口端与第一压缩机1的主进气口端连接,第一压缩机1的出气口端与第十制冷剂管路50的进口端连接,第十制冷剂管路50的出口端与热泵冷凝器2的制冷剂进口端连接,

第一乏汽管路33的出口端与热泵第一蒸发器6的放热进口端连接,热泵第一蒸发器 6的放热出口端与第二乏汽管路34的进口端连接,第二乏汽管路34的出口端与热泵第二蒸发器8的放热进口端连接,热泵第二蒸发器8的放热出口端与第三乏汽管路35的进口端连接。

本实施方式的运行原理:

乏汽的放热过程:以饱和温度为60℃乏汽为例,乏汽通过第一乏汽管路33首先进入第一热泵第一蒸发器6进行凝结放热,乏汽凝结是一个相变过程,温度维持60℃不变,此时热泵第一蒸发器6的制冷剂蒸发温度一般设计为55℃。乏汽凝结成水之后,继续进入第二热泵蒸发器8进行降温放热,这是一个单相换热过程,乏汽凝结水温度持续降低,例如出口温度降至25℃,此时热泵第二蒸发器8的制冷剂蒸发温度一般设计为20℃。在热泵第一蒸发器6和热泵第二蒸发器8中,乏汽将其全部的凝结潜热和部分温差显热都传递给了热泵的制冷剂,实现了废热的回收。

制冷剂的热力循环过程:热泵第一蒸发器6中制冷剂的蒸发温度达到55℃,所以产生的制冷剂蒸汽压力比较高。由于热泵第二蒸发器8中制冷剂的蒸发温度只有20℃,所以产生的制冷剂蒸汽压力比较低。设置第二压缩机9对热泵第二蒸发器8产生的制冷剂蒸汽进行压缩升压,使之达到热泵第一蒸发器6产生的制冷剂蒸汽压力之后,两股制冷剂蒸汽汇合,进入第一压缩机1进行压缩升压,例如第一压缩机1压缩后的排气压力可以升高至90℃对应的制冷剂饱和压力,之后第一压缩机1的排气进入热泵冷凝器2进行凝结放热(将热量释放给载热介质),并冷凝成液态制冷剂流出热泵冷凝器2,

液态制冷剂通过第一制冷剂管路41流出热泵冷凝器2之后分成两路,其中流量较小的一路通过第三制冷剂管路43由第一节流膨胀阀3节流降压降温之后进入过冷换热器4,流量较大的另一路通过第二制冷剂管路42直接进入过冷换热器4,

在过冷换热器4内,第三制冷剂管路43的制冷剂由于第一节流膨胀阀3的节流降温作用后温度比第二制冷剂管路42的制冷剂温度要低,通过传热,第三制冷剂管路43的制冷剂吸热蒸发为气态,并从第一压缩机1的中间补气口进入第一压缩机1而被压缩,第二制冷剂管路42的制冷剂由于放热而获得更大的过冷度,更大的过冷度可以提高整个热泵循环系统的性能系数,实践表明性能系数可提高10%左右,这也是本实用新型设置过冷换热器4的目的。

通过过冷换热器4过冷之后的第四制冷剂管路44中的制冷剂再分成两路,其中流量较大的一路通过第六制冷剂管路46由第二节流膨胀阀5节流降压降温之后进入热泵第一蒸发器6,并在热泵第一蒸发器6中吸收乏汽的凝结潜热,蒸发为气态,

流量较小的另一路通过第七制冷剂管路47由第三节流膨胀阀7节流降压降温之后进入热泵第二蒸发器8,并在热泵第二蒸发器8中吸收乏汽凝结水的显热,蒸发为气态,之后气态制冷剂进入第二压缩机9进行压缩升压,达到热泵第一蒸发器6产生的制冷剂蒸汽压力,第二压缩机9的排气与热泵第一蒸发器6产生的制冷剂蒸汽汇合,再进入第一压缩机1进行压缩升压,如此完成了一个完整的制冷剂热力循环过程。

载热介质的吸热过程:载热介质从第一载热介质管路31进入热泵冷凝器2,由于载热介质温度比第一压缩机1的制冷剂排气的饱和温度要低一些,例如载热介质进口温度为80℃,那么在热泵冷凝器2中,载热介质将被第一压缩机1排出的高压高温制冷剂蒸汽加热,一般载热介质可以被加热至85℃流出,实现乏汽被回收的热量转移至载热介质中,同时提高了热量的品位。

本实用新型节能的原因分析:

由于多效蒸发系统需要很高的真空度保障,因此需要乏汽凝结水的温度降至很低,例如25℃。如果采用常规热泵循环,必须按照乏汽凝结水的出口温度25℃来设计热泵的蒸发温度,一般为20℃;必须按照载热介质的出口温度85℃来设计热泵的冷凝温度,一般为90℃,热泵的冷凝温度与蒸发温度相差高达90-20=70℃,根据制冷常识,这样的热泵系统的性能系数是非常低的,理论计算的性能系数只有2.8左右,采用这样的热泵系统进行乏汽热回收的节能性和经济性很难得到体现。

常规热泵循环不经济的根本原因是只采用了一级蒸发,导致蒸发温度太低,没有充分利用乏汽相变时饱和温度较高和温度不变的优点。通过计算可以发现,热泵第一蒸发器6 承担了乏汽热回收中的绝大部分的凝结潜热,单位质量乏汽大约为2360kJ/kg,而热泵第二蒸发器8只承担了乏汽热回收中的较小部分的显热,单位质量乏汽大约为 4.18×(60-25)=146.3kJ/kg。也就是说乏汽的废热绝大部分是在较高的60℃条件下释放的,绝大部分的制冷剂蒸发温度应该设置在55℃才是合理的。只有一小部分的制冷剂可以通过深度节流后蒸发温度设置在20℃,用于回收只占小部分的乏汽凝结水显热。这一小部分的制冷剂蒸汽可以采用一个较小功率的第二压缩机9进行单独压缩,达到55℃对应的制冷剂饱和压力之后,再与绝大部分的制冷剂蒸汽混合,一起进入第一压缩机1进行压缩。可以发现第一压缩机1的排气饱和温度与吸气饱和温度之差只有90-55=35℃,第二压缩机9的排气饱和温度与吸气饱和温度之差只有55-20=35℃。通过梯级蒸发和梯级压缩,实现了乏汽废热的梯级回收和和能量品质的梯级提升,避免了所有制冷剂蒸汽都需要进行深度压缩,从而实现了热泵循环系统性能系数的提高,实践表明本实用新型的性能系数可高达5.3左右。

本实用新型中的乏汽可以是各类蒸发浓缩工艺的各效低压二次蒸汽,也可以是蒸汽系统的闪蒸汽或二次蒸汽等。载热介质可以是水,也可以是载热油、空气等可用于工艺生产或供热的热媒介。制冷剂可以使用氟利昂类工质,或者氨、烷烃类等工质。

当乏汽凝结水的降温幅度较大时(一般乏汽凝结水出口温度比乏汽饱和温度低30℃以上),适合采用本实施方式。因为乏汽凝结水的降温幅度越大,热泵第二蒸发器8的蒸发压力与热泵第一蒸发器6的蒸发压力之间的差值就越大,第二压缩机9的排气压力可能达不到第一压缩机1的中间补气压力,因此第二压缩机9的排气只能与热泵第一蒸发器6 产生的制冷剂蒸汽混合后,再从第一压缩机1的主进气口进入第一压缩机1。

本实施方式在乏汽凝结水的降温幅度较小时,第二压缩机9的排气也可以从第一压缩机1的中间补气口进入第一压缩机1。

具体实施方式八:结合图8说明本实施方式,本实施方式所述第二乏汽管路34上设置有凝结水U型弯10。本实施方式中未公开的技术特征与具体实施方式七相同。

具体实施方式九:结合图9说明本实施方式,本实施方式所述一种深度冷凝乏汽的双级压缩热泵循环系统包括第一压缩机1、热泵冷凝器2、第一节流膨胀阀3、过冷换热器4、第二节流膨胀阀5、热泵第一蒸发器6、第三节流膨胀阀7、热泵第二蒸发器8、第二压缩机9、第一载热介质管路31、第二载热介质管路32、第一乏汽管路33、第二乏汽管路34、第三乏汽管路35、第一制冷剂管路41、第二制冷剂管路42、第三制冷剂管路43、第四制冷剂管路44、第五制冷剂管路45、第六制冷剂管路46、第七制冷剂管路47、第八制冷剂管路48、第九制冷剂管路49和第十制冷剂管路50,

第一载热介质管路31的出口端与热泵冷凝器2的热介质进口端连接,热泵冷凝器2 的热介质出口端与第二载热介质管路32的进口端连接,

第一制冷剂管路41的进口端与热泵冷凝器2的制冷剂出口端连接,第一制冷剂管路 41的出口端分别与第二制冷剂管路42的进口端和第三制冷剂管路43的进口端连接,第二制冷剂管路42的出口端与过冷换热器4的第一进口端连接,过冷换热器4的第一出口端与第四制冷剂管路44的进口端连接,第四制冷剂管路44上设置有第二节流膨胀阀5,第三制冷剂管路43上设置有第一节流膨胀阀3,第三制冷剂管路43的出口端与过冷换热器4的第二进口端连接,过冷换热器4的第二出口端与第五制冷剂管路45的进口端连接,第五制冷剂管路45的出口端与第一压缩机1的中间补气口端连接,第四制冷剂管路44 的出口端分别与第六制冷剂管路46的进口端和第七制冷剂管路47的进口端连接,第六制冷剂管路46的出口端与热泵第一蒸发器6的制冷剂进口端连接,热泵第一蒸发器6的制冷剂出口端与第八制冷剂管路48的进口端连接,第七制冷剂管路47上设置有第三节流膨胀阀7,第七制冷剂管路47的出口端与热泵第二蒸发器8的制冷剂进口端连接,热泵第二蒸发器8的制冷剂出口端与第九制冷剂管路49的进口端连接,第九制冷剂管路49上设置有第二压缩机9,第九制冷剂管路49的出口端与第八制冷剂管路48的中部连接,第八制冷剂管路48的出口端与第一压缩机1的主进气口端连接,第一压缩机1的出气口端与第十制冷剂管路50的进口端连接,第十制冷剂管路50的出口端与热泵冷凝器2的制冷剂进口端连接,

第一乏汽管路33的出口端与热泵第一蒸发器6的放热进口端连接,热泵第一蒸发器 6的放热出口端与第二乏汽管路34的进口端连接,第二乏汽管路34的出口端与热泵第二蒸发器8的放热进口端连接,热泵第二蒸发器8的放热出口端与第三乏汽管路35的进口端连接。

本实施方式的运行原理:本实施方式与具体实施方式七的区别在于进入热泵第二蒸发器8的制冷剂先后通过第二节流膨胀阀5和第三节流膨胀阀7进行了两级节流,实现了梯级节流。当要求载热介质出口温度比乏汽凝结水出口温度高出很多时,采用梯级节流可以保障热泵循环系统的运行稳定性和性能系数。

其它如系统的工作原理、运行方式等与具体实施方式七相同。

具体实施方式十:结合图10说明本实施方式,本实施方式所述第二乏汽管路34上设置有凝结水U型弯10。本实施方式中未公开的技术特征与具体实施方式九相同。

本实用新型中各具体实施方式主体均属于一个总的实用新型构思,在技术上相互关联,包含多个相同或者相近的特定技术特征,因此满足单一性的要求,作为一件申请提出。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1