用于改善的部分冷凝一氧化碳冷箱操作的方法与流程

文档序号:31335388发布日期:2022-08-31 08:37阅读:352来源:国知局
用于改善的部分冷凝一氧化碳冷箱操作的方法与流程
用于改善的部分冷凝一氧化碳冷箱操作的方法


背景技术:
技术领域
1.本发明涉及一种从含有氢、一氧化碳、甲烷、水和二氧化碳的合成气中分离一氧化碳的方法。更具体地,本发明涉及通过低温装置从具有高甲烷含量的合成气混合物中分离一氧化碳的方法,在所述低温装置中通常不采用部分冷凝循环,并且更具体地,涉及将离开分离一氧化碳和甲烷的蒸馏塔底部的富甲烷流与具有较低沸点的流混合,然后该混合流进入热交换器,使得该混合流的沸点低于初始富甲烷流的沸点。这种改变使得对于相同的合成气进料而言能够使用更简单、更便宜的部分冷凝工艺来代替甲烷洗涤工艺。
2.相关技术
3.可利用蒸汽或氧气来催化转化烃,诸如天然气、石脑油和液化石油气(lpg),以获得合成气体(即,氢(h2)、一氧化碳(co)、甲烷(ch4)、水(h2o)和二氧化碳(co2)的混合物,通常被称为“合成气”)。包括在部分氧化重整器或蒸汽甲烷重整器中重整在内的重整器工艺是众所周知的,并且它们通常用于获得最终用于生产氢或化学品诸如甲醇和氨的合成气。用于从其余的合成气成分中分离co的常规技术是已知的。例如,低温纯化方法诸如部分冷凝或用液态甲烷洗涤(被称为甲烷洗涤工艺)是众所周知的技术。
4.合成气通常含有必须去除的显著量的co2和h2o,其通常通过以下方法进行:使水冷凝并去除液体,通过胺吸收去除大部分二氧化碳,并在通常被称为干燥器的变温吸附(tsa)单元中去除剩余的co2和水。必须将二氧化碳和水去除到非常低的水平,通常小于50ppb,以防止它们在下游工艺热交换器中冷冻。然后可将合成气送到被称为冷箱的低温分离单元以用于co纯化。
5.存在两种常见类型的co冷箱,部分冷凝和甲烷洗涤。本发明涉及部分冷凝冷箱,其中合成气进料在热交换器中部分冷凝并且使用相分离器分离,以从冷凝组分中分离进料中的大部分氢。如果冷箱进料含有过多的甲烷,则该工艺遭受其不能正确起作用的限制。当甲烷含量高,通常高于约2.5%时,再循环压缩机上的负载增加并且单程co回收率降低至通常使用更昂贵的甲烷洗涤冷箱的程度。
6.授予fisher的美国专利4,805,414公开了一种用于co纯化的部分冷凝工艺,其中将离开co/ch4分离塔底部的甲烷在其进入热交换器之前与整个闪蒸气体流混合。所述工艺包括将离开高压分离器的粗氢蒸气流的一部分与甲烷流混合。
7.授予billy等人的美国专利5,609,040描绘了用于co纯化的部分冷凝工艺,其中将离开co/ch4分离塔底部的甲烷与来自蒸馏塔的氮气和以蒸气形式从第一分离器离开的粗氢混合,所述蒸馏塔从co产物去除所述氮气。该工艺需要脱氮塔,并且不回收氢副产物。
8.授予bassett等人的美国专利5,832,747示出了用于co纯化和合成气生产的部分冷凝工艺,其中离开co/ch4分离塔底部的甲烷在其进入热交换器之前与离开相分离器的膨胀蒸气流混合。该流是第三分离器在第二高压分离器之后串联,第二高压分离器在第一高压分离器之后串联的结果。美国专利5,832,747中所述的方法需要多个分离器,因为也产生
1:1的合成气。
9.授予mcneil等人的美国专利6,062,042和授予mcneil等人的6,070,430示出了用于co纯化的部分冷凝工艺,其中将离开co/ch4分离塔底部的甲烷与得自蒸馏塔的氮气混合,所述蒸馏塔将co产物与氮杂质分离。
10.授予gallarda等人的美国专利6,098,424描绘了用于co纯化和合成气生产的部分冷凝工艺,其中将离开co/ch4分离塔底部的甲烷与来自汽提塔顶部的整个闪蒸气体流混合。不考虑仅将一部分闪蒸气体流混合的工艺。
11.授予mcneil等人的美国专利6,161,397示出用于co纯化和合成气生产的部分冷凝工艺,其中将离开co/ch4分离塔底部的甲烷与在混合前加热的粗一氧化碳流混合。
12.授予mcneil的美国专利6,467,306类似于美国专利5,832,747。两者均示出了用于co纯化的部分冷凝工艺,其中将离开co/ch4分离塔底部的甲烷在其进入热交换器之前与来自分离器的加热蒸气流混合。然而,该工艺中的蒸气流是第二分离器串联进料的蒸气部分的结果。美国专利6,467,306中所述的工艺使用多个分离器,这增加了该工艺的资本成本。
13.授予scharpf的美国专利6,568,206示出了用于co纯化的部分冷凝工艺,其中将离开co/ch4分离塔底部的甲烷流与渗透膜的氢流混合,然后冷却并膨胀以在冷箱中提供附加的制冷。本发明的工艺不涉及膜并且不具有相当于与甲烷混合的经膨胀膜渗透物的流。
14.在用于co生产的相关领域中,存在将具有较低沸点的流与来自co/ch4分离塔底部的甲烷流混合的若干示例,但这些示例均不使用仅一部分较低沸点的流来控制混合物的沸点从而控制该流在热交换器中沸腾的位置。此外,如比较例中所示,仅使用一部分较低沸点流提供优于如本文所述的现有技术方法的优点。
15.为了克服相关领域的缺点,本发明的目的是提供一种改善的工艺和设备,以克服由部分冷凝冷箱进料中的高甲烷导致的操作限制,同时仍然保持高co回收率。
16.本发明的目的是降低压缩功率,具体地讲对于再循环到冷箱的流而言。
17.本发明的另一目的是增加部分冷凝冷箱的操作范围,以允许由于上游工艺中的上调而增加进料中的甲烷,同时保持高co回收率和通量。
18.本发明的另一目的是实现氢产物的高回收率。氢是本发明中所公开的工艺的有价值的副产物,并且不能将其回收代表显著的经济缺点。
19.本发明的另一目的是使部分冷凝合成气进料的气相中的co量最小化来减少再循环压缩功率。这通过使其离开热交换器的温度最小化来完成,并且通过向热交换器提供可能最冷的流以冷却合成气进料来实现。
20.本发明的另一目的是使分离器的数量和与它们相关的资本成本最小化。
21.本发明的另一目的是提供一种不需要脱氮塔和与该塔相关的资本成本的工艺。
22.本发明的另一目的是避免使用膜和与其相关的资本成本。
23.通过阅读本说明书、附图和所附权利要求,本发明的其他目的和方面对于本领域普通技术人员将变得显而易见。


技术实现要素:

24.本发明适用于使用低温部分冷凝工艺从合成气中分离一氧化碳。具体地讲,在合成气的甲烷含量高于约2.5%的情况下,现有技术中的部分冷凝工艺遭受低一氧化碳回收
率或高功率消耗。本发明提供了工艺,其中降低离开蒸馏塔进入工艺热交换器冷端的富甲烷液体副产物流的沸点,允许在较低温度下从进料流去除热量,产生具有较低温度的部分冷凝合成气,增加整体和单程co回收率,同时降低再循环压缩功率。
25.甲烷流的沸点可通过将其与离开高压分离器的富氢蒸气流的一部分或离开低压分离单元的富氢蒸气流的一部分混合来降低。这可显著改善工艺热交换器的性能和效率。
附图说明
26.根据本发明优选实施方案的以下具体实施方式结合附图将更好地理解本发明的目的和优点,其中类似的数字在整个说明书中指代相同的特征,并且其中:
27.图1是说明本发明的实施方案的工艺流程图,其中由低压分离单元产生的蒸气流的一部分与离开蒸馏塔的富甲烷液体混合,以产生在比工艺热交换器中的富甲烷液体更低的温度下沸腾的混合流;并且
28.图2是说明本发明的实施方案的工艺流程图,其中由高压分离器产生的蒸气流的一部分与离开蒸馏塔的富甲烷液体混合,以产生在比工艺热交换器中的富甲烷液体更低的温度下沸腾的混合流。
具体实施方式
29.根据如图1所示的本发明的一个方面,提供了一种用于在部分冷凝一氧化碳冷箱中从合成气原料中分离一氧化碳的方法。该方法包括:
30.在接近环境温度和通常介于250psig与500psig之间的高压下,合成气进料(1)与高压再循环物(34)混合,并且进料到干燥器(110),所述干燥器去除杂质,包括剩余的水和二氧化碳,以产生冷箱进料(2)。冷箱进料(2)进入位于冷箱(100)内部的工艺热交换器(101),并且离开工艺热交换器(101)作为冷却的冷箱进料(3),其通常介于130k和140k之间。冷却的冷箱进料(3)被分流成部分冷凝进料(4)和再沸器进料(6)。部分冷凝进料(4)在工艺热交换器(101)中进一步冷却至通常介于85k与95k之间的温度,使得该流的一部分被冷凝并且离开工艺热交换器作为部分冷凝进料(5),将其进料到高压分离器(102)。再沸器进料(6)向再沸器(106)提供热量并且离开再沸器作为冷却的再沸器进料(7),所述冷却的再沸器进料也进料到高压分离器(102)。高压分离器(102)将进料到其中的混合物分离以产生高压富一氧化碳进料液体(10)和粗氢蒸气(8),所述粗氢蒸气在工艺热交换器(101)中温热,以产生温热的粗氢(9),其随后进料到变压吸附系统(108)。
31.高压富一氧化碳进料液体(10)穿过阀(103)膨胀,以产生低压分离单元进料(11),其进料到通常在介于20psig与80psig之间操作的低压分离单元(104)。低压分离单元(104)可以是单级分离器容器、双级分离器、多级蒸馏塔或汽提塔、或者去除低压分离单元进料(11)中所含的大部分氢的其他装置。通常,预期具有更多级的分离单元将产生具有较少的氢的较高纯度co产物,但也将具有更高的资本成本。图1示出了单级分离器。双级分离器或多级塔可需要其他流。对用于低压分离单元(104)的装置的选择取决于co产物的氢纯度要求。低压分离单元(104)产生冷的富氢闪蒸气体(12)和粗co液体(14)。将一部分冷闪蒸气体(12a)与下文所述的富甲烷液体(20)混合。这部分的冷闪蒸气体(12a)在约1体积%至99体积%,优选地5-40体积%,并且最优选地10-30体积%的范围内。冷闪蒸气体(12)的剩余部
分在工艺热交换器(101)中温热以产生通常接近环境温度的闪蒸气体(13)。粗co液体(14)被分成直接塔进料(15)和液体分流进料(16)。直接塔进料(15)直接进料到蒸馏塔(105),而液体分流进料(16)在工艺热交换器(101)中至少部分地蒸发以形成汽化的塔进料(17),其在低于直接塔进料(15)位置的位置处进料到蒸馏塔(105)。
32.蒸馏塔(105)通常在介于5psig与25psig之间操作,并将进料到其中的流分离以产生冷co产物(23)(其通常介于82k与90k之间)以及富甲烷液体(20)(其通常介于105k与110k之间)。从蒸馏塔(105)中去除再沸器液体流(18),并在再沸器(106)中加热以产生部分沸腾的底部物质(19),将其返回到蒸馏塔(105)的贮槽。富甲烷液体(20)与冷闪蒸气体的部分(12a)混合以形成混合流(20a)。混合流(20a)的沸点低于富甲烷液体的沸点,使得其在工艺热交换器(101)中加热和汽化时在较低温度下汽化,以产生燃料气体(21)。
33.通过使用在工艺热交换器(101)中提供本发明的优点所必需的最小值来确定与富甲烷液体(20)混合的该部分冷闪蒸气体(12a)的量。如果没有足够的冷闪蒸气体与富甲烷液体混合,则热交换器将不太有效,并且部分冷凝进料(5)的温度将太高,从而导致不必要的再循环流量和压缩功率。如果将太多的冷闪蒸气体与富甲烷液体混合,则co和氢产物将损失,而不提供工艺热交换器的附加有益效果。这在本文所述的比较例中示出。
34.冷co产物(23)与涡轮机排气(28)混合以形成混合的冷co产物(24),所述冷co产物在工艺热交换器(101)中加热,以产生温热的co产物(25),其通常被压缩(未示出),并且在较高压力下去除一部分作为回收产物。将剩余的经压缩温热co产物再循环到冷箱作为co再循环物(26),其通常介于100psig与300psig之间。co再循环物(26)可处于与回收的产物相同的压力下或处于不同的压力下。
35.co再循环物(26)在工艺热交换器(101)中冷却并分流成涡轮机进料(27)和温热co回流物(29)。通常处于与介于125k和145k之间的冷却的冷箱进料(3)类似的温度下的涡轮机进料(27)在涡轮机(107)中膨胀,以产生涡轮机排气(28),所述涡轮机排气处于较低压力,通常在或略高于5psig至25psig的蒸馏塔压力,并且处于比涡轮机进料(27)更低的温度,通常接近其露点或可能含有少量液体。由涡轮机提供的必要制冷可以以其他方式提供,包括液氮添加(未示出)。温热co回流物(29)在工艺热交换器(101)中进一步冷却和冷凝以产生冷co回流液体(30),其作为回流的流进料到蒸馏塔(105)以改善冷co产物(23)纯度。
36.变压吸附系统(108)产生高纯度氢产物(31)和尾气(32)。尾气(32)和闪蒸气体(13)混合以产生低压再循环混合物(33)。低压再循环混合物(33)在再循环气体压缩机(109)中压缩以产生高压再循环物(34),其与合成气进料(1)混合并进料到干燥器(110)。
37.根据如图2所示的本发明的另一方面,提供了一种用于在部分冷凝一氧化碳冷箱中从合成气原料中分离一氧化碳的方法。在这种情况下,粗氢蒸气(8)的一部分(8a)在粗氢蒸气膨胀阀(103a)中膨胀之后,与富甲烷液体(20)混合以产生混合流(20a)。这种膨胀将该部分粗氢蒸气(8a)的压力从约250-500psig降低至约5-25psig,并将温度从约85-95
°
k降低至约75-90
°
k。该部分粗氢(8a)在约0.5体积%至99体积%,优选地0.5-30体积%,且最优选地0.5-10体积%的范围内。必须小心监测混合流的冷却程度,以确保该混合流中的甲烷不冷冻。混合流(20a)的沸点低于富甲烷液体的沸点,使得其工艺热交换器(101)中加热和汽化时在较低温度下汽化,以产生燃料气体(21)。
38.与相关领域中的另选方法相比,本发明的重要方面在于其在更低功率消耗下具有
更高的co回收率。这通过将富甲烷液体(20)与具有较低沸点的另一流混合来实现,使得混合流的沸点低于富甲烷液体(20)的沸点。这改善了工艺热交换器(101)的效率并降低了部分冷凝进料(5)的温度,从而降低了粗氢蒸气(8)的量和后续再循环压缩功率。
39.本发明的另一重要方面在于由于典型的或不常见的条件,其实现了部分冷凝co冷箱针对具有较高甲烷含量进料的操作,其具有比相关领域的工艺更高的回收率和更低的功率消耗。这些优点在以下实施例中示出。
40.比较例
41.对图1中所示的工艺进行建模,其对于在冷闪蒸气体(12)以及与富甲烷液体(20)混合的部分(12a)之间分流而有所不同。令人惊讶地,存在针对最大化一氧化碳产物的总回收率的最佳分流。
42.表1示出结果。在情况1中,冷闪蒸气体均不与富甲烷液体混合。在情况2中,将20体积%的冷闪蒸气体与富甲烷液体混合。在情况3中,所有冷闪蒸气体均与富甲烷液体混合。提供情况1和情况3两者作为比较结果以展示出本发明的优点。所有情况均具有处于100℉和361psig下的4802lbmol/hr的合成气进料,其中组成为65.83%氢、22.86%一氧化碳、11.10%甲烷和0.21%氮气。所有情况均在125psig下产生至少99%纯度的一氧化碳产物。所有情况均在320psig下产生氢产物。所有情况均在热交换器中保持至少1k的δt。
43.表1
[0044][0045]
*该流在98.8k下进入热交换器作为22%蒸气。
[0046]
将情况1与情况2进行比较,将20体积%冷闪蒸气体(12)与富甲烷液体(20)混合的影响在于工艺热交换器(101)的性能显著改善,因为混合物的沸点低于富甲烷液体的沸点。这可通过比较10%的该流是蒸气时的温度而看到。在情况2中,温度为104.3
°
k,而在情况1中,其为107.3
°
k。这导致在工艺热交换器内部在较低温度下热传递增加,从而导致高压分离器(102)中的较低温度(92.27
°
k相对于94.25
°
k)。在高压分离器中的较低温度影响在于较少的co与粗氢(8)一起离开通过分离器的顶部,从而导致较少的尾气流量(32)(1134lbmol/hr相对于1249lbmol/hr),以及因此导致更少的再循环压缩机流量和功率(2602kw相对于2932kw)。
[0047]
在情况1中,在没有物质与富甲烷液体混合的情况下,对热交换器的影响延伸到蒸馏塔(105)。热交换器中的温度差必须通过增加高压分离器温度(如上文所述的),并且还通过改变富甲烷液体的组成来保持。在情况2中,通常用作燃料流的富甲烷液体可含有92%甲烷。在情况1中,组成必须减少到89%甲烷以保持热交换器中的δt,导致更多的一氧化碳进入燃料流,从而将co回收率从94.49%降低至93.87%,获得7lbmol/hr的总co产物损失。
[0048]
如该比较结果所示,在与情况1相比时,其中将20体积%的冷闪蒸气体与富甲烷液体混合的情况2具有更高的co回收率和降低的压缩功率。这提供了优于情况1的显著优势。
情况1确实回收了更多氢,但是因为基于体积氢的价值小于一氧化碳,因此情况1的优点不足以克服co回收率降低或所需的功率增加。
[0049]
将情况2与情况3进行比较,将20体积%的冷闪蒸气体与富甲烷液体混合相对于将所有冷闪蒸气体混合的影响在于co回收率(94.49%相对于90.13%)以及氢回收率(99.57%相对于98.04%)在情况2中显著更高。这是因为与富甲烷液体混合的冷闪蒸气体中所含的任何co和氢都损失成燃料并且不作为产物回收。尽管用于情况3的压缩功率较低(3870kw相对于4343kw),但因为存在较少的再循环流量,co(减少4.6%)和氢(减少1.6%)产物的损失显著超出节省的功率。因此,情况2还具有优于情况3的显著优点。
[0050]
将粗氢与富甲烷液体混合具有类似的影响。如果没有物质进行混合,如上情况1所述,则热交换器的性能遭受影响,从而导致较高的高压分离器温度。这种情形也需要蒸馏塔在更多的co产物损失到富甲烷液体中的情况下操作。如果将所有粗氢流混合,则氢产物的损失使其在氢产物具有任何价值的任何情况下均成本过高。通常,仅需要将少量的粗氢流与富甲烷液体混合来提供类似于上述情况2中所见的有益效果。
[0051]
虽然已经参考本发明的具体实施方案详细描述了本发明,但是对于本领域技术人员来说显而易见的是,在不脱离所附权利要求的范围的情况下,可进行各种改变和修改,并且可采用等同物。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1