氢氟酸废水处理方法及装置的制作方法

文档序号:4824666阅读:874来源:国知局
专利名称:氢氟酸废水处理方法及装置的制作方法
技术领域
本发明涉及对含氢氟酸的氢氟酸废水进行处理的氢氟酸废水处理方法及装置。
背景技术
在制造半导体和液晶等的电子部件的过程中所排出的氢氟酸废水由于被稀释难以再利用,因此通常采用这样的方法进行处理,即用消石灰(氢氧化钙)中和氢氟酸形成不溶性的氟化钙后,使其与氢氧化钙一起沉淀,作为污泥从废水中分离的方法。
但是在该方法中存在着沉淀和脱水所需的设备空间过大的问题。另外,由于需要提供过量的氢氧化钙,因此产生污泥大量生成,最终即使在脱水后也残留大量废弃物的问题。此外,由于在处理过的水中残留15~20ppm的氟,因此从提高水质的观点出发还存在进一步改进的余地。
因此在专利文献1中公开了一种氢氟酸废水处理方法,其是向氢氟酸废水中添加如苛性钠或苛性钾水溶液的碱性水溶液后,通过蒸发冷凝而生成蒸馏水的方法。
专利文献1 特开平9-271785发明内容可是,上述专利文献1公开的方法是通过向氢氟酸废水中添加碱性水溶液进行中和的,由蒸发得到的冷凝水中溶解有NaF等的盐,因此存在着不能从冷凝水回收氢氟酸进行再利用的问题。另外,还存在着难以控制碱性水溶液添加量,以维持蒸馏水中的氢氟酸浓度使其适于环境保护的问题。
本发明的目的是解决上述问题,提供可有效回收包含在氢氟酸废水中的氢氟酸,同时使处理后的脱氢氟酸的水中的氢氟酸浓度充分降低的氢氟酸废水处理方法和装置。
本发明的上述目的是通过一种氢氟酸废水处理方法实现的,该方法是处理含有氢氟酸的氢氟酸废水的氢氟酸废水处理方法,包括如下工序通过蒸发浓缩氢氟酸废水,生成浓缩氢氟酸水和含氢氟酸蒸气的氢氟酸浓缩工序;使所述氢氟酸浓缩工序生成的含氢氟酸蒸气与溶解用水接触,使其溶解的溶解工序;通过使所述溶解工序中残留的含氢氟酸蒸气与碱接触,生成中和液和脱氢氟酸的蒸气的中和工序;以及通过对所述中和工序中生成的脱氢氟酸的蒸气进行冷凝,生成冷凝水的冷凝工序。
优选该氢氟酸废水处理方法进一步包括将上述中和工序中生成的中和液用离子交换膜分离成含氢氟酸水、含碱的水和脱盐水的中和液分离工序。
另外,优选进一步包含通过使上述冷凝工序中生成的冷凝水与碱接触,和/或在通过上述冷凝工序冷凝前使脱氢氟酸的蒸气与碱接触,生成中和液,通过蒸发浓缩该中和液,生成浓缩中和液和再脱氢氟酸的蒸气的中和液浓缩工序;以及将所述中和液浓缩工序中生成的浓缩中和液采用离子交换膜分离成含氢氟酸的水、含碱的水和脱盐水的浓缩中和液分离工序。
另外,上述氢氟酸浓缩工序优选包含将上述溶解工序中生成的含氢氟酸蒸气的溶解液进行蒸发浓缩的工序。
或者,用于实现本发明上述目的的氢氟酸废水处理方法也可以包括通过对氢氟酸废水进行蒸发浓缩,生成浓缩氢氟酸水和含氢氟酸蒸气的第1浓缩工序;将所述第1浓缩工序中生成的含氢氟酸蒸气进行中和冷凝,生成中和液的中和冷凝工序;将所述中和冷凝工序中生成的中和液浓缩,生成浓缩中和液的第2浓缩工序;以及将所述第2浓缩工序中生成的浓缩中和液用离子交换膜分离为含氢氟酸水、含碱水和脱盐水的分离工序。
另外,本发明的上述目的通过一种氢氟酸废水处理装置实现,该装置为含氢氟酸的氢氟酸废水进行处理的氢氟酸废水处理装置,具有如下装置通过对氢氟酸废水进行蒸发浓缩,生成浓缩氢氟酸水和含氢氟酸蒸气的氢氟酸浓缩装置;使所述氢氟酸浓缩装置中生成的含氢氟酸蒸气与溶解用水接触使其溶解的水接触装置;通过使所述水接触装置中残留的含氢氟酸蒸气与碱接触,生成中和液和脱氢氟酸的蒸气的碱接触装置;以及通过对所述碱接触装置中生成的脱氢氟酸的蒸气进行冷凝,生成冷凝水的冷凝装置。
优选该氢氟酸废水处理装置进一步包含将所述碱接触装置中生成的中和液用离子交换膜分离成含氢氟酸的水、含碱的水和脱盐水的分离装置。
另外,优选进一步包含通过使上述冷凝装置中生成的冷凝水与碱接触,和/或在通过上述冷凝装置冷凝前使脱氢氟酸的蒸气与碱接触,生成中和液,通过蒸发浓缩该中和液,生成浓缩中和液和再脱氢氟酸的蒸气的中和浓缩装置,优选所述分离装置将所述中和浓缩装置中生成的浓缩中和液、以及所述碱接触装置中生成的中和液一起用离子交换膜分离成含氢氟酸的水、含碱的水和脱盐水。
或者,用于实现本发明上述目的的氢氟酸废水处理装置也可以包括通过对氢氟酸废水进行蒸发浓缩,生成浓缩氢氟酸水和含氢氟酸蒸气的第1浓缩装置;将所述第1浓缩装置中生成的含氢氟酸蒸气进行中和冷凝,生成中和液的中和装置和冷凝装置;将通过所述中和装置和冷凝装置生成的中和液浓缩,生成浓缩中和液的第2浓缩装置;以及将通过所述第2浓缩装置生成的浓缩中和液用离子交换膜分离为含氢氟酸的水、含碱的水和脱盐水的分离装置。
根据本发明可提供有效回收包含在氢氟酸废水中的氢氟酸,同时使处理后的脱氢氟酸的水的氢氟酸浓度充分减少的氢氟酸废水处理方法和装置。


图1为表示根据本发明第1实施形式的氢氟酸废水处理装置的总体结构图。
图2为图1所示的氢氟酸废水处理装置主要部分的简略结构图。
图3为用于说明图1所示的氢氟酸废水处理装置的操作的流程图。
图4为表示根据本发明第2实施形式的氢氟酸废水处理装置的总体结构图。
图5为用于说明图2所示的氢氟酸废水处理装置的操作的流程图。
图6为表示根据本发明第3实施形式的氢氟酸废水处理装置的总体结构图。
图7为用于说明图3所示的氢氟酸废水处理装置的操作的流程图。
符号说明1氢氟酸浓缩装置2水接触装置3碱接触装置4冷凝装置
5分离装置6中和浓缩装置101第1浓缩装置102冷凝装置103中和装置104第2浓缩装置106分离装置具体实施形式以下参照附图对本发明的实施形式进行说明。
(第1实施形式)图1为表示根据本发明第1实施形式的氢氟酸废水处理装置的总体结构图。如图1所示,该氢氟酸废水处理装置具有氢氟酸浓缩装置1,水接触装置2,碱接触装置3、冷凝装置4和分离装置5。
氢氟酸浓缩装置1例如为闪蒸氢氟酸浓缩装置,该装置具有收纳氢氟酸废水的蒸发罐11,将电子部件工厂等排出的氢氟酸废水供给蒸发罐11的氢氟酸废水供给管线12,对收纳在蒸发罐11中的氢氟酸废水进行加热、使其蒸发的加热装置13,和将通过蒸发而浓缩的氢氟酸废水排出的氢氟酸回收管线14。加热装置13是以使蒸发罐11内的氢氟酸废水通过设置在循环管线15上的加热器16这样的方式构成的,在减压下使加热器16加热过的氢氟酸废水通过喷嘴(图中未示出)分散在蒸发罐11内。氢氟酸回收管线14或循环管线15中氢氟酸废水的输送由第一泵17实施,各管线的转换由转换阀(图中未示出)的手动操作或自动操作实施。对于蒸发罐11和加热装置13,优选用氟树脂衬料或不渗透石墨等保护与氢氟酸废水的接触面,由此可获得对浓缩氢氟酸水的充分耐腐蚀性。
水接触装置2可使用例如喷雾式、填充塔式、塔盘式等的各种纯水涤气器。水接触装置2具有通过溶解用水供给管线(图中未示出)提供纯水等的溶解用水的水洗塔21,将蒸发罐11产生的含氢氟酸蒸气提供给水洗塔21的生成的氢氟酸蒸气供给管线22,将收纳在水洗塔21中的溶解用水进行分散的溶解用水分散装置23,和将分散的水和氢氟酸蒸气接触生成的氢氟酸水提供给蒸发罐11的返回管线24。溶解用水分散装置23的结构是通过分散管线25向上方输送水洗塔21内的溶解用水,通过从设置在分散管线25前端部的喷嘴26进行分散,使水洗塔21内的氢氟酸蒸气溶解在雾状微小液滴中,生成氢氟酸水。返回管线24或分散管线25中氢氟酸水的输送是由第2泵27实施的,各管线的转换由转换阀(图中未示出)的手动操作或自动操作实施。
碱接触装置3为具有例如与纯水涤气器一样结构的碱洗涤器,其具有通过图中未示出的中和用水供给管线提供KOH水溶液或NaOH水溶液的碱性溶液的中和塔31,将水洗塔21中残留的氢氟酸蒸气提供给中和塔31的残留氢氟酸蒸气供给管线32,将收纳在中和塔31中的碱性水溶液进行分散的中和用水分散装置33,和从中和塔31排出由氢氟酸蒸气与碱性水溶液接触而生成的中和液的中和液排出管线34。中和用水分散装置33的结构是通过分散管线35向上方输送中和塔31内的碱性水溶液,并通过设置在分散管线35前端的喷嘴36进行分散,由此使中和塔31内的氢氟酸蒸气与雾状微小液滴接触并反应,生成中和盐。中和液排出管线34或分散管线35中碱性水溶液的输送是由第3泵37实施的,各管线的转换由转换阀(图中未示出)的手动操作或自动操作实施。
冷凝装置4通过将中和塔31中几乎完全除去氢氟酸蒸气后的脱氢氟酸的蒸气通过脱氢氟酸的蒸气的供给管线41导入,在真空泵(图中未示出)减压下用冷却水进行冷却,由此生成脱氢氟酸的蒸气的冷凝水。作为冷却水,可采用由图中未示出的冷却塔等冷却的工业用水或由冷冻装置冷却的冷水(冷却水)等。所生成的脱氢氟酸的冷凝水通过冷凝水排出管线42排出。
分离装置5是对从中和塔31通过中和液排出管线34排出的中和液进行分离的装置,例如为双极性膜分离装置。该双极性膜分离装置如图2所示,其构成是由一对阴离子交换膜51和阳离子交换膜52形成中和盐室53,在中和盐室53的相对侧与阴离子交换膜51和阳离子交换膜52分别相对地配置双极性膜54,55,是具有一对电极(图中未示出)的电渗析装置。中和盐室53的一端与碱接触装置3的中和液排出管线34相连,另一端具有将通过中和盐室53后的脱盐水排出的脱盐水排出管线56。在阴离子交换膜51和双极性膜54之间,以及在阳离子交换膜52和双极性膜54之间,分别与含稀氢氟酸的水供给管57a和含稀碱的水供给管57b相连。所生成的含氢氟酸水和含碱水可分别通过含氢氟酸水排出管线58和含碱水排出管线59排出。作为分离装置5,在本实施形式中仅显示出了1个池,但通常是由多个池层叠构成的。
以下通过适宜地参照图3所示的流程图对具有以上结构的氢氟酸废水处理装置的操作进行说明。作为处理对象的氢氟酸废水,合适地为例如在电子部件制造工序的用于除去硅氧化膜的洗涤工序中使用后的氢氟酸废水等,半导体和液晶等的制造工序中排出的重量浓度为0.1~3重量%(在下文中,仅用%表示重量浓度)左右的稀浓度的氢氟酸废水。另外,在蒸发罐11、水洗塔21和中和塔31中分别预先贮存预定量的氢氟酸废水、溶解用水(在本实施形式中为纯水)和中和用水(在本实施形式中为KOH水溶液)。
首先在氢氟酸浓缩装置1中实施氢氟酸浓缩工序(步骤S1)。即调整蒸发罐11的压力,使氢氟酸废水的温度达到饱和温度,通过第1泵17的操作由加热器116对氢氟酸废水进行加热,形成5℃左右的过饱和液。该过饱和液从喷嘴(图中未示出)分散,过饱和成分形成蒸气,同时贮存在蒸发罐11中的氢氟酸废水慢慢地浓缩。由此从氢氟酸废水生成浓缩的氢氟酸水和含氢氟酸的蒸气。
优选设定蒸发罐11内的压力例如为0.0074MPa,相当于在饱和温度为40℃左右的饱和压力,此时,罐内液浓度为约3%,含氢氟酸蒸气的氢氟酸浓度为0.2%。含氢氟酸蒸气经由生成的氢氟酸蒸气的供给管线22提供给水洗塔21。
在水接触装置2中实施溶解工序(步骤S2)。即,通过操作第2泵27使溶解用水通过分散管线25,将溶解用水从喷嘴26分散,从而含氢氟酸蒸气与在水洗塔21内充满的纯水等的溶解用水的液滴接触。结果使蒸气中所含的大部分(例如根据罐内溶液浓度条件的不同,为60~90%左右)氢氟酸溶解在溶解用水中,由此将其除去。
贮存在水洗塔21中溶解用水的氢氟酸浓度慢慢增加,形成稀浓度的氢氟酸水。通过操作切换阀(图中未示出)将分散管线25切换到返回管线24,可将该氢氟酸水提供给蒸发罐11。另外,在水洗塔21中可补充纯水或后述的脱氢氟酸的冷凝水作为溶解用水。
由此通过设置水接触装置2可大幅度地提高氢氟酸回收率。另外在氢氟酸废水中多数含有氟硅酸,其中一部分形成氟化硅与蒸气伴随,但由于在生成稀氢氟酸水的水洗塔21中该氟硅酸基本上成为二氧化硅被收集,因此在以后工序中所用的电渗析装置等中可防止二氧化硅造成的不利影响。
在碱接触装置3中实施中和工序(步骤S3)。即,通过操作第3泵37使中和用水通过分散管线35,使中和用水从喷嘴36分散,由此使含氢氟酸蒸气与中和塔31内充满的KOH等的中和用水的液滴接触,生成氟化钾(KF)等的中和盐。其结果是中和用水中溶解的中和盐的浓度慢慢增加,形成pH值为9~12左右的中和液。中和液中中和盐的浓度例如为10%左右。在中和塔31中除去氢氟酸后的脱氢氟酸的蒸气通过脱氢氟酸的蒸气的供给管线41提供给冷凝装置4。
在冷凝装置4中实施冷凝工序(步骤S4)。即,在减压下使所提供的脱氢氟酸的蒸气与冷却水进行热交换将其冷却,生成脱氢氟酸的冷凝水。脱氢氟酸的冷凝水中氢氟酸浓度充分下降,可通过冷凝水排出管线42排放,或作为低级别的纯水回收。
在分离装置5中实施中和液分离工序(步骤S5)。在中和塔31中生成的中和液被提供给分离装置5。如图2所示,在中和盐室53中阳离子K+透过阳离子交换膜52,阴离子F-透过阴离子交换膜51。另一方面,通过含稀氢氟酸水供给管线57a和含稀碱水供给管线57b提供的含稀氢氟酸的水和含稀碱的水在双极性膜54、55处离解成H+和OH-等,H+和F-结合形成HF,生成含HF的含氢氟酸水,OH-和K+结合形成KOH,生成含KOH的含碱水。含氢氟酸水和含碱水分别通过含氢氟酸水排出管线58和含碱水排出管线59排出。通过中和盐室53除去中和盐后的脱盐水是通过脱盐水排出管线56排出的。
通过含氢氟酸水排出管线58排出的含氢氟酸水的浓度例如为4%左右。可在金属的酸洗等的各种用途中利用。含氢氟酸水排出管线58可以与例如氢氟酸浓缩装置1的蒸发罐11相连,也可以将分离装置5中生成的含氢氟酸水再一次进行浓缩。在该过程中,也可以通过在从含氢氟酸水排出管线58排出的一部分含氢氟酸水中适宜地补加纯水,达到预定的稀浓度后,再一次从含稀氢氟酸水供给管线57a供给。
含碱水排出管线59在本实施方式中通过与中和塔31相连,在碱接触装置3中作为中和用碱进行利用,但是该含碱水排出管线59也可以不与中和塔31相连,将含碱水用于其它用途。在该过程中,也可以通过向从含碱水排出管线59排出的一部分含碱水中适宜地补加纯水,使其达到预定的稀浓度后,再一次从含稀碱水供给管线57b供给。
在本实施形式中介绍的是脱盐水排出管线56将脱盐水直接废弃,但是也可以通过将该管线与中和塔31相连,将脱盐水再次导入到分离装置5中。或者,也可以将脱盐水排出管线56与配置在中和液排出管线34上的中和液罐(图中未示出)相连,进行液体循环直至将该中和液罐的中和液浓度降低到预定浓度。
向氢氟酸浓缩装置1供给氢氟酸废水可在第1泵17的操作后立刻停止,但是在本实施形式中,以补充与蒸发罐11中氢氟酸废水蒸发量相当的量的方式继续提供氢氟酸废水,由此可将蒸发罐11内氢氟酸废水的液面大致保持一定。如此,一边提供氢氟酸废水,一边实施蒸发浓缩的前浓缩工序,之后,停止向氢氟酸浓缩装置1供给氢氟酸废水,由加热装置13继续对氢氟酸废水实施加热蒸发,进行后浓缩工序。通过附加该后浓缩工序,可获得高的氢氟酸回收率,同时可使浓缩的氢氟酸废水的浓度短时间容易达到最终所需浓度。
从前浓缩工序向后浓缩工序的转换或后浓缩工序的完成,可经过预定时间来实施,或者也可以基于对流经循环管线15的氢氟酸浓缩水浓度的检测(例如导电性的测定)实施。氢氟酸废水处理装置的操作,在例如以1天为单位的情况下可操作19小时,剩余时间进行氢氟酸废水等液体的注入,浓缩氢氟酸水的输出,残留不纯物的排出等。
以上的操作方法是作为获得最高氢氟酸回收率情况的有效方法进行记载的,但是也可以采用一种连续运转方法,其中将蒸发罐11或水洗塔21内的氢氟酸浓度维持在预先规定的浓度,同时连续地供给氢氟酸废水,在从蒸发罐11排出浓缩氢氟酸水的同时,一边向水洗塔21中补充溶解用水,一边向蒸发罐11返还氢氟酸水。
在浓缩工序完成后,浓缩氢氟酸水的浓度例如为10~14%左右。该浓缩氢氟酸水可通过操作氢氟酸浓缩装置1的转换阀(图中未示出)从循环管线15转换到氢氟酸回收管线14而进行回收,也可以作为高浓度氢氟酸水在各种工业用途(例如,经过进一步的精制工序后进行半导体等的电子部件的洗涤或进行金属的酸洗)中进行利用。
如以上所述,根据第1实施形式的氢氟酸废水处理装置,由于可通过使氢氟酸浓缩装置1中生成的氢氟酸蒸气在水接触装置2中与溶解用水接触,使其溶解进行回收,因此可获得高的氢氟酸回收效率。另外,由于可通过使水接触装置2中未溶解的残留氢氟酸蒸气在碱接触装置3中中和除去,因此可将浓缩装置4中生成的冷凝水的氢氟酸浓度充分降低。
另外,由于可在分离装置5中将生成的中和液分离为含氢氟酸的水、含碱水和脱盐水,因此可进一步提高氢氟酸的回收效率。而且,由于在处理中和液时无需采用消石灰等,因此可防止产生废弃物。
以下示出了作为本实施形式的氢氟酸废水处理装置的实施例。将氢氟酸浓度为1%的氢氟酸废水以10000kg/天的量提供给氢氟酸浓缩装置1时,可从氢氟酸浓缩装置1以630kg/天的量回收氢氟酸浓度为14%的浓缩氢氟酸水。从冷凝装置4以12300kg/天的量排出冷凝水,该冷凝水的KF浓度为约0.005%。从分离装置5可分别以270kg/天的量回收浓度为3.85%的含氢氟酸水,以280kg/天的量回收浓度为11%的含碱水。
(第2实施形式)图4表示根据本发明第2实施形式的氢氟酸废水处理装置的总体结构图。该氢氟酸废水处理装置在图1所示结构中进一步具有将在冷凝装置4冷凝得到的脱氢氟酸的冷凝水进行中和、浓缩的中和浓缩装置6。因此,与图1所示结构一样的构成部分用同一符号标记,并省略其详细说明。
中和浓缩装置6为例如减压横管单效蒸气加热式装置,其具有通过图中未示出的中和用水供给管线提供作为中和用水的碱性水溶液(例如KOH水溶液或NaOH水溶液)的蒸发罐61,该蒸发罐61与冷凝水排出管线42相连,供给来自冷凝装置4的脱氢氟酸的冷凝水。蒸发罐61具有加热管62、喷射器63和蒸馏水槽64,提供给蒸发罐61的脱氢氟酸的冷凝水由图中未示出的循环泵的操作而分散在加热管62中,在加热管62的表面蒸发。其结构是将如此产生的蒸气抽吸到喷射器63上,与喷射器63的驱动蒸气(例如水蒸气)一起通过加热管62的内部,由此使分散到加热管62表面的水蒸发,同时自然地冷凝为蒸馏水,被导入到蒸馏水槽64中。
贮存在蒸馏水槽64中的蒸馏水通过蒸馏水排出管线65排出,在蒸发罐61中蒸发浓缩的浓缩中和液通过浓缩液供给管66与从中和液排出管线34排出的中和液合流,储集在中和液罐(图中未示出)中后,提供给分离装置5。
由于在蒸发罐61中产生的蒸气的氢氟酸浓度充分下降,几乎不用担心其腐蚀性,因此可用例如不锈钢等形成加热管62,无需施加氟树脂衬料或不渗透石墨等。作为中和浓缩装置6,也可以采用多效式或蒸气压缩式等其它蒸发浓缩装置。
根据如上述结构的氢氟酸废水处理装置,可用图5流程图所示的步骤进行处理。即,步骤S11~S14的氢氟酸浓缩工序、溶解工序、中和工序和冷凝工序与上述第1实施形式中的步骤S1~S4相同,在本实施形式中,在冷凝工序(步骤S14)之后具有中和液浓缩工序(步骤S15)和浓缩中和液分离工序(步骤S 16)。
在冷凝工序(步骤S14)中冷凝的脱氢氟酸的蒸气的氢氟酸浓度充分下降,但是存在未完全除去的情况。因此,在中和液浓缩工序(步骤S15)中,在中和浓缩装置6的蒸发罐61中预先储存预定量的碱性水溶液作为中和用水,将通过冷凝装置4的冷凝排出管线42提供给蒸发罐61的脱氢氟酸的冷凝水与碱性水溶液混合。由此,即使脱氢氟酸的冷凝水含有少量的氢氟酸,也可将其中和为中和盐。向蒸发罐61提供的碱性水溶液优选具有与供给的脱氢氟酸的冷凝水的氢氟酸浓度相应的低浓度,例如为0.1%左右。
由此所得的中和液通过由加热管62加热,蒸发浓缩而成为浓缩中和液。浓缩中和液中KF的浓度为例如10~15%(浓缩倍率为100~150倍),与饱和溶解度(30%左右)相比为十分低的浓度。
另一方面,在蒸发罐61中由加热产生的蒸气为从冷凝工序的脱氢氟酸的蒸气进一步除去氢氟酸的再脱氢氟酸的蒸气,其被喷射器63的驱动蒸气气流产生的负压吸引,形成冷凝水收纳在蒸馏水槽64中。通过蒸馏水排出管线65排出的冷凝水与从冷凝装置4排出的脱氢氟酸的冷凝水相比具有进一步降低的氢氟酸浓度,可作为例如纯水进行利用,或者也可以作为水接触装置2中的溶解用水使用。
在浓缩中和液分离工序(步骤S16)中将中和液浓缩工序中生成的浓缩中和液提供给分离装置5,通过与第1实施形式中步骤S5的中和液分离工序一样的方式,排出含氢氟酸水、含碱水和脱盐水。
在本实施形式中,由碱接触装置3生成的中和液和由中和浓缩装置6生成的浓缩中和液一起收纳在图中未示出的中和液罐中后,提供给分离装置5,由此同时实施与步骤S5一样的中和液分离工序、和步骤S15的浓缩中和液分离工序。将中和液和浓缩中和液提供给分离装置5可通过不同的管线进行,也可以分别实施中和液分离工序和浓缩中和液分离工序。
另外,在本实施形式中,通过在冷凝装置4的下游配置中和浓缩装置6,使浓缩装置4中生成的冷凝水与碱接触,由此生成中和液,但是也可以采用可对通过脱氢氟酸的蒸气的供给管线41的脱氢氟酸的蒸气喷雾10%左右的碱性溶液的结构,通过将脱氢氟酸的蒸气中和后,对用冷凝装置4冷凝生成的中和液进行蒸发浓缩的中和浓缩装置。中和液的生成也可以采用使提供给冷凝装置4之前的脱氢氟酸的蒸气以及由冷凝装置4生成的冷凝液均与碱接触来进行。
如上所述,根据第2实施形式的氢氟酸废水处理装置,通过对冷凝工序生成的含微量氢氟酸的脱氢氟酸的冷凝水进行中和浓缩,生成浓缩中和液,可分离为含氢氟酸水、含碱水和脱盐水,因此可进一步提高氢氟酸回收率。
另外,与冷凝工序生成的脱氢氟酸的冷凝水相比,对中和浓缩时产生的再脱氢氟酸的蒸气进行冷凝得到的冷凝水可进一步降低氢氟酸浓度。
(第3实施形式)图6是显示根据本发明第3实施形式的氢氟酸废水处理装置的总体结构图。该氢氟酸废水处理装置为对含稀浓度氢氟酸的氢氟酸废水进行处理的装置,其由第1浓缩装置101、冷凝装置102、中和装置103、第2浓缩装置104、分离装置106等构成。
在第1浓缩装置101中,从氢氟酸废水供给装置107提供氢氟酸废水。氢氟酸废水供给装置107在本实施形式中由从电子部件制造工厂等布设的氢氟酸废水供给系统171、原液罐172、原液泵173等构成。
第1浓缩装置101将上述氢氟酸废水蒸发浓缩,将其分离为所期望浓度(例如为10%)的氢氟酸浓缩液和含氢氟酸蒸气(例如为0.7%左右的浓度)。第1浓缩装置101为闪蒸浓缩装置,其具有贮存液态氢氟酸废水的罐体111,设置在从罐体111取出贮留液、并再次返回到罐体111的循环加热系统中的循环泵112和加热器113,可将氢氟酸浓缩液作为最终浓缩液取出的再生氢氟酸水系统114等。循环加热系统的循环液从分散喷嘴115进行分散。罐体111的内表面优选用氟树脂衬料或不渗透石墨等进行保护,由此可防止氢氟酸废水造成的腐蚀。
冷凝装置102是引入从第1浓缩装置101蒸发的含氢氟酸蒸气并使其冷凝后输出的装置,其由导入蒸气并在减压下进行冷凝的冷凝器121、用于对冷凝器121内部进行减压的真空泵122,输出冷凝液的冷凝液泵123等构成。在冷凝器121中设置有冷却水管121a。作为冷却水可使用例如由图中未示出的冷却装置等冷却的工业用水或冷水(冷却水)。
中和装置103为使含氢氟酸蒸气与碱(例如氢氧化钾(KOH)、氢氧化钠(NaOH)等)反应、生成水溶性高的盐的装置,在本实施形式中向含氢氟酸蒸气中加入KOH,生成氟化钾水溶液(以下称为“KF溶液”)的中和液。该中和装置103由碱罐131、供给管路系统132等构成。
供给管路系统132在本实施形式中与从冷凝装置102向第1浓缩装置101提供含氢氟酸蒸气的蒸气管124相连,但也可以如图6点划线所示,与冷凝器121的躯干部分或冷凝水出口管125,或与以下将提到的第2冷凝装置104的主体部分141相连。
第2冷凝装置104是通过对中和液(KF溶液)进行蒸发浓缩,生成浓缩中和液(浓缩KF溶液)的装置,其由主体部分141、加热蒸发室142、加热管143、冷凝水室144、包含喷射器145a的加热蒸发系统145、贮留浓缩液的浓缩液贮存部146、冷凝器147、真空泵148、蒸馏水泵149、冷却水系统150、加热蒸气排出系统151、包含浓缩循环液泵152的浓缩液循环系统153、浓缩液输出系统154、浓缩液输出泵155等构成。
由于第2浓缩装置104中含氢氟酸蒸气的浓度与第1浓缩装置101中含氢氟酸蒸气的浓度相比非常低,几乎不用担心由氢氟酸造成的腐蚀,因此可用不锈钢管作成加热管143。作为第2浓缩装置104,也可以使用多效式或蒸气压缩式等的高效蒸发浓缩装置。
分离装置106是采用离子交换将浓缩KF溶液分离成含氢氟酸水、含碱水和脱盐水的装置,其为具有以形成通过作为被处理溶液的浓缩KF溶液的中和盐室的方式配置的一对阴离子交换膜162和阳离子交换膜163,与这两种膜分别相对设置的阳离子型双极性膜164和阴离子型双极性膜165等构成的3室式双极性膜分离装置。
在分离装置106中设置了将含氢氟酸水和含碱水分别用于作为回收氢氟酸水和中和用碱(KOH)回收的回收系统166和167。回收的氢氟酸水浓度高且为少量,适宜将回收系统166设置到利用部位。例如,如图6中点划线所示,通过返回氢氟酸系统174返回至原液罐172中,进行再处理也可以。由此,即使不存在对回收氢氟酸水的特殊利用方法,也可不进行废弃,对氢氟酸水进行处理。
回收系统167与KOH罐131相连,对中和用碱进行再利用。此外,通过将取出稀释的脱盐水的脱盐水取出系统168与第2浓缩装置104的主体部分141相连,可对脱盐水再次进行蒸发、浓缩。在分离装置106中产生的氧和氢直接或通过管路排放到大气中。另外,图6中仅示出了具有1个池的分离装置106,但通常设置有多个池。
在上述氢氟酸废水处理装置中,根据需要设置电系统、包含手动阀或自动阀的部件、运转操作装置等的设备。因此本装置是以可进行自动运转或手动运转等适于使用目的的运转操作的方式构成的。
以下通过适宜地参照图7所示流程图对具有以上结构的氢氟酸废水处理装置的操作进行说明。根据本实施形式的氢氟酸废水处理方法,具有第1浓缩工序(步骤S21)、中和冷凝工序(步骤S22)、第2浓缩工序(步骤S23)和分离工序(步骤S24)。
在第1浓缩工序(步骤S21)中,在第1浓缩装置101中对氢氟酸废水进行蒸发浓缩,将其分离为浓缩至所期望浓度(例如10%)的浓缩氢氟酸水和含0.3%左右氢氟酸的含氢氟酸蒸气。通过氢氟酸废水供给系统171提供的氢氟酸废水(原液)的浓度例如为0.5~1%左右的低浓度。
由原液泵173将原液提供给第1浓缩装置101的罐体111,首先向罐体111中装入一定量的原液后,连续提供相当于罐体111中蒸发量的量的原液。
在本实施形式中,第1浓缩工序由一边供给原液一边蒸发浓缩的前浓缩工序,和停止供给原液、进行蒸发浓缩的后浓缩工序构成,前者为主要工序,后者为附加工序。前浓缩工序和后浓缩工序的管理可基于对例如罐体111的浓缩液的浓度检测进行实施。可通过用电导率检测循环的浓缩液的浓度等的方法对该浓度进行检测。通过附加该后浓缩工序,可得到高的氢氟酸回收率,而且容易使浓缩液在短时间达到所期望的浓度。
第1浓缩装置101为闪蒸式浓缩装置时,为使原液达到饱和温度,对罐体111的压力进行调整,通过循环泵112的操作由加热器113将原液加热升温为5℃左右的过饱和液。该过饱和液从分散喷嘴115分散,过饱和成分大致作为水蒸气从原液分离。优选将蒸发罐111内的压力设定为例如0.0074MPa,相当于在40℃左右饱和温度下的饱和压力,此时,罐内溶液的浓度为约3%,氢氟酸废水蒸气所含的氢氟酸的浓度为0.2%左右。
在中和冷凝工序(步骤S22)中,对在第1浓缩工序(步骤S21)中蒸发的含氢氟酸蒸气进行中和冷凝。即,运转真空泵122,同时在冷凝器121中流过冷却水,使冷凝器121内的真空度比罐体111的真空度高一些,使蒸气从罐体111流向冷凝器121。然后,将贮留在碱罐131中KOH等的碱通过供给管路系统132添加到含氢氟酸蒸气中,由冷凝器121使蒸气冷凝,生成溶解有作为中和盐的氟化钾(KF)的中和液。中和液的浓度例如为0.3%左右,pH为10左右。
将由此获得的中和液由冷凝液泵123输出,由真空泵122排出残留的空气。另外,冷凝器121内的压力比第2浓缩装置104主体141内的压力高时,也可以省略冷凝液泵123。此外,向溶解罐131中提供由分离装置106回收的KOH或者作为不足部分补加的KOH。
在本实施形式中是通过向含氢氟酸蒸气中添加碱后使其冷凝、生成中和液的,但是也可以将由供给管路系统132供给碱的位置变更为图6中点划线所示的位置处,由此可在含氢氟酸蒸气冷凝过程中或冷凝后添加碱。可使所添加的碱与水溶液或呈蒸气状态的含氢氟酸蒸气反应。
在第2浓缩工序中(步骤S23)中,通过在第2浓缩装置104中浓缩中和液,生成作为浓缩中和液的浓缩KF溶液。例如,当中和工序中所得中和液的浓度为0.3%时,以30~50倍的浓缩倍率将其浓缩至10~15%左右的高浓度。该浓度与饱和溶解度(30%左右)相比为非常低的浓度。在该浓缩工序中,由于浓缩前KF浓度非常低,几乎不存在成为蒸气的氢氟酸,因此不会产生由氢氟酸引起的腐蚀等的问题。通过将贮留在浓缩液贮存部146中的浓缩液以每隔预定的时间间隔少量排出,可防止累积恒定量以上的不纯物。在生成浓缩中和液时产生的蒸气由冷凝器147冷凝为高纯度的蒸馏水,可作为纯水再利用。
在分离工序(步骤S24)中,在分离装置106中,一边向双极性膜164、165提供纯水,一边以通过中和盐室161的方式提供浓缩KF溶液,通过离子交换将浓缩KF溶液分离为含氢氟酸水、含碱水和脱盐水(参照图3)。由于所生成的含氢氟酸水和含碱水含有高浓度的氢氟酸(HF)和碱(KOH),因此可分别进行再利用。另外,对脱盐水(稀KF溶液)再次进行蒸发浓缩,返回到第2浓缩工序(步骤S23)。结果可几乎不产生废弃物地进行氢氟酸废水的处理。
如以上所述,根据第3实施形式的氢氟酸废水处理装置,通过将第1浓缩装置101中生成的氢氟酸蒸气在冷凝装置102和中和装置103中进行中和冷凝,生成中和液,将该中和液在第2浓缩装置104中进行浓缩,成为浓缩中和液后,在分离装置105中回收氢氟酸,因此可获得高的氢氟酸回收率。另外,可大大降低第2浓缩装置104产生的蒸气的冷凝水中的氢氟酸浓度。
作为根据本实施形式的氢氟酸废水处理装置的实施例,本发明者等将基于以下所示条件进行了实际的废水处理。氢氟酸废水处理装置的工作时间在例如以1天为单位时,可使其工作19小时,剩余时间进行氢氟酸废水等液体的注入,浓缩氢氟酸水的输出,残留不纯物的排出等。对于10000kg/天的氢氟酸废水(浓度1%),得到630kg/天浓度为14%的浓缩氢氟酸水,氢氟酸回收率良好。另外,第2浓缩工序中排出的冷凝水的氢氟酸浓度为0.3ppm,为非常低的水平。
氢氟酸废水(原液)的处理量 10000kg/天氢氟酸废水(原液)的浓度 1%·第1浓缩工序最初原液装入量 2400kg连续供给原液时的浓缩量 650kg/h连续供给时间 16.3h
停止连续供给后的浓缩时间2.7h器内饱和温度50℃(压力0.012MPa)循环液加热温度(加热器出口) 55℃循环液量75m3/h氢氟酸浓度(连续供给后) 4.2%氢氟酸浓度(最终浓缩后) 14%最终浓缩后的氢氟酸水量 630kg/日·中和冷凝工序产生的蒸气量(冷凝量)12300kg/日(19h)产生的蒸气(冷凝液)的氢氟酸浓度 0.1%KOH注入量 40kg/日在上述中补充的KOH量 10kg/日中和液(稀KF)量 350kg/日KF溶液的浓度12%·第2浓缩工序(装置)中和液连续供给量12300kg/日器内蒸发温度70℃(压力0.031MPa)浓缩中和液(浓缩KF溶液)排出量5kg/h浓缩KF溶液浓度 10.4%冷凝水的HF浓度 0.3ppm·分离工序分离的HF(回收的氢氟酸水)供给50kg/h量回收的氢氟酸水浓度 3.85%分离的KOH量 50kg/h(450kg/日)分离的KOH浓度 11%
权利要求
1.一种对含氢氟酸的氢氟酸废水进行处理的氢氟酸废水处理方法,该氢氟酸废水处理方法包括通过对氢氟酸废水进行蒸发浓缩,生成浓缩氢氟酸水和含氢氟酸蒸气的氢氟酸浓缩工序,使上述氢氟酸浓缩工序生成的含氢氟酸蒸气与溶解用水接触,使其溶解的溶解工序,通过使上述溶解工序中残留的含氢氟酸蒸气与碱接触,生成中和液和脱氢氟酸的蒸气的中和工序,和通过冷凝上述中和工序生成的脱氢氟酸的蒸气,生成冷凝水的冷凝工序。
2.如权利要求1所述的氢氟酸废水处理方法,其进一步包含将所述中和工序中生成的中和液用离子交换膜分离为含氢氟酸水、含碱水和脱盐水的中和液分离工序。
3.如权利要求1所述的氢氟酸废水处理方法,其进一步包含通过使所述冷凝工序中生成的冷凝水与碱接触,和/或通过所述冷凝工序冷凝之前使脱氢氟酸的蒸气与碱接触,生成中和液,通过蒸发浓缩该中和液生成浓缩中和液和再脱氢氟酸的蒸气的中和液浓缩工序,和将所述中和液浓缩工序中生成的浓缩中和液用离子交换膜分离为含氢氟酸水、含碱水和脱盐水的浓缩中和液分离工序。
4.如权利要求1所述的氢氟酸废水处理方法,其中所述氢氟酸浓缩工序包含将所述溶解工序中生成的含氢氟酸蒸气的溶解液进行蒸发浓缩的工序。
5.一种对含氢氟酸的氢氟酸废水进行处理的氢氟酸废水处理方法,该氢氟酸废水处理方法包括通过蒸发浓缩氢氟酸废水,生成浓缩氢氟酸水和含氢氟酸蒸气的第1浓缩工序,对所述第1浓缩工序中生成的含氢氟酸蒸气进行中和冷凝,生成中和液的中和冷凝工序,对所述中和冷凝工序中生成的中和液进行浓缩,生成浓缩中和液的第2浓缩工序,和用离子交换膜将所述第2浓缩工序生成的浓缩中和液分离成含氢氟酸水、含碱水和脱盐水的分离工序。
6.一种对含氢氟酸的氢氟酸废水进行处理的氢氟酸废水处理装置,该装置包含通过对氢氟酸废水进行蒸发浓缩,生成浓缩氢氟酸水和含氢氟酸蒸气的氢氟酸浓缩装置,使上述氢氟酸浓缩装置中生成的含氢氟酸蒸气与溶解用水接触,使其溶解的水接触装置,使上述水接触装置中残留的含氢氟酸蒸气与碱接触,生成中和液和脱氢氟酸的蒸气的碱接触装置,和通过冷凝上述碱接触装置生成的脱氢氟酸的蒸气生成冷凝水的冷凝装置。
7.如权利要求6所述的氢氟酸废水处理装置,其进一步包含将所述碱接触装置中生成的中和液用离子交换膜分离为含氢氟酸水、含碱水和脱盐水的分离装置。
8.如权利要求7所述的氢氟酸废水处理装置,其中进一步包含通过使所述冷凝装置中生成的冷凝水与碱接触,和/或在用所述冷凝装置冷凝之前使脱氢氟酸的蒸气与碱接触,生成中和液,通过蒸发浓缩该中和液生成浓缩中和液和再脱氢氟酸的蒸气的中和浓缩装置,所述分离装置将所述中和浓缩装置中生成的浓缩中和液与所述碱接触装置中生成的中和液一起用离子交换膜分离为含氢氟酸水、含碱水和脱盐水。
9.一种对含氢氟酸的氢氟酸废水进行处理的氢氟酸废水处理装置,该氢氟酸废水处理装置包括通过蒸发浓缩氢氟酸废水,生成浓缩氢氟酸水和含氢氟酸蒸气的第1浓缩装置,对所述第1浓缩装置中生成的含氢氟酸蒸气进行中和冷凝,生成中和液的中和装置和冷凝装置,对通过所述中和装置和冷凝装置生成的中和液进行浓缩,生成浓缩中和液的第2浓缩装置,和用离子交换膜将通过所述第2浓缩装置生成的浓缩中和液分离成含氢氟酸水、含碱水和脱盐水的分离装置。
全文摘要
本发明提供一种高效回收包含在氢氟酸废水中的氢氟酸,同时使处理后的脱氢氟酸的水的氢氟酸浓度充分下降的氢氟酸废水处理方法和装置。作为对含氢氟酸的氢氟酸废水进行处理的氢氟酸废水处理方法,该氢氟酸废水处理方法包括通过对氢氟酸废水进行蒸发浓缩,生成浓缩氢氟酸水和含氢氟酸蒸气的氢氟酸浓缩工序S1,使氢氟酸浓缩工序所生成的含氢氟酸蒸气与溶解用水接触,使其溶解的溶解工序S2,通过使溶解工序S2中残留的含氢氟酸蒸气与碱接触,生成中和液和脱氢氟酸的蒸气的中和工序S3,和通过冷凝中和工序S3生成的脱氢氟酸的蒸气生成冷凝水的冷凝工序S4。
文档编号C02F9/00GK1504419SQ200310117988
公开日2004年6月16日 申请日期2003年11月26日 优先权日2002年11月28日
发明者水谷淳二, 盐见裕, 前田光男, 原田康二, 向田民人, 谷本佳夫, 西村靖史, 村谷利明, 二, 人, 史, 夫, 明, 男 申请人:笹仓机械工程有限公司, 夏普株式会社, 仓机械工程有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1