Mn/Nano-G|foam-Ni/Pd复合电极及其制备方法

文档序号:4824966阅读:582来源:国知局
专利名称:Mn/Nano-G | foam-Ni/Pd复合电极及其制备方法
技术领域
本发明涉及一种复合电极及其制备方法。
背景技术
随着全球工业的迅猛发展,水污染问题也越来越严重,特别是像化工、染料、制药等废水由于高浓度,高毒性,难降解等原因,治理耗费资金多、难度大。近年来,采用电化学法降解废水中的有机污染物倍受关注。电催化高级氧化技术(AEOP)能在常温常压下,通过有催化活性的电极反应直接或者间接产生羟基自由基,从而有效降解难生化处理的有机污染物,克服了高级氧化技术中需要投加氧化试剂的缺陷。由于氧气在阴极还原不可能直接产生· OH之类活性物质,因此利用氧气在阴极还原产生过氧化氢来降解有机污染物成为研究的焦点。H2O2是一种强氧化剂,能够氧化废水中的有机污染物,它的反应产物是水和氧气,不会产生二次污染。此外,由过氧化氢反应生成的羟基自由基具有极强的氧化性,对有机物无选择性,可以将水中的有机污染物直接氧化成二氧化碳和水或者氧化成无毒的小分子,氧化快速彻底,无二次污染,处理效率高,操作简便,因此这种方法是处理有机废水最有前景的方法。目前,过氧化氢发生工艺所使用的阴极材料大多为石墨、网状多孔碳电极、碳-聚四氟乙烯充氧阴极和汞电极等。碳材料/聚四氟乙烯单层电极电极在重复使用之后,苯酚降解率显著降低,稳定性不好,重复利用性低,而且多次使用就会出现鼓涨、起泡等现象。

发明内容
本发明是要解决目前碳材料/聚四氟乙烯单层电极电极稳定性差,多次使用会出现鼓涨、起泡等现象的问题,提供Mn/Nano-G I foam-Ni/Pd复合电极及其制备方法

本发明Mn/Nano-G | foam-Ni/Pd复合电极包括纳米石墨催化导电层和泡沫镍吸附导电层,所述纳米石墨催化导电层由锰、天然鳞片石墨和聚四氟乙烯制成,其中锰的质量是天然鳞片石墨质量的3% -10%,天然鳞片石墨和聚四氟乙烯的质量比2-5 I ;所述泡沫镍吸附导电层由钯和泡沫镍制成,其中钯和泡沫镍的摩尔比为1: 150-300。上述Mn/Nano-G I foam-Ni/Pd复合电极的制备方法,按以下步骤进行一、将天然鳞片石墨制成纳米石墨;二、将锰负载到纳米石墨中取l_2g纳米石墨加入到20_30mL去离子水中,在室温下搅拌,然后加入0. 48-0. 5g醋酸锰,搅拌均匀,得悬浊液,然后向悬浊液中逐滴加入12-15mL 0. lmol/L的KMnO4溶液,持续搅拌至悬浊液变色,然后将悬浊液加热至80-90°C,保温30min,过滤后置于80°C烘箱中烘干,经马弗炉350-400°C焙烧2_3h,即获得负载锰的纳米石墨;三、将负载锰的纳米石墨与聚四氟乙烯混合,纳米石墨和聚四氟乙烯的质量比
2-5 1,置于60-70°C的恒温水浴条件下,滴加0.5-3mL无水乙醇,搅拌至均匀,得膏体,再采用压片机将膏体反复辊压,轧压制成厚度为0. 8-lmm的纳米石墨复合膜片,在80°C干燥2_3h,作为纳米石墨催化导电层;四、在泡沫镍上负载钯,获得载钯泡沫镍;五、将0.5-2mL质量浓度为2 %的甲壳胺水溶液均匀涂覆在载钯泡沫镍上,于60-70°C干燥30-40min,然后将载钯泡沫镍完全浸入质量浓度为I %的戊二醛水溶液中3-5min,取出于60_70°C烘干,获得foam-Ni/Pd薄片,作为泡沫镍吸附导电层;六、采用质量浓度为2%甲壳胺水溶液作为粘结剂,将步骤一制备的纳米石墨复合膜片固定在步骤二制备的foam-Ni/Pd薄片上,在60-70°C下按压两层膜片2_3h,干燥,即得到 Mn/Nano-G | foam-Ni/Pd 复合电极。本发明的有益效果本发明使用纳米石墨为原料,纳米石墨作为一种纳米级新型碳材料,具有丰富的片层结构,除了很好的延续了石墨类材料良好的吸附性能和导电性能外,同时纳米石墨颗粒小、比较面积大,将其作为电极材料或电极材料的添加剂,能取得普通碳材料电极所不具有的特殊性能。但单一纳米石墨材料的降解效果受限,因此在粗糙的纳米石墨表面负载锰等具有催化性能的金属氧化物,在提高纳米石墨导电网络的催化性能的同时,也能大大提高阴极室中苯酚的降解效果以及阴极室中羟基自由基的生成量。在隔膜电解体系中,以本 发明制备的Mn/Nano-G I foam-Ni/Pd复合电极为阴极,在持续曝气条件下,电流密度为39mA/cm2,电解质浓度为0. lOmol/L,苯酚初始浓度为IOOmg/L,电解120min,苯酚的降解率可达到96% -100%。本发明制备的Mn/Nano-G I foam-Ni/Pd复合电极在多次使用后仍能保证较高的苯酚降解率,稳定性好。且在多次使用后电极不发生破损、鼓涨、起泡等现象。


图1为具体实施方式
九步骤二获得的负载锰的纳米石墨的SEM照片;图2为具体实施方式
九步骤三制备的纳米石墨复合膜片表面的SEM照片;图3为具体实施方式
九步骤四获得的载钯泡沫镍放大400倍的SEM照片;图4为具体实施方式
九步骤四获得的载钯泡沫镍放大5000倍的SEM照片;图5为具体实施方式
九制备的Mn/Nano-G I foam-Ni/Pd复合电极苯酚降解率随时间变化的曲线图;图6为具体实施方式
九制备的Mn/Nano-G | foam-Ni/Pd复合电极进行循环使用,苯酚降解率随使用次数变化的结果。
具体实施例方式本发明技术方案不局限于以下所列举具体实施方式
,还包括各具体实施方式
间的任意组合。
具体实施方式
一本实施方式Mn/Nano-G I foam-Ni/Pd复合电极包括纳米石墨催化导电层和泡沫镍吸附导电层,所述纳米石墨催化导电层由锰、天然鳞片石墨和聚四氟乙烯制成,其中锰的质量是天然鳞片石墨质量的3% -10%,天然鳞片石墨和聚四氟乙烯的质量比2-5 I ;所述泡沫镍吸附导电层由钯和泡沫镍制成,其中钯和泡沫镍的摩尔比为I 150-300。
具体实施方式
二 本实施方式与具体实施方式
一不同的是锰的质量是天然鳞片石墨质量的5%-6%。其它与具体实施方式
一相同。
具体实施方式
三本实施方式与具体实施方式
一不同的是天然鳞片石墨和聚四氟乙烯的质量比4 I。其它与具体实施方式
一相同。
具体实施方式
四本实施方式与具体实施方式
一不同的是钯和泡沫镍的摩尔比为1: 200。其它与具体实施方式
一相同。
具体实施方式
五本实施方式Mn/Nano-G I foam-Ni/Pd复合电极的制备方法,按以下步骤进行一、将天然鳞片石墨制成纳米石墨;二、将锰负载到纳米石墨中取l_2g纳米石墨加入到20_30mL去离子水中,在室温下搅拌,然后加入O. 48-0. 5g醋酸锰,搅拌均匀,得悬浊液,然后向悬浊液中逐滴加入12-15mL O. lmol/L的KMnO4溶液,持续搅拌至悬浊液变色,然后将悬浊液加热至80-90°C,保温30min,过滤后置于80°C烘箱中烘干,经马弗炉350-400°C焙烧2_3h,即获得负载锰的纳米石墨;三、将负载锰的纳米石墨与聚四氟乙烯混合,纳米石墨和聚四氟乙烯的质量比
2-5 1,置于60-70°C的恒温水浴条件下,滴加0.5-3mL无水乙醇,搅拌至均匀,得膏体,再采用压片机将膏体反复辊压,轧压制成厚度为O. 8-lmm的纳米石墨复合膜片,在80°C干燥2_3h,作为纳米石墨催化导电层;四、在泡沫镍上负载钯,获得载钯泡沫镍;五、将0.5_2mL质量浓度为2 %的甲壳胺水溶液均匀涂覆在载钯泡沫镍上,于60-70°C干燥30-40min,然后将载钯泡沫镍完全浸入质量浓度为I %的戊二醛水溶液中
3-5min,取出于60_70°C烘干,获`得foam-Ni/Pd薄片,作为泡沫镍吸附导电层;六、采用质量浓度为2%甲壳胺水溶液作为粘结剂,将步骤一制备的纳米石墨复合膜片固定在步骤二制备的foam-Ni/Pd薄片上,在60-70°C下按压两层膜片2_3h,干燥,即得到 Mn/Nano-G | foam-Ni/Pd 复合电极。
具体实施方式
六本实施方式与具体实施方式
五不同的是步骤一中将天然鳞片石墨制成纳米石墨的具体方法为将天然鳞片石墨与高锰酸钾按质量比10 I的比例混合均匀,放入盛有高氯酸溶液的容器中,持续搅拌,于35°C恒温水浴条件下反应40min,得生成物,将生成物进行水洗和抽滤至洗液呈中性,然后将生成物置于80°C烘箱内烘干,得到可膨胀石墨,将可膨胀石墨放入坩埚内,放于微波炉中微波膨化20s得到无硫膨胀石墨,再将无硫膨胀石墨与无水乙醇按质量比1: 1000的比例混合,放入45W功率的超声波清洗机中超声粉碎12-14h,于80°C烘干,即获到纳米石墨。其它与具体实施方式
五相同。
具体实施方式
七本实施方式与具体实施方式
五或六不同的是步骤三中纳米石墨和聚四氟乙烯的质量比3 I。其它与具体实施方式
五或六相同。
具体实施方式
八本实施方式与具体实施方式
五至七之一不同的是步骤四中在泡沫镍上负载钯的具体方法为以有机玻璃反应器作为电沉积槽,以Ti/Ir02/Ru02电极作为阳极,泡沫镍作为阴极,采用直流稳压电源,电沉积槽中加入浓度为lmmol/L的氯化钯沉积液,使氯化钯沉积液没过阴极和阳极,在IOmA恒电流、40°C恒温的条件下,电沉积120min至沉积液变为无色,电沉积过程中持续搅拌氯化钯沉积液。其它与具体实施方式
五至七之一相同。
具体实施方式
九本实施方式Mn/Nano-G I foam-Ni/Pd复合电极的制备方法,按以下步骤进行一、将天然鳞片石墨制成纳米石墨将天然鳞片石墨与高锰酸钾按质量比10 I的比例混合均匀,放入盛有高氯酸溶液的容器中,持续搅拌,于35°C恒温水浴条件下反应40min,得生成物,将生成物进行水洗和抽滤至洗液呈中性,然后将生成物置于80°C烘箱内烘干,得到可膨胀石墨,将可膨胀石墨放入坩埚内,放于微波炉中微波膨化20s得到无硫膨胀石墨,再将无硫膨胀石墨与无水乙醇按质量比1: 1000的比例混合,放入45W功率的超声波清洗机中超声粉碎12h,于80°C烘干,即获到纳米石墨;二、将锰负载到纳米石墨中取1. 5g纳米石墨加入到20mL去离子水中,在室温下搅拌,然后加入O. 49g醋酸锰,搅拌均匀,得悬浊液,然后向悬浊液中逐滴加入13mL
O.lmol/L的KMnO4溶液,持续搅拌至悬浊液变色,然后将悬浊液加热至80°C,保温30min,过滤后置于80°C烘箱中烘干,经马弗炉350°C焙烧2h,即获得负载锰的纳米石墨;三、将负载锰的纳米石墨与聚四氟乙烯混合,纳米石墨和聚四氟乙烯的质量比3 1,置于60°C的恒温水浴条件下,滴加2mL无水乙醇,搅拌至均匀,得膏体,再采用压片机将膏体反复辊压,轧压制成厚度为Imm的纳米石墨复合膜片,在80°C干燥2h,作为纳米石墨催化导电层;四、在泡沫镍上负载钯,获得载钯泡沫镍;五、将ImL质量浓度为2%的甲壳胺水溶液均匀涂覆在载钯泡沫镍上,于60°C干燥30min,然后将载钯泡沫镍完全浸入质量浓度为1%的戊二醛水溶液中5min,取出于60°C烘干,获得foam-Ni/Pd薄片,作为泡沫镍吸附导电层;六、采用质量浓度为2%甲壳胺水溶液作为粘结剂,将步骤一制备的纳米石墨复合膜片固定在步骤二制备的foam-Ni/Pd薄片上,在60°C下按压两层膜片2h,干燥,即得到Mn/Nano-G foam-Ni/Pd 复合 电极。本实施方式步骤四中在泡沫镍上负载钯的具体方法为以有机玻璃反应器作为电沉积槽,以Ti/Ir02/Ru02电极作为阳极,泡沫镍作为阴极,采用直流稳压电源,电沉积槽中加入浓度为lmmol/L的氯化钯沉积液,使氯化钯沉积液没过阴极和阳极,在IOmA恒电流、40°C恒温的条件下,电沉积120min至沉积液变为无色,电沉积过程中持续搅拌氯化钯沉积液。本实施方式步骤二获得的负载锰的纳米石墨的SEM照片如图1所示,可以看出锰氧化物呈纳米级的棒状存在,其长度约为150nm左右,均匀分布在纳米石墨片层表面。本实施方式步骤三制备的纳米石墨复合膜片表面的SEM照片如图2所示,在高放大倍数的条件下,可见凹槽和缝隙的内部结构,未压实的缝隙中有丰富的孔道结构,在增加了电极比表面积,形成了良好地导电网络的同时,也使液相中的氧气可以进入孔道内部,促进了氧还原生成过氧化氢和阴极室三相反应的发生。此外,可见锰氧化物呈颗粒状颗粒均匀的镶嵌在电极表面上,这种镶嵌式的分布有效的增加了催化剂的表面积,能使锰氧化物充分发挥其催化性能。本实施方式步骤四获得的载钯泡沫镍放大400倍的SEM照片如图3所示,可以清晰地看见金属钯已经均匀的沉积在泡沫镍基体表面。与泡沫镍基体相比,其比表面积和催化反应的活性位点都大大增加,有利于电子的转移和阴极氧还原反应的发生。步骤四获得的载钯泡沫镍放大5000倍的SEM照片如图4所示,在较高的放大倍数下,金属钯颗粒已经完全覆盖整个泡沫镍基体表面,且呈现了紧密均匀的树枝状结构,有良好的空间延展性,分布均匀且错落有致。针状结构有较深的凹槽结构,这样增加了钯负载泡沫镍材料的比表面积和反应的活性位点,这有利于催化剂的充分利用。在隔膜电解体系中,以本实施方式制备的Mn/Nano-G I foam-Ni/Pd复合电极为阴极,在持续曝气条件下,电流密度为39mA/cm2,电解质浓度为O. lOmol/L,苯酚初始浓度为100mg/L,电解120min,苯酌·的降解率可达到98. 7%。Mn/Nano-G | foam-Ni/Pd复合电极苯酌·降解率随时间变化的曲线图如图5所示。对本实施方式制备的Mn/Nano-G I foam-Ni/Pd复合电极进行循环使用,苯酹降解率随使用次数变化的结果如图6所示。在Mn/Nano-G I foam-Ni/Pd复合电极循环使用九次后,其降解率并没有明显的降低。这表明,此两层复合阴极,具有良好的稳定性和重复使用性,同时能节约原材料,降低降解成本。经过重复使用多次电极的稳定性良好,并未出现传统不锈钢网载体复合电极的鼓泡、破损、脱落等现象。由此可见,Mn/Nano-GI foam-Ni/Pd复合电极的可重复利用性和稳·定性使其在废水处理中获得了更大的应用前景。
权利要求
1.Mn/Nano-G | foam-Ni/Pd复合电极,其特征在于该复合电极包括纳米石墨催化导电层和泡沫镍吸附导电层,所述纳米石墨催化导电层由锰、天然鳞片石墨和聚四氟乙烯制成,其中锰的质量是天然鳞片石墨质量的3% -10%,天然鳞片石墨和聚四氟乙烯的质量比2-5 I ;所述泡沫镍吸附导电层由钯和泡沫镍制成,其中钯和泡沫镍的摩尔比为I 150-300。
2.根据权利要求1所述的Mn/Nano-G| foam-Ni/Pd复合电极,其特征在于猛的质量是天然鳞片石墨质量的5% -6%。
3.根据权利要求1所述的Mn/Nano-G| foam-Ni/Pd复合电极,其特征在于天然鳞片石墨和聚四氟乙烯的质量比4 I。
4.根据权利要求1所述的Mn/Nano-GI foam-Ni/Pd复合电极,其特征在于钮和泡沫镍的摩尔比为1: 200。
5.如权利要求1所述的Mn/Nano-GI foam-Ni/Pd复合电极的制备方法,其特征在于该方法按以下步骤进行 一、将天然鳞片石墨制成纳米石墨; 二、将锰负载到纳米石墨中取l_2g纳米石墨加入到20-30mL去离子水中,在室温下搅拌,然后加入0. 48-0. 5g醋酸锰,搅拌均匀,得悬浊液,然后向悬浊液中逐滴加入12-15mL0. lmol/L的KMnO4溶液,持续搅拌至悬浊液变色,然后将悬浊液加热至80-90°C,保温30min,过滤后置于80°C烘箱中烘干,经马弗炉350_400°C焙烧2_3h,即获得负载锰的纳米石墨; 三、将负载锰的纳米石墨与聚四氟乙烯混合,纳米石墨和聚四氟乙烯的质量比2-5 1,置于60-70°C的恒温水浴条件下,滴加0.5-3mL无水乙醇,搅拌至均匀,得膏体,再采用压片机将膏体反复辊压,轧压制成厚度为0. 8-lmm的纳米石墨复合膜片,在80°C干燥2_3h,作为纳米石墨催化导电层; 四、在泡沫镍上负载钯,获得载钯泡沫镍; 五、将0.5-2mL质量浓度为2%的甲壳胺水溶液均匀涂覆在载钯泡沫镍上,于60-70°C干燥30-40min,然后将载钯泡沫镍完全浸入质量浓度为I %的戊二醛水溶液中3_5min,取出于60-70°C烘干,获得foam-Ni/Pd薄片,作为泡沫镍吸附导电层; 六、采用质量浓度为2%甲壳胺水溶液作为粘结剂,将步骤一制备的纳米石墨复合膜片固定在步骤二制备的foam-Ni/Pd薄片上,在60-70°C下按压两层膜片2_3h,干燥,即得到Mn/Nano-G foam-Ni/Pd 复合电极。
6.根据权利要求5所述的Mn/Nano-G| foam-Ni/Pd复合电极的制备方法,其特征在于步骤一中将天然鳞片石墨制成纳米石墨的具体方法为将天然鳞片石墨与高锰酸钾按质量比10 I的比例混合均匀,放入盛有高氯酸溶液的容器中,持续搅拌,于35°C恒温水浴条件下反应40min,得生成物,将生成物进行水洗和抽滤至洗液呈中性,然后将生成物置于80°C烘箱内烘干,得到可膨胀石墨,将可膨胀石墨放入坩埚内,放于微波炉中微波膨化20s得到无硫膨胀石墨,再将无硫膨胀石墨与无水乙醇按质量比1: 1000的比例混合,放入45W功率的超声波清洗机中超声粉碎12_14h,于80°C烘干,即获到纳米石墨。
7.根据权利要求5或6所述的Mn/Nano-G| foam-Ni/Pd复合电极的制备方法,其特征在于步骤三中纳米石墨和聚四氟乙烯的质量比3 I。
8.根据权利要求7所述的Mn/Nano-G I foam-Ni/Pd复合电极的制备方法,其特征在于步骤四中在泡沫镍上负载钯的具体方法为以有机玻璃反应器作为电沉积槽,以Ti/Ir02/RuO2电极作为阳极,泡沫镍作为阴极,采用直流稳压电源,电沉积槽中加入浓度为lmmol/L的氯化钯沉积液,使氯化钯沉积液没过阴极和阳极,在IOmA恒电流、40°C恒温的条件下,电沉积120min至沉积液变为无色,电沉积过程中持续搅拌氯化钯沉积液。
全文摘要
Mn/Nano-G | foam-Ni/Pd复合电极及其制备方法,涉及一种复合电极及其制备方法。本发明是要解决目前碳材料/聚四氟乙烯单层电极电极稳定性差,多次使用会出现鼓涨、起泡等现象的问题。复合电极包括纳米石墨催化导电层和泡沫镍吸附导电层。方法一、将天然鳞片石墨制成纳米石墨;二、将锰负载到纳米石墨中;三、制备纳米石墨催化导电层;四、在泡沫镍上负载钯,获得载钯泡沫镍;五、制备泡沫镍吸附导电层;六、将纳米石墨复合膜片固定在foam-Ni/Pd薄片上,按压两层膜片,干燥,即得到Mn/Nano-G | foam-Ni/Pd复合电极。本发明应用于电化学法降解废水中的有机污染物领域。
文档编号C02F1/461GK103046072SQ20121059190
公开日2013年4月17日 申请日期2012年12月31日 优先权日2012年12月31日
发明者于秀娟, 孙天一, 强沥文, 高铭晶 申请人:黑龙江大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1