一种酸、碱洗废槽液的分段‑联合处理方法与流程

文档序号:11625479阅读:938来源:国知局
一种酸、碱洗废槽液的分段‑联合处理方法与流程

本发明涉及表面预处理废槽液的环保处理技术领域,具体涉及一种利用分段式-联合式工艺交替处理高浓度酸洗废槽液、碱洗废槽液并实现其无害化及资源化处置的方法。



背景技术:

表面预处理工序中酸洗和碱洗是两类典型的处理工序,在制造业中必不可少,但也是制造业的环境污染来源之一,其中以废水、废槽液为重。酸、碱洗废水可能含有重金属、油类、有机物、氮、磷等多种污染因子,目前处理技术较为成熟,如中国专利(cn101624243a、cn104030502a和cn102603098a)都公开了酸洗废水/碱洗废水无害化及资源化处理的工艺,效果较佳。

而来自酸、碱洗处理槽倒槽液,亦称为表面预处理废槽液,codcr均大于10000mg/l,含有高浓度的有机物、表面活性剂、络合物、磷元素、酸碱及其他物质。根据《国家危险废物名录》,上述废液属于hw17类危险废物【表面处理废物】。目前表面预处理行业的危险废物一般委托给有资质的单位处置,费用约4000元/t,处理成本较高。危废处置单位因处理能力和处理设备的限制,对于液状的废槽液也难以较好的处置,往往采用联合焚烧处理,带来了二噁英等二次污染,因此危废处置单位也不大愿意接受该类危废。一些企业为操作方便和节省成本,直接将废液稀释后投入厂内污水处理厂处理,影响污水处理厂的正常运行,甚至超标排放。因此,表面预处理废液的管理和处理成为困扰环保管理部门和企业的难题。

对于这类难处理危险废液,中国专利(cn103539316a)公开的一种同时处理高浓度废乳液、酸洗废液及碱洗废液的方法中,综合利用了酸洗废水、废碱液调节处理废乳液,实现废酸、碱水的无害化及“以废治废”,然而整个工艺仍没有解决酸、碱洗废槽液的无害化处置及这类危废的综合排放问题,并且整个过程添加试剂多,处理完以后污泥量大,后续压泥出来的固废量比较大,处理成本较高。

综上所述,现有工艺对酸、碱洗废槽液处理难度较大,压泥量也很高,这类危险废液还没有较好的处理办法,仍然是困扰环保管理部门和企业的难题。



技术实现要素:

本发明的目的在于针对现有技术的不足,提出一种酸、碱洗废槽液的分段-联合处理方法,

本发明的目的是通过以下技术方案来实现的:一种酸、碱洗废槽液的分段-联合处理方法,该方法包括如下步骤:

(1)以碳纤维材料为阴极,以铁电极为阳极,进行电fenton反应,对酸洗废槽液进行处理,得到酸性水;其中,两极板尺寸大小一致,阴极鼓入空气,曝气量为0.4~0.8l/min;直流电压为10~30v,电流密度为1~4ma/cm2,电极板距为4~8cm,电解时间30min;

(2)一级混凝沉淀:向碱洗废槽液中逐滴加入步骤(1)处理得到的酸性水,使得碱洗废槽液ph为9~10时,以80~150r/min搅拌6~10min,然后以20~30r/min搅拌5~8min,静置10min后,分离沉淀;

(3)二级混凝沉淀:向步骤(2)分离得到的上清液中继续投加步骤1处理得到的酸性水,使之ph为7~8,以250~300r/min搅拌6~10min后,降低转速60~150r/min搅拌4~6min,然后以20~30r/min搅拌5~8min,静置10min后,分离沉淀;

(4)三级混凝沉淀:按照0.5~3g/l的投加比例向步骤(3)分离得到的上清液中投加市售石灰,控制机械搅拌速率80~150r/min搅拌6~10min,然后以20~30r/min搅拌5~8min后静置10min后过滤;

(5)回调:将步骤(4)中得到的滤液直接加入步骤1电-fenton反应后的酸性水中,并辅以市售石灰,将酸性水的ph调至7~7.4之间,即转化为一般废水。

进一步地,步骤(1)中的阴极为:负载有碳纤维无纺布的多孔聚四氟乙烯板,所述碳纤维无纺布经葡萄糖水热处理。

本发明首先通过电-fenton反应在酸性环境中原位生成fe2+和h2o2的工作原理,以铁板为阳极,改性碳纤维为阴极,直接电解酸性废槽液使其cod去除率达到92%以上;经电-fenton处理后的酸性水,按比例投加到待处理的碱洗废槽液中可以形成铝铁胶体,经过混凝沉淀工艺后过滤:当混合水ph为9~10时,可以回收絮体中的金属离子,当混合水ph为7~8时,cod去除率达到85%以上,可以将富含有机物的污泥压缩,制成碳含量高的材料;向滤液投加石灰去除氟离子及部分cod,最后过滤以后形成的naoh溶液可以循环利用。该方法充分发挥了酸、碱洗废槽液本身特性,工艺中物料投加少,工艺简单,实现了酸、碱洗废槽液无害化处理、相互利用、无危险固废排放以及尾液循环再利用,具有显著的环境、经济及社会价值。与现有技术相比,本发明涉及的工艺具有如下优点和显著进步:

(1)可以将高浓度酸、碱洗废槽液等危险废物转化为一般废水,解决了表面预处理废液的管理和处置;

(2)综合考虑回收与再利用,利用酸、碱洗废槽液本身特性,同时解决了酸洗和碱洗废槽液无害化与资源化的处理,使这两类危废的codcr均降至2000mg/l以下,实现“以废治废”;

(3)与现有资源化技术相比,过程中投加试剂少,反应试剂原位生成,降低添加药剂成本,同时可以减少处理后污泥产生量;

(4)通过控制不同的混凝沉淀工艺可以得到不同的污泥,继而实现不同产物的有效回收。

附图说明

图1为酸、碱洗废槽液无害化及资源化的分段及联合处理工艺流程图;

图2为酸洗废槽液混凝沉淀效果图;

图3为碱洗废槽液混凝沉淀效果图;

图4为电-fenton对酸洗废槽液处理的时间效果图;

图5为电解后的酸洗水调节碱洗废槽液协同混凝沉淀示意图。

具体实施方式

下面列举实施例进一步阐述本发明,应理解实施例,并非用于限制本发明的保护范围。

待处理表面预处理废槽液取自浙江某股份有限公司的表面预处理车间,包括酸洗废槽液和碱洗废槽液两类,codcr均大于10000mg/l,酸洗废槽液中含有磷酸盐、表面活性剂、重金属离子、悬浮物等,碱洗废槽液中含有大量油性组分、铝离子、络合剂胶体和色素。

实施例1

本实施例按照图1所示的流程对上述废液进行处理,具体执行了其中的几个步骤:1、酸洗废槽液的电-fenton反应;2、电解后的酸性水对碱洗废槽液的一级混凝沉淀反应;3、酸性水对碱洗废槽液的二级混凝沉淀反应;4、市售石灰的三级混凝沉淀反应;5、碱性滤液回用。具体如下:

(1)将碳纤维浸没于200摄氏度的葡萄糖溶液,热处理16小时,然后通过抽滤的方式使之沉积于多孔聚四氟乙烯板(10cm×10cm,16孔,孔径2mm)上,构成负载的碳纤维无纺布。采用长方体玻璃反应器(长25cm,宽15cm,高15cm),以碳纤维无纺布负载多孔聚四氟乙烯板为阴极,铁/钛电极(10cm×10cm)为阳极,鼓入一定量的空气,由sk1760sl(20a)直流稳压电源分别控制电流密度为1.0-4.0ma/cm2进行电fenton反应,反应温度保持在25℃。采用铁片牺牲电极,无需投加fe2+,曝气量为0.8l/min,直流电压30v,电流密度为2ma/cm2,电极板距为6cm,电解时间30min,此时codcr去除率约为92%,比钛阳极最佳电解工艺的codcr去除率提高了约7%,出水cod≤1800mg/l。

(2)电-fenton/铁炭微电解组合工艺处理得到的酸性废液作为混凝试剂,加入到碱洗废液中,使得碱洗废液ph=9,不仅仅是污水的稀释效果,其产生协同作用,使碱洗废液中凝胶及油类快速沉降,codcr去除率达到82%,重金属大量沉淀。

(3)向步骤2处理后的上清液中继续投加步骤1处理得到的酸性废液,使得碱洗废液ph=7,形成的凝胶吸附废液中的有机物,因此碱洗废液的codcr去除率达到85%,上清液出水codcr达到1000-2000mg/l,其他水质达到《污水综合排放标准》(gb8978-1996)三级标准。

(4)按照0.5~3g/l的投加比例向步骤(3)分离得到的上清液中投加市售石灰,控制机械搅拌速率80~150r/min搅拌6~10min,然后以20~30r/min搅拌5~8min后静置10min后过滤,去除滤液中的氟离子;

(5)回调:将步骤(4)中得到的滤液直接加入步骤1电-fenton反应后的酸性水中,并辅以市售石灰,将酸性水的ph调至7~7.4之间。控制机械搅拌速率80~150r/min搅拌6~10min,然后以20~30r/min搅拌5~8min后静置10min后过滤,出水codcr<2000mg/l,不属于hw17类危险废物[表面处理废物]中的346-064-17类[金属和塑料表面酸(碱)洗、除油、除锈、洗涤工艺产生的废腐蚀液和洗涤液]和346-065-17类[金属和塑料表面磷化、出光、化抛过程中产生的残液],转化为一般废水,即为cod<2000mg/l的废水,脱离了危险废液的范畴,为无害化的固废。

实施例2

本实施例按照现有技术对废液进行处理,根据两类废液不同特性分别设计了不同的混凝沉淀工艺,如图2和3所示。针对酸洗废槽液,选择氯化钙(cacl2)、聚合硫酸铝铁(pafc)、聚合硫酸铁(paf)和聚合氯化铝(pac)为絮凝剂,非离子聚丙烯酰胺(pam)、阳离子pam和阴离子pam为助凝剂。通过大量实验,确定pac和阴离子pam为最佳的混凝剂和助凝剂。最佳混凝条件为:ph=9;工艺参数为250-300r/min,10-30s药剂注入,搅拌子150r/min搅拌6min后降低转数至60r/min搅拌4min,然后以20-30r/min搅拌5min后静置10min;pac最佳投加量为2g/l,pam最佳投加量为10mg/l;此时出水codcr去除率达到86%,总磷去除率43%。

针对碱洗废槽液,由于碱洗废液中含有大量铝离子、油类及络合剂凝胶等物质,pac的混凝效果不佳,因而混凝剂选择cacl2,助凝剂选择非离子pam。通过大量实验发现,混凝沉淀工艺对碱洗废槽液的处理效果不好,最佳混凝条件为:ph=10,cacl2最佳投加量为1g/l,非离子pam最佳投加量为10mg/l,此时出水codcr去除率达到55%,氨氮去除率31%,总磷去除率23%。可见常规混凝沉淀法对这两类危险废液的处理效果均不好,还存在投药量大的缺点。

结合实施例,将电-fenton处理好的酸性废液作为ph调节剂处理碱性废槽液,一来可以调节碱洗废液的ph,与碱液产生混凝效果;二来处理好的酸洗废液有机物含量低,对碱洗废槽液中污染物成分的影响较小,不会产生浑浊,且电解后的中间产物有利于碱液重金属的沉淀(图5)。

以上实施例仅对发明做进一步说明,本发明的范围不受所举实施例局限。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1