一种太阳能水蒸发材料

文档序号:26007930发布日期:2021-07-23 21:27阅读:85来源:国知局
一种太阳能水蒸发材料

本发明属于能量转换材料技术领域,具体的,涉及一种太阳能水蒸发材料。



背景技术:

全球过半人口面临着水资源短缺问题。目前,很多污水处理技术,例如吸附法、超过滤、膜蒸馏技术、反渗透、电渗析法和太阳能海水淡化等被广泛研究将不可用水变成可用水来解决水资源短缺问题。太阳能海水淡化是一种新型绿色的净水技术,通过将太阳能转变为热能,促进待清洁水的相变蒸发,实现清洁水蒸气的生产。

利用太阳能海水淡化的历史较为悠久,近年来,通过将热量限制在光热界面,对超薄层水体进行加热蒸发成为主流方式,实现了较高的能量利用效率。然而,在这一设计中,入射光线与产生水汽发生不可避免的交错,造成了对入射光线的影响。同时,设备必须保证透光性,大幅度限制了可用材料的选择。这导致了对光线利用效率的低下,同时带来了冷凝收集水蒸气的不便。



技术实现要素:

本发明的目的是提出一种太阳能水蒸发材料,以解决相关技术中的技术问题,使该水蒸发材料可以适用于海水淡化,或用于制备相变产水装置或用于海水淡化的水处理设备。

本发明提出的太阳能水蒸发材料,其制备方法包括以下步骤:

(1)将多孔金属泡沫与金属箔面对面相对固定,得到一个由金属泡沫层和金属箔层组成的双层金属骨架;所述的金属箔层的厚度为0.05~5mm,所述的金属泡沫层的厚度为0.5~50mm,金属泡沫层的孔隙率为50%~99%,金属泡沫层的平均孔径为0.2~4mm;所述的金属泡沫层与金属箔层固定的方式为焊接或导热胶粘接,焊接时焊层厚度0~5mm,导热胶粘接时粘接层厚度0.5~5mm;

(2)在步骤(1)制备的三层金属骨架的金属箔层表面制备吸光表面,构成光热转换层;

在金属箔层表面通过刮涂或喷涂方式,涂布黑体涂料,以形成黑色吸光表面,涂层厚度为10~1000μm;

或:采用激光直写的方式,在金属箔层表面进行加工,使金属箔层表面粗糙化,得到光吸收微结构;

(3)将亲水高分子材料的水溶液滴入到步骤(2)的金属泡沫层中,在-30℃~-60℃下真空干燥30~60小时,进行冷冻干燥,在金属泡沫层中得到多孔亲水高分子蒸发结构,从而制备得到太阳能水蒸发材料。

本发明提出的太阳能水蒸发材料,其优点是:

本发明的太阳能水蒸发材料,包括了三层结构:光热转换层、传热层和水蒸发层其中的光热转换层具有较好的光热转换能力,与传热层界面结合稳定,具有较低的热阻,其中的传热层为高导热材料形成的多孔骨架,蒸发层直接生长在传热骨架上。本发明详细公开了水蒸发材料的制备方法,将多孔金属泡沫的一侧焊接在金属箔上。通过激光加工的方式在金属箔表面形成吸光结构。将多孔金属泡沫浸泡在亲水性高分子的溶液中,通过冷冻干燥的方式得到多孔水蒸发层。本发明制备方法操作简单、方便,易于实现,并且能够获得比表面积较大、水蒸发速率较高的水蒸发材料,因此有利于大规模生产。本发明的太阳能水蒸发材料,是一种具有光热-水蒸发界面分离的光热水蒸发材料,具有广泛的应用前景,例如海水淡化设备、相变产水装置等等,可以快速实现海水蒸发,且操作简单方便,易于实现。

附图说明

图1是本发明实施例1的太阳能水蒸发材料的数码照片图。

图2是本发明实施例1的太阳能水蒸发材料金属骨架的扫描电子显微镜图。

图3是本发明实施例1的太阳能水蒸发材料的吸光表面的扫描电子显微镜图。

图4是本发明实施例1的太阳能水蒸发材料的全光谱光线吸收率曲线。

图5是本发明实施例1的太阳能水蒸发材料的蒸发层的扫描电子显微镜图。

图6是本发明一些实施例的蒸发层中水蒸发焓的柱状图。

图7是本发明实施例1的太阳能水蒸发材料的光热水蒸发性能。

具体实施方式

本发明提出的太阳能水蒸发材料,其制备方法包括以下步骤:

(1)将多孔金属泡沫与金属箔面对面相对固定,得到一个由金属泡沫层和金属箔层组成的双层金属骨架;所述的金属箔层的厚度为0.05~5mm,所述的金属泡沫层的厚度为0.5~50mm,金属泡沫层的孔隙率为50%~99%,金属泡沫层的平均孔径为0.2~4mm;所述的金属泡沫层与金属箔层固定的方式为焊接或导热胶粘接,焊接时焊层厚度0~5mm,导热胶粘接时粘接层厚度0.5~5mm;

(2)在步骤(1)制备的三层金属骨架的金属箔层表面制备吸光表面,构成光热转换层;

在金属箔层表面通过刮涂或喷涂方式,涂布黑体涂料,以形成黑色吸光表面,涂层厚度为10~1000μm;

或:采用激光直写的方式,在金属箔层表面进行加工,使金属箔层表面粗糙化,得到光吸收微结构;

本步骤制备的光热转换层的吸光表面在全光谱范围内的吸光度可高于90%。

(3)将亲水高分子材料的水溶液滴入到步骤(2)的金属泡沫层中,在-30℃~-60℃下真空干燥30~60小时,进行冷冻干燥,在金属泡沫层中得到多孔亲水高分子蒸发结构,从而制备得到太阳能水蒸发材料。

上述太阳能水蒸发材料中,所述的金属箔为铜箔、镍箔、铝箔、铁箔或不锈钢箔中的任何一种。所述的金属泡沫层为铜、镍、铝、铁或不锈钢的泡沫层中的任何一种。

上述太阳能水蒸发材料中所述的,黑体涂料包括碳基涂料、高分子涂料或无机金属涂料。其中的碳基涂料为炭黑、碳纳米管或石墨烯。其中的高分子涂料为丙烯酸类或氟碳涂料。其中的无机金属涂料为铁黑或钴黑。

上述太阳能水蒸发材料中,激光直写时,激光功率为0.1~5w,激光扫描速度为0.1~2000mm/s,激光扫描线间距0.1~100μm。

上述太阳能水蒸发材料中,亲水高分子材料为聚乙烯醇、聚丙烯酸、壳聚糖、石墨烯或海藻酸钠中的任何一种或多种,溶液浓度为0.1~100mg/ml,金属泡沫层与多孔蒸发结构共同构成了水蒸发层。

以下结合附图介绍本发明方法的实施例:

如图1所示,所用金属骨架材料是通过焊锡将厚度0.2mm的铜箔与3mm的铜泡沫结合得到的。图2展示了金属骨架中的三层结构,即铜箔(ⅰ)、焊锡(ⅱ)和铜泡沫(ⅲ)。

接着使用激光,在该金属骨架的铜箔表面标刻横纵间距为50μm的阵列。激光功率为3w,扫描速度为10mm/s。所得形貌如图3所示。该金属骨架在可见光范围内具备95%以上吸收(如图4所示)。

以冷冻干燥的方式在该金属骨架的铜泡沫侧制备蒸发层。所用的亲水高分子溶液为聚乙烯醇/壳聚糖混合溶液。聚乙烯醇/壳聚糖溶液总浓度为10mg/ml,聚乙烯醇/壳聚糖比例为0.15。将该溶液滴加至铜泡沫中,在液氮表面进行冷冻,随后使用冷冻干燥机在-50℃冷冻干燥48h,在铜泡沫中得到聚乙烯醇/壳聚糖的多孔蒸发层,其多孔形貌如图5所示。将上述材料浸泡在乙酸酐/甲醇(1/10)溶液中乙酰化,乙酰化温度为50℃,乙酰化时间为4小时。由此,得到了乙酰化壳聚糖/聚乙烯醇的复合高分子蒸发层。

所得蒸发层多孔、均质,经过dsc测试具有降低液态水蒸发焓变的能力。如图6所示。由此,所述水蒸发材料在光照下具有优异的水蒸发性能(如图7所示),在1kw/m2的光强下,蒸发速率可达为2.21kg/m2h。

实施例2:

(1)将镍泡沫与铝箔面对面相对固定,得到一个由镍泡沫层和铝箔层组成的双层金属骨架;所述的铝箔层的厚度为2mm,所述的镍泡沫层的厚度为5mm,孔隙率为85%,平均孔径为0.2mm。固定的方式为:熔融连接,在铝的熔点上将镍泡沫与铝箔相对固定连接。

(2)在步骤(1)制备的双层金属骨架的铝箔层表面制备吸光表面,构成光热转换层,制备方法为:

涂黑体涂料,在铝箔层表面通过刮涂的方式,涂覆炭黑涂料以形成黑色吸光表面,涂层厚度为50μm。

(3)将聚乙烯醇的水溶液滴入到步骤(2)的镍泡沫层中,溶液浓度为10mg/ml,在-50℃下真空干燥48小时,进行冷冻干燥。将上述材料浸泡在戊二醛的水溶液中(10mg/ml),溶液ph用盐酸调到4,反应1h,使聚乙烯醇交联化,在镍泡沫层中得到多孔亲水高分子蒸发结构,从而制备得到太阳能水蒸发材料。

实施例3:

(1)将铝泡沫与不锈钢箔面对面相对固定,得到一个由铝泡沫层和不锈钢箔层组成的双层金属骨架;所述的不锈钢箔层的厚度为1mm,所述的铝泡沫层的厚度为5mm,孔隙率为85%,平均孔径为1mm。固定的方式为:导热硅橡胶粘接,在80度下固化3小时,胶层厚度0.2mm。

(2)在步骤(1)制备的双层金属骨架的不锈钢箔层表面制备吸光表面,构成光热转换层,制备方法为:

涂黑体涂料,在不锈钢箔层表面通过刮涂的方式,涂覆碳纳米管涂料以形成黑色吸光表面,涂层厚度为50μm。

(3)将壳聚糖的水溶液滴入到步骤(2)的铝泡沫层中,溶液浓度为10mg/ml,在-50℃下真空干燥48小时,进行冷冻干燥。将上述材料浸泡在乙酸酐/甲醇(1/10)溶液中乙酰化,温度为50摄氏度,反应4h,在铝泡沫层中得到多孔乙酰化壳聚糖蒸发结构,从而制备得到太阳能水蒸发材料。

实施例4:

(1)将不锈钢泡沫与镍箔面对面相对固定,得到一个由不锈钢泡沫层和镍箔层组成的双层金属骨架;所述的镍箔层的厚度为1mm,所述的不锈钢泡沫层的厚度为5mm,孔隙率为85%,平均孔径为0.1mm。固定的方式为:焊接,焊层厚度1mm。

(2)在步骤(1)制备的双层金属骨架的镍箔层表面制备吸光表面,构成光热转换层,制备方法为:

涂黑体涂料,在镍箔层表面通过刮涂的方式,涂覆石墨烯涂料以形成黑色吸光表面,涂层厚度为100μm。

(3)将海藻酸钠的水溶液滴入到步骤(2)的不锈钢泡沫层中,溶液浓度为10mg/ml,在-50℃下真空干燥48小时,进行冷冻干燥,随后,在2mol/l的氯化钙溶液中浸泡10分钟,将海藻酸钠交联,在不锈钢泡沫层中得到多孔亲水高分子蒸发结构,从而制备得到太阳能水蒸发材料。

实施例5:

(1)将铁泡沫与铁箔面对面相对固定,得到一个由铁泡沫层和铁箔层组成的双层金属骨架;所述的铁箔层的厚度为1mm,所述的铁泡沫层的厚度为10mm,孔隙率为85%,平均孔径为0.2mm。固定的方式为:焊接,焊层厚度1mm。

(2)在步骤(1)制备的双层金属骨架的铝箔层表面制备吸光表面,构成光热转换层,制备方法为:

涂黑体涂料,在铝箔层表面通过喷涂的方式,喷涂黑色丙烯酸树脂涂料以形成黑色吸光表面,涂层厚度为60μm。

(3)将聚丙烯酸的水溶液滴入到步骤(2)的铁泡沫层中,溶液浓度为10mg/ml,在-50℃下真空干燥48小时,进行冷冻干燥,在铁泡沫层中得到多孔亲水高分子蒸发结构,从而制备得到太阳能水蒸发材料。

实施例6:

(1)将铜泡沫与铜箔面对面相对固定,得到一个由铜泡沫层和铜箔层组成的双层金属骨架;所述的铜箔层的厚度为1mm,所述的铜泡沫层的厚度为5mm,孔隙率为95%,平均孔径为0.2mm。固定的方式为:焊接,焊层厚度1mm。

(2)在步骤(1)制备的双层金属骨架的铜箔层表面制备吸光表面,构成光热转换层,制备方法为:

涂黑体涂料,在铜箔层表面通过喷涂的方式,喷涂黑色氟碳涂料以形成黑色吸光表面,涂层厚度为50μm。

(3)将氧化石墨烯的水溶液滴入到步骤(2)的铜泡沫层中,溶液浓度为5mg/ml,在-50℃下真空干燥48小时,进行冷冻干燥。再使用水合肼蒸汽,在80度下还原2h,将氧化石墨烯还原成石墨烯,在铜泡沫层中得到多孔石墨烯蒸发结构,从而制备得到太阳能水蒸发材料。

实施例7:

(1)将铜泡沫与铜箔面对面相对固定,得到一个由铜泡沫层和铜箔层组成的双层金属骨架;所述的铜箔层的厚度为1mm,所述的铜泡沫层的厚度为5mm,孔隙率为85%,平均孔径为0.2mm。固定的方式为:焊接,焊层厚度1mm。

(2)在步骤(1)制备的双层金属骨架的铜箔层表面制备吸光表面,构成光热转换层,制备方法为:

涂黑体涂料,在铜箔层表面通过刮涂的方式,刮涂黑色铁黑涂料以形成黑色吸光表面,涂层厚度为50μm。

(3)将聚乙烯醇的水溶液滴入到步骤(2)的铜泡沫层中,溶液浓度为100mg/ml,在-50℃下真空干燥48小时,进行冷冻干燥。将上述材料浸泡在戊二醛的水溶液中(10mg/ml),溶液ph用盐酸调到4,反应1h,使聚乙烯醇交联化,在铜泡沫层中得到多孔亲水高分子蒸发结构,从而制备得到太阳能水蒸发材料。

实施例8:

(1)将铜泡沫与铜箔面对面相对固定,得到一个由铜泡沫层和铜箔层组成的双层金属骨架;所述的铜箔层的厚度为1mm,所述的铜泡沫层的厚度为5mm,孔隙率为50%,平均孔径为0.2mm。固定的方式为:焊接,焊层厚度1mm。

(2)在步骤(1)制备的双层金属骨架的铜箔层表面制备吸光表面,构成光热转换层,制备方法为:

涂黑体涂料,在铜箔层表面通过刮涂的方式,刮涂黑色钴黑涂料以形成黑色吸光表面,涂层厚度为50μm。

(3)将聚乙烯醇的水溶液滴入到步骤(2)的铜泡沫层中,溶液浓度为10mg/ml,在-50℃下真空干燥48小时,进行冷冻干燥。将上述材料浸泡在戊二醛的水溶液中(10mg/ml),溶液ph用盐酸调到4,反应1h,使聚乙烯醇交联化,在铜泡沫层中得到多孔亲水高分子蒸发结构,从而制备得到太阳能水蒸发材料。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1