户外应急净水装置的制造方法_2

文档序号:9918975阅读:来源:国知局
有可伸缩的折叠状侧壁,户外携带时,可以将盛水容器折叠收缩,需要户外应急净水时,可以将盛水容器拉开,进行户外应急净水。
[0019]本发明为解决上述第二个技术问题,对上述技术方案的改进是:所述透水性隔膜是非导电性材料制成的透水性隔膜,所述透水性隔膜具有均匀孔径的透水微孔。
[0020]需要说明的是,本发明装置处理的对像是家庭终端饮水,一般是市供自来水,正如【背景技术】中所述,现在水污染日益严重,家庭终端饮水已经成为一种微污染水(或者说是特殊污染水),其污染源包括环境污染(如农药残留等)、氯消毒产生的污染以及管道二次污染等。
[0021]上述本发明公开的户外应急净水装置技术方案的工作机理及有益效果陈述如下。
[0022]本发明通过将具有均匀孔径的微孔的透水性隔膜设置在阴、阳极之间,在常规电解反应过程以外带来了在透水性隔膜内微孔中形成水体低压冷等离子放电反应,分析如下:
本发明装置结构特征是,参见图1,以透水性隔膜为分界,分设在透水性隔膜上下两侧的阴阳电极对:阴电极设于盛水容器内的底部,阳电极设于盛水容器顶部的窗口外处。
[0023]当电解电源的电解电压施加于外电极(阳电极)和内电极(阴电极)后,形成如下的电压降落关系:
膜外阳电极(+)—阳电极与膜之间水膜的电压降U1—透水性隔膜自身阻抗产生的压降U2—透水性隔膜与容器内的阴电极之间水阻抗产生的压降U3。
[0024]在本发明中,透水性隔膜的作用不仅仅是将容器内外隔离,由于自身的结构:透水性隔膜是非导电性材料制成的透水性隔膜,微观上表现为无数均匀微孔的过水通道区域(具有均匀孔径的微孔),还可以在电解电压作用下,在透水性隔膜内微孔中形成水体低压冷等离子放电反应。低温等离子体富含电子、离子、自由基和激发态分子,电子与离子有很高的反应活性,可以使通常条件下难以进行或速度很难的化学反应变得十分迅速。
[0025]传统的水体等离子放电技术,为产生水体等离子放电,往往通过外部向水中导入气体,并施以加高强度脉冲电压或高温条件。本发明则将等离子放电引导到透水性隔膜的无数微小蓄水空间进行,依靠阳电极对水电解析氢、析氧反应生成的气体,部分进入膜中诱发水体自身气化(由于阳电极与容器内渗透通过透水性隔膜的渗透水接触,这样,阳电极贴近透水性隔膜,阳极反应的氧气等容易进入膜微孔并在微孔水中生成气泡,在膜微孔狭小环境中,气泡破碎产生局部高温高压),进而以极小电压激发出高效的水体等离子放电,在水中生成羟基自由基类暂态氧化因子,该羟基自由基暂态氧化因子的氧化性极强(超过臭氧)同时在水中的存在时间又极短,因此可以在产生后迅速对水中有机物(如细菌)等污染物形成极强的降解作用并自身迅速氧化后直接还原为水,不留任何毒副作用。
[0026]由于常规化学水处理工艺在净化处理民众日常生活饮用水时,生成的各类强氧化因子基本是无选择性、不可控的,危及饮水安全,还原反应生成的强致癌物亚硝酸盐等,不适合应用在民众日常生活饮用水净化处理场合。因此,现实条件和常规思路限制了化学水处理工艺在民众日常生活饮用水方面的应用。本发明将常规电化学水生成的各类强氧化因子的不可控变成了可控,本发明正是利用羟自由基的这些特性,针对市供自来水这种特殊微污染水水质特点,通过结构上巧妙设计,一方面将阳极直接氧化反应引出到容器内水的外部发生,排除氧化反应毒副产物。另一方面将阳极间接氧化作用发挥到极致,实现对源水极其深度且安全的净化!
概括上述本发明的户外应急净水装置技术方案的有益效果是:I)充分利用电化学水处理技术,以达到现有物理水处理工艺无法达到、对源水中污染物的深度降解、高效去除的效果,将阳极直接氧化反应引出到装置外部进行,抑制臭氧生成,以降低在容器内水中生成毒副产物的风险;2)盛水容器内水中的微生物,受透水性隔膜与容器内的阴电极之间U3的电场作用而灭活;3)主要依靠羟基类强氧化性且寿命极短、且无毒副作用的间接电化学中间体,来实现所期望的电化学水处理效果。
[0027]本发明在上述技术方案基础上的进一步改进是:所述透水性隔膜是亲水性的透水性隔膜。
[0028]本发明的透水性隔膜是亲水性的透水性隔膜,亲水性膜表面能与水形成氢键有序结构,可以改善膜孔充水浸润状态,有利于膜中等离子放电过程持续进行。
[0029]本发明在上述技术方案基础上的更进一步改进是:在使用放电时,所述透水微孔中形成等离子放电。
[0030]本发明在上述技术方案基础上的再进一步改进是:在使用放电时,每个透水微孔中均形成等离子放电。
[0031]膜微孔的形状、以及孔径大小及均匀性,对膜中等离子放电影响甚大。为能在超低放电电压下高效生成等离子群,如图2所示,本发明中所采用的透水性隔膜,在使用放电时,电场方向透过每个透水微孔,两电极间电解电流经膜中各个微孔流通,相当于把一个大面积电极分割成了众多个针尖状的小电极,使得电极的放电曲率减小,放电效率得以提高,同时,本发明将等离子放电引导到透水性隔膜的无数微小蓄水空间进行,依靠对水电解析氢、析氧反应生成的气体,部分进入膜中诱发水体自身气化,进而以极小电压激发出高效的水体等离子放电,即可激发出水体等离子放电,在水中生成极具杀菌能力的暂态氧化因子,大大提高水体中污染物的降解效率。
[0032]本发明在上述技术方案基础上的完善一是:所述阳电极和透水性隔膜由绝缘边框封装成一整体单元。
[0033]透水性隔膜夹持在阴电极和阳电极之间,在电化学作用下(例如阳极的直接氧化、间接氧化、阴极还原反应),对水中的细菌、微生物、有机物等等,起到极好的灭活、降解、转化(有毒转为无毒)作用,因此细菌被彻底灭活,有机物则趋于降解为二氧化碳和水,这样不仅对源水深度净化,而且对透水性隔膜起到极好的保护,大大改善了细菌污染和浓差极化,使隔离膜的有效寿命大大延长。试验考核证明,本发明装置中透水性隔膜始终保持稳定可靠工作状态,即使在透水性隔膜和电极表面偶有结垢也是较松散的浮垢。在电解过程中适当倒换施加给透水性隔膜两侧的成对电极的电解电压极性,就可以很容易的去除阴、阳离子析出物在电极和过滤膜表面的沉积结垢。
[0034]本发明在上述技术方案基础上的完善二是:所述透水性隔膜的透水孔径均小于等于2毫米且大于等于I纳米且所述透水性隔膜中所有微孔的透水孔径尺寸相互之间彼此相差小于20%。
[0035]本发明装置中,如果透水性隔膜的透水孔径过大(即微孔空间过大)等效于变相增大了电极直径(电极曲率半径)致使水中放电起始激发电压增高,并且使产生气泡体积变大减小了气液两相接触反应的比表面积。而透水性隔膜的透水孔径过小(即微孔空间过小),会使电解产气无法发生或是产气效率极其低下,小到一定程度会导致隔膜内各微孔中无数个小曲率半径电极的尖端放电无法正常进行。因此,经过发明人的反复试验,确定透水孔径范围是2毫米-1纳米。
[0036]本发明在上述技术方案基础上的完善三是:所述盛水容器为设有进水口和出水口的容器。
[0037]本发明在上述技术方案基础上的完善四是:所述透水性隔膜是通过按照以下步骤制成的隔膜:
1)将纳米二氧化钛溶液在温度为400C-60 0C的紫外箱内辐照10-30分钟;
2)由以下质量比的原料组成膜液:
PVDF:20%-30% 致孔剂:2-5%
步骤I)辐照后的纳米二氧化钛:2%-4%
表面活性齐Ij: 3%-5%
溶剂:70%-80%;
3)将配置好的膜液通过超声波振荡20-40分钟;
4)用刮膜机刮成液膜,将液膜在空气中静置10-30秒,然后浸入凝固液中凝固成隔膜;
5)所述隔膜在浓度为10%酒精水溶液中浸泡10-40分钟,然后放入去离子水中漂洗;
6)将所述隔膜置于施加有1kv直流脉冲高压的纯水箱内处理I小时。
[0038]具体实用效果是:为使膜中放电易于进行,需要使得透水性隔膜具有均匀孔径的微孔,这可以通过对现有的透水性隔膜进行改性获得,透水性隔膜采用二氧化钛改性技术,通过采用辐照技术在超滤膜表面增加纳米二氧化钛亲水单体,提高超滤膜亲水性,增强膜的抗污能力、延长膜使用寿命。同时与水中冷等离子放电相互促进,可有效提高水中有机物降解率,还有效防止了因电流密度过大易导致生物性指标的恶化。
【附图说明】
[0039]下面结合附图对本发明的户外应急净水装置作进一步说明。
[0040]图1是本发明实施例一的户外应急净水装置的内部局部结构示意图。
[0041]图2是图1的透水性隔膜中的透水微孔结构示意图。
【具体实施方式】
[0042]实施例一本实施例的户外应急净水装置,参见图1,包括至少
当前第2页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1