用于从空气中湿气去除和水富集的材料的制作方法

文档序号:12505910阅读:624来源:国知局
用于从空气中湿气去除和水富集的材料的制作方法与工艺

本发明主张2014年10月17日提交的申请号为No.62/122,327的美国专利申请的优先权,该申请的内容以引用方式并入本文。



背景技术:

水短缺对全球的食物、木材和薪材生产,以及陆生植物的碳吸收具有不利的影响。随着全球气候变化干扰世界降水格局,这一形势预计会恶化。因此,水资源的不足和短缺成为了一个全球主要关注的优先问题。然而,如果存在于空气中的水蒸汽能够被有效地和低成本地获取,其可以作为洁净饮用水的一种充裕来源。

雾在世界上的很多沿海、高海拔和森林覆盖地区中普遍存在,并因此成为淡水的一种重要来源。例如,在南美的太平洋沿岸、北非的大西洋沿岸和位于南非的好望角沿岸,水被从雾中获取。简单的格状网被用来从雾中收集凝结水,基于不同的网的材料和设计、位置以及主要的环境条件,统计到收集的水量达每天5-20L/m2。这项技术是低成本的,因其很少需要保养或无需保养。

湿气收集和液滴流动也可以通过受自然启发的生物材料实现,它们模仿生活在干旱和半干旱地区的植物、动物和昆虫收集水分的机理,适于水短缺的情况。例如,蜘蛛网具有独特的能够收集水分和将水积聚成液滴的能力,并且能够防止风和热导致的损失。这被推断是由于沿着蜘蛛丝线方向亲水和疏水区域的存在。

除了从雾或空气中获取水以外,另一种水的来源是可通过使用空调或空气除湿系统去除的空气中存在的作为湿气的水分。

湿度在人类热舒适的感觉上扮演关键角色。在抑制室内微生物生长,例如发霉、霉变和腐烂(它们会损害建筑结构,并产生有害的诸如孢子等生物气溶胶以及毒性微生物排放物,进而能够引发哮喘、过敏症、导致呼吸困难甚至在严重情况下中毒性休克和死亡)上,控制湿度水平也是重要的。由于水具有比空气高的潜热和显热,用于空间空调的电力有超过三分之一被浪费在冷却水分上。事实上,在25℃固定温度下将1kg空气从75%的相对湿度的湿度水平降低至令人舒适的60%的相对湿度水平所需要的能量是将1kg干空气冷却1℃所需能量的9倍。因此,如果在冷却前将水分从空气中去除,可以实现节省巨大的能耗并伴随温室气体排放的减少。然而,现有的制冷循环和吸附式除湿技术仍存在着能耗过大的问题。因此,设计用于从空气中去除湿气和/或富集水的材料、方法和系统具有显著的持续性需求。

发明综述

本发明综述将介绍一组在下文

技术实现要素:
中会进一步具体说明的概念。本发明综述的目的不是确定要求保护的主题的关键或必要的技术特征,本发明综述的目的也不是被用作限制要求保护的主题的保护范围。

在一个方面,本发明所公开的实施例涉及一种用于从空气中去除湿气和/或富集水的材料,其包括一种含有微孔的亲水材料和被包覆在亲水材料的微孔内的低水活度材料。

在另一方面,本发明的实施例涉及一种用于从空气中去除湿气和/或富集水的方法,其包括提供一种用于从空气中去除湿气和/或富集水的材料,并利用所述材料收集水。

在又一方面,本发明所公开的实施例涉及一种装置,其包括一种用于从空气中去除湿气和/或富集水的材料和用于从该材料收集水的至少一个容器或排水系统。

所述要求保护的主题的其它方面和优点将在下文说明和附加的权利要求中阐述。

附图说明

图1示出了根据本发明的实施例的一种被包覆的低水活度材料的高放大率的透射电子显微镜(TEM)图像。

图2描绘了根据本发明的实施例的包覆机理的示意图。

图3和图4示出了根据本发明的实施例的用于获取水的机理的示意图。

图5描绘了根据本发明的实施例的一种被包覆的低水活度材料的高放大率TEM图像。

图6描绘了根据本发明的实施例的技术的一种作为防潮层的概念性使用。

图7描绘了根据本发明的实施例的技术的一种用作空气除湿的概念性使用。

图8示出了根据本发明的实施例的使用不同的水获取装置的水收集效率的对比。

图9描绘了根据本发明的实施例的一种被包覆的低水活度材料的TEM图像。

图10描绘了根据本发明的实施例的一种被包覆的低水活度材料的能量色散X射线(EDX)光谱。

图11至13示出了根据本发明的实施例的被包覆的低水活度材料的高放大率TEM图像。

图14描绘了根据本发明的实施例的一种被包覆的低水活度材料的拉曼光谱。

图15至22示出了根据本发明的实施例的被包覆的低水活度材料的高放大率TEM图像。

图23描绘了根据本发明的实施例的一种被包覆的低水活度材料的扫描电子显微镜(SEM)图像。

图24至25示出了根据本发明的实施例的从空气中被动去除湿气的速率。

图26描绘了根据本发明的实施例的收集的水量。

图27示出了关于样品毒性的实验数据。

发明内容

通常地,本发明所公开的实施例涉及用于去除湿气和/或富集水的材料及其制备方法。更具体地,本发明所公开的实施例涉及用于从空气中去除湿气和/或富集水的材料,其包括被包覆在亲水材料的细小孔(例如微孔)中的低水活度(LWA)材料。本发明的发明人已经发现在亲水材料的细小孔内包覆LWA材料可以通过促进蒸气凝结、液滴形成和水流动对去除湿气和/或富集水起到协同作用。因此,这种材料可以被用于室内空气除湿和室外水富集,或其它从空气中收集水的应用。

本发明的用于从空气中去除湿气和/或富集水的材料包含一种可以被包覆在亲水材料的微孔内的低水活度材料。根据本发明的实施例,LWA材料在亲水材料中的掺杂量在0.1wt%至80wt%之间。

现参考图1,图1示出了本发明所公开的一种实施例。如图所示,本发明的材料100包括包覆在纳米管110内的低水活度材料120。若干种方法可以被使用以在亲水材料的细小微孔内包覆低水活度材料。例如,这些方法可以包括,但其并不限于,液相沉积,气相沉积,固相反应,浸渍,离子交换,共价键结合,静电固载,溶胶-凝胶法,反应沉积和掺杂。现在参考图2,图2示出了两种可行的包覆机理,即低水活度材料120在纳米管110或其他亲水材料的孔的内壁上共价键集合130和静电固载140。

现在参考图3,图3例示了在纳米包覆的情况下使用本发明的材料100去除湿气和/或富集水的机理,这将在下文具体说明。材料100可包含从空气中吸收湿气150的低水活度材料120,诱导微凝结过程160。在水渗入小孔并吸附在被包覆的低水活度材料上之前,形成的液态水会迅速地被亲水材料带走。在不同实施例中,去除湿气和/或富集水发生在高于露点温度的温度下。在一个或多个实施例中,从空气处于饱和水蒸气的条件下,用于从空气中去除湿气和/或富集水的材料有至少每小时5kg/kg的水收集能力。

如在此处定义的,水活度,aw,被定义为物质中的水蒸气分压与标准状态下的水蒸气分压的比值。低水活度材料是一种具有低于环境蒸气压的aw的材料,因此该材料可以从空气中吸附水分。正如在此处定义的,低水活度材料是对水具有高亲和性的材料,但其并非相变材料。根据本发明的实施例,低水活度(LWA)材料可以包括以下按传统方法划分的材料:1)可以被用于水吸附或吸收的一种干燥剂或多种干燥剂的混合物;或2)吸湿材料,但也可以包括其他可以被按此划分的材料;3)水活度(aw)小于0.6的材料。如在此处定义的,aw<0.6的材料能够从相对湿度高于60%的空气(例如,aw>0.6的空气)中去除水分。aw<0.6的低水活度材料在此处被定义为可以展现高亲水性的材料,特别是在细小亲水孔中。这种材料因其水活度值被认为是低水活度材料而非被传统地划分为干燥剂或吸湿材料,这种材料可包括但并不限于例如含二氧化钛的材料如有序介孔二氧化钛和二氧化钛气凝胶。

在不同的实施例中,低水活度干燥材料可以选自于,但不限于,硫酸铜(II),氯化钴(II),碳酸钾,硫酸镁,硅胶,气凝胶,氯化钙和蔗糖。在一个或多个实施例中,用作低水活度材料的吸湿材料可以选自金属无机盐(例如硝酸银,氯化银,氯化金,硝酸铜,硝酸铂,硝酸钯,硝酸铅,硝酸钴,氯化锌,硝酸锌,硫酸锌)和金属氧化物(如氧化银,氧化金,氧化铂,氧化钯,氧化铅,氧化铜,氧化钴,氧化锌,氧化钒)。在一个或多个实施例中,aw<0.6的低水活度材料可以选自氯化钠,硫酸钠和氯化锂。然而,其它干燥剂、吸湿材料、低水活度材料或其混合物也是可以预期的。

如前文所述,低水活度材料可以被包覆在亲水材料中。此处定义的亲水材料是由其表面上的水滴的几何形状,特别是由接触角或液滴边缘和下方表面之间的角度所确定。如果水展开,其因此具有小于90°的接触角,则该表面被认为是亲水的。在不同实施例中,亲水材料可以是超亲水性的材料。如在此处定义的,当水滴具有小于10°的接触角,则表面可以被认为是超亲水性的。同样地,超润湿材料可以定义为具有接触角小于5°的材料。

在本发明中示出的适于实用的亲水材料是可以在多种表面上形成膜涂层或者可以聚集以形成可涂布粉末的材料。在不同实施例中,亲水材料可以选自无机氧化物,该无机氧化物可以包括但并不限于二氧化硅,二氧化锆,氧化锌,沸石和氧化钛。在一个或多个实施例中,亲水材料可以是光活性材料,该光活性材料可以包括但并不限于二氧化钛,掺杂型二氧化钛,钛酸银和氧化锌。在这种实施例中,光活性材料可以表现出其排斥空气中普遍存在的有机污染物的自清洁性质。在另一个实施例中,亲水材料可以是陶瓷材料,该陶瓷材料可以包括但并不限于碳化钨,碳化硅,碳化钛,二氧化锆和氮化硼。在一个或多个实施例中,亲水材料可以是包括多于一种材料的复合材料。这种复合材料可以选自金属氧化物/金属,金属氧化物/陶瓷材料,金属氧化物/聚合物,聚合物/金属,聚合物/陶瓷或聚合物/聚合物。还可以预期的是,亲水材料可以是聚合物,其可以包括但并不限于无机聚合物(例如聚硅氧烷,聚磷腈),有机聚合物(例如聚丙烯,聚苯乙烯,尼龙)和等离子体处理的聚合物(例如聚苯乙烯,聚六氟丙烯,聚六亚甲基二硅氧烷)。

如前文所述,超亲水性的材料也可以用作亲水材料。在这种实施例中,超亲水材料可以包括但并不限于二氧化钛纳米管(如图5所示),二氧化钛,掺杂型二氧化钛,掺杂型二氧化钛膜和氧化锌。

在一个或多个实施例中,亲水材料可以具有长度直径(L/D)比大于2的细长孔。在另一实施例中,长度直径比可以大于10。L/D比可以确定用于富集水的系统的有效寿命。例如,L/D比越大,越多的LWA材料可以被保护在微孔内部深处以避免水吸附,从而保持更长的有效寿命。在二氧化钛和二氧化钛纳米管(如在图5示出的)的情况下,其表面是超亲水的。用光照射可以将这些表面变成超润湿表面,便于自清洁。这两种材料也是半导体,照射可以产生电子和空穴,能够与表面上存在的(源自环境空气的)有机污染物起反应并使其氧化,从而防止有机污染物改变表面的亲水性质。

根据本发明的实施例,亲水材料本身的形状可有助于诱导微凝结,液滴形成和排水。在这种的实施例中,可以选择亲水材料的形状,以最大可能实现空气的水在外表面的冷凝。例如,在不同实施例中,亲水材料可以用作粉末,丸粒,表面涂层或膜。还可以预期的是,颗粒材料的形状可以是管状,例如纳米管。在这样的实施例中,纳米管的尺寸可决定水去除的步骤。例如,在管状二氧化钛(如图4所示)的例子中,被包覆LWA材料420吸引的湿气410先吸附再冷凝在管状二氧化钛400的外表面上。如图4所示,二氧化钛管400的细长尖端允许在单个点处通过水滴430的形成收集水,水滴430可以通过重力排出。在这种实施例中,颗粒材料的形状可以允许最大的外表面,并且可以将水引流至单一点,以有利于水滴的形成。

本发明所公开的一个实施例包括一种用于从空气中去除湿气和/或富集水的方法。在这样一个说明性的实施例中,所述方法包括使用一种用于去除湿气和/或富集水的材料涂覆网,并从所述材料中收集水,所述材料包括含有微孔的亲水材料和包覆在亲水材料的微孔内的低水活度材料。

本发明所公开的用于去除湿气和/或富集水的材料可以用在装置内,所述装置包括涂覆有用于去除湿气和富集水的材料的网,并且至少包括一个用作从所述用于去除湿气和富集水的材料收集水的容器或排水装置。在不同实施例中,所述装置可用于从空气中去除多余的水分。在这种实施例中,所述装置可以是除湿器、空气调节系统、空气冷却系统、或基于压缩机-制冷循环的用于工业、商业和家用的空气加热单元。还可以预期的是,所述装置是独立的除湿器或可以被改进的以包含本发明的材料以提升能效的加湿器。在这种实施例中,用于去除湿气和富集水的材料可以参照如图6所示的窗口620的防潮层的例子被涂覆在网610上。在又一实施例中,本发明所公开的用于去除湿气和/或富集水的材料可以被放置在包括压缩机730的除湿器700内部的基底710上。湿空气750首先通过空气过滤器760,然后通过被涂覆的基底710。风扇740推动干燥的空气通过空气过滤器760、基底710并流出至770,同时形成的液态水被收集在水箱720中。这种实施例可以降低能耗。在又一实施例中,所述装置可以是受控的水分储存器和烘箱、常规和非常规干燥器、对流气流干燥器、干燥器单元或被指定的用于从固体或液体中提取多余水分的类似装置。在所有上述实施例中,用于去除湿气和/或富集水的材料可以用作粉末、丸粒,或者可以被涂覆在网或其它部件上以改善或增强从空气、气体、固体或液体中去除水分。

也可以预期的是,本发明的用于去除湿气和/或富集水的材料可以被用于增强在工业、商业和家用情况中使用的固体和液体干燥剂的性能或再生。在一个或多个实施例中,本发明的用于去除湿气和/或富集水的材料可以用于食品相关的加工或生产装置或工艺中,以控制装置或产品中的水分含量。在又一实施例中,本发明的用于去除湿气和/或富集水的材料以冷却发动机或机舱(即,干燥剂冷却)的目的可被用在包括汽车、飞行器和船舶的运输工具中。在一个或多个实施例中,本发明的用于去除湿气和/或富集水的材料可以被用作工业、商业和家用情况中的防潮层以从进入给定空间的空气或气体中去除水分。还可以预期的是,本发明的用于去除湿气和/或富集水的材料可以被用于富集水,以从周围环境的空气中获取湿气,并随后将其转化为液态水。在这种实施例中,本发明的用于去除湿气和/或富集水的材料可以被用在具有不同的设计的装置中。现在参考图8,图8示出了来自不同设计的装置的水收集的对比,例如倒金字塔型、艾菲尔型或六边形型。

本发明的LWA材料的性质通过使用如下所述的分析技术被确定。

微区拉曼光谱

使用配备有双激光源(Ar,514.5nm,20mW和He-Ne,632.8nm,20mW)的Renishaw RM系列拉曼显微镜(RM3000)分析LWA材料的相结构和结晶度,其陷波滤波器可达100cm-1

透射电子显微镜(TEM)

使用配备有能量色散X射线(EDX)检测器的高分辨率透射电子显微镜(JEOL JEM-2010F,格点分辨率=0.102nm,场发射电子枪,加速电压为200kV和束电流为100pA.cm-2)测量本发明所述制备的LWA材料的形貌和尺寸。

扫描电子显微镜(SEM)

使用扫描电子显微镜(配备有能量色散X射线(EDX)检测器的JEOL JSM-6300F和JSM-6390)测量LWA材料的形貌和尺寸。

提供以下实施例以说明用于从空气去除湿气和/或富集水的材料的制备和性质,并且除非在所附权利要求中另有明确说明,这不应被解释为限制本发明的范围。

具体实施方式

LWA干燥剂材料

低水活度干燥剂(LWA)材料被包覆在超亲水性TiO2的细小孔内。这些材料被掺入已知的干燥剂材料,例如硫酸铜(II)、氯化钴(II)、气凝胶、蔗糖等。

用于制备LWA材料的微波处理方法利用高频电磁辐射(2.45×109Hz)与TiO2和NaOH溶液相互作用,快速加热有高介电常数响应的混合物,也即是快速加热到目标温度和极快结晶速率可通过试剂混合物的局部过热在微波辐射中实现。将TiO2和NaOH碱性悬浮液转移到聚四氟乙烯衬里的高压反应釜中,使用微波(Milestone ETHOS 1)进行微波处理。将体积为40mL的TiO2悬浮液置于总容量为约90mL的聚四氟乙烯容器中,通过微波处理可控制合适的温度和压力等重要参数,以生产钛-纳米片。

实施例1

使用TiO2、NaOH和硫酸铜(II)干燥剂制备包覆了硫酸铜干燥剂的超亲水性二氧化钛。例如,将0.05g锐钛矿TiO2与8.55g 10M NaOH溶液混合,随后搅拌至少两小时或三小时,形成均相混合物。然后,将悬浮液在微波辐射(MW)下在180℃下消解30分钟。将消解的悬浮液离心并用10mM铜的水溶液(硫酸铜(II))洗涤,直到洗涤溶液的pH值达到6-7。在65℃下干燥过夜后,获得掺入硫酸铜干燥剂的低水活度二氧化钛材料。

实施例2

使用氯化钴(II)和实施例1中的微波处理消解的TiO2悬浮液来制备包覆了氯化钴干燥剂的超亲水性二氧化钛。将消解的悬浮液离心并用10mM钴的水溶液(氯化钴(II))洗涤,直至洗涤液的pH值达到6-7。在65℃下干燥过夜后,获得掺入氯化钴干燥剂的低水活度二氧化钛材料。包覆氯化钴干燥剂的超亲水二氧化钛的TEM图像和EDX光谱分别如图9和图10所示。

实施例3

使用溶胶-凝胶法制备气凝胶中的自包覆二氧化硅干燥剂。具体地,将1.3mL正硅酸甲酯溶解在10mL乙醇中。随后,向混合物中加入0.51g 1M NH4OH溶液,紧跟以溶胶-凝胶法。在2天的老化过程后获得醇凝胶。通过醇超临界干燥获得低水活度二氧化硅气凝胶。

实施例4

使用实施例1中的微波处理消解的TiO2悬浮液来制备包覆了LWA二氧化钛的气凝胶。将消解的悬浮液离心并用1.00g 0.01M酸溶液洗涤。随后,将所述酸性悬浮液与3.13g正硅酸乙酯混合,并随后在50℃下搅拌3小时。冷却后,将悬浮液与5mL纯乙醇混合。随后,通过加入0.4mL 1M NH3水溶液获得醇凝胶。进行醇超临界干燥以获得掺入二氧化钛的气凝胶干燥剂材料(如图11所示)。

实施例5

使用二氧化钛和蔗糖制备包覆了蔗糖干燥剂的超亲水二氧化钛。具体地,将1g TiO2与1.7mL蔗糖的水溶液混合。其质量比为1∶0.18。将该混合物在室温下老化1-2小时,紧跟以在100℃下的干燥过夜。将干燥粉末在120℃下加热6小时。

LWA吸湿材料

低水活度(LWA)吸湿材料被包覆在超亲水二氧化钛纳米管的细小孔内。本发明的发明人已经发现了一种被称为“层间孔”的孔。根据不同的实施例,该“层间孔”具有小于1微米(<1μm)的深度和小于1纳米(<1nm)的宽度。这些材料被掺入已知的吸湿材料,例如金属(银、金、铂、钯、铜、锌等)的无机盐和这些金属的氧化物。

作为LWA吸湿材料的无机盐

实施例6

使用硝酸银、氨和实施例1中微波处理消解的TiO2悬浮液来制备包覆了吸湿性硝酸银盐的超亲水性二氧化钛纳米管。具体地,用过量氨水预处理硝酸银盐,形成银络合物,即氢氧化二氨银[Ag(NH3)2](OH)。将消解的悬浮液离心并用10mM含有银络合物的溶液洗涤,以在超级亲水性“层间孔”内形成低水活度的银金属盐。图12和13示出了低水活度银盐的TEM图像。样品被进一步通过拉曼光谱法表征,实验结果如图14所示,显示了在拉曼光谱中观察到的重要振动。

实施例7

使用氯化金(III)(HAuCl4.3H2O)、氨和实施例1中的微波处理消解的TiO2悬浮液来制备包覆了吸湿性氯化金盐的超亲水二氧化钛纳米管。具体地,氯化金(III)(HAuCl4.3H2O)用过量的氨水预处理,形成阳离子金(III)络合物,即硝酸四氨合金(III)[Au(NH3)4](NO3)3。将消解的悬浮液离心并用10mM金络合物溶液洗涤,以在超亲水“层间孔”内形成低水活度金金属盐。

实施例8

使用实施例1中微波处理消解的TiO2悬浮液来制备包覆了吸湿性硝酸铂盐的超亲水性二氧化钛。将消解的悬浮液离心并用10mM铂的水溶液洗涤,即四氨合硝酸铂(II)(Pt(NH3)4(NO3)2),从而获得在超亲水“层间孔”内的低水活度的铂金属盐。

实施例9

使用实施例1中微波处理消解的TiO2悬浮液来制备包覆了吸湿性硝酸钯盐的超亲水性二氧化钛。将消解的悬浮液离心并用10mM钯的水溶液洗涤,即四氨合硝酸钯(II)(Pd(NH3)4(NO3)2),以在超亲水“层间孔”内形成低水活度的钯金属盐。

实施例10

使用硝酸铅、氨和实施例1中微波处理消解的TiO2悬浮液来制备包覆了吸湿性硝酸铅盐的超亲水性二氧化钛。具体地,用过量氨水预处理硝酸铅Pb(NO3)2,形成阳离子铅(II)络合物,即四氨合硝酸铅(II)。将消解的悬浮液离心并用10mM铅的水溶液,即四氨合硝酸铅(II)洗涤,以在超亲水“层间孔”内形成低水活度的铅金属盐。图15和16示出了受包覆铅盐的TEM图像。

实施例11

使用硝酸铜、氨和实施例1中微波处理消解的TiO2悬浮液来制备包覆了吸湿性硝酸铜盐的超亲水性二氧化钛。具体地,将硝酸铜Cu(NO3)2·3H2O用过量氨水预处理,制备阳离子铜(II)络合物,即四氨合硝酸铜(II)[Cu(NH3)4](NO3)2(TACN)。将消解的悬浮液离心并用10mM铜的水溶液(TACN)洗涤,以在超亲水“层间孔”内形成低水活度的铜金属盐。

实施例12

使用硝酸钴、氨和实施例1中微波处理消解的TiO2悬浮液来制备包覆了吸湿性硝酸钴盐的超亲水性二氧化钛。具体地,用过量氨水预处理Co(NO3)2·6H2O以制备阳离子钴络合物,即碳酸基四氨合钴(III)硝酸盐[Co(NH3)4CO3]·(NO3)3。将消解的悬浮液离心并用10mM钴的水溶液(硝酸四氨合钴(III))洗涤,以在超亲水“层间孔”内形成低水活度钴金属盐。图17和18显示了受包覆钴盐的TEM图像。

实施例13

使用氯化锌、氨和实施例1中微波处理消解的TiO2悬浮液来制备包覆了吸湿性氯化锌盐的超亲水性二氧化钛。具体地,用过量氨水预处理氯化锌ZnCl2,形成阳离子锌络合物,即二氯化四氨合锌(II)Zn(NH3)4Cl2·H2O。将消解的悬浮液离心并用10mM锌的水溶液(二氯化四氨合锌(II))洗涤,以在超亲水“层间孔”内形成低水活度的锌金属盐。图19和20示出了受包覆的钴盐的TEM图像。

实施例14

使用硝酸锌或硫酸锌、氨和实施例1中微波处理消解的TiO2悬浮液来制备包覆了吸湿性硝酸锌/硫酸锌盐的超亲水二氧化钛。具体地,用过量氨水预处理硝酸锌或硫酸锌,形成阳离子锌络合物,即四氨合硝酸/硫酸锌(II)盐(Zn(NH3)4(NO3)2或Zn(NH3)4(5O4))。将消解的悬浮液离心并用10mM锌的水溶液(四氨合硝酸/硫酸锌(II))洗涤,以在超亲水“层间孔”内形成低水活度锌金属盐。

作为LWA吸湿材料的不同金属氧化物的无机盐

实施例15

使用实施例6中的低水活度银金属盐制备包覆了吸湿性氧化银的超亲水二氧化钛。将所得LWA银盐在氧气流速为10cm3/min的管式炉中以300℃煅烧3小时,以在超亲水“层间孔”内形成低水活度的氧化银金属盐。

实施例16

使用实施例7中的低水活度金金属盐制备包覆了吸湿性氧化金的超亲水二氧化钛。将制备的LWA金盐在氧气流速为10cm3/min的管式炉中以300℃煅烧3小时,以在超亲水“层间孔”内形成低水活度的金氧化物金属盐。

实施例17

使用实施例8中的低水活度铂金属盐制备包覆了吸湿性氧化铂的超亲水性二氧化钛。将制备的LWA铂盐在氧气流速为10cm3/min的管式炉中以300℃煅烧3小时,以在超亲水“层间孔”内形成低水活度的氧化铂(IV)金属盐。

实施例18

使用实施例9中的低水活度钯金属盐制备包覆了吸湿性氧化钯的超亲水性二氧化钛。将制备的LWA钯盐在氧气流速为10cm3/min的管式炉中以300℃煅烧3小时,以在超亲水“内腔孔”内形成低水活度的氧化钯(II)金属盐。图21示出了受包覆的钯盐的TEM图像。

实施例19

使用实施例10中的低水活度铅金属盐制备包覆了吸湿性氧化铅的超亲水性二氧化钛。将制备的LWA铅盐在氧气流速为10cm3/min的管式炉中以300℃煅烧3小时,以在超亲水“层间孔”内形成低水活度的铅(II,IV)氧化物金属盐。

实施例20

使用实施例11中的低水活度铜金属盐制备包覆了吸湿性氧化铜的超亲水二氧化钛。将制备的LWA铜盐在氧气流速为10cm3/min的管式炉中以300℃煅烧3小时,以在超亲水“层间孔”内形成低水活度的铜(II)氧化物金属盐。

实施例21

使用实施例12中的低水活度钴金属盐制备包覆了吸湿性氧化钴的超亲水二氧化钛。将制备的LWA钴盐在氧气流速为10cm3/min的管式炉中以300℃煅烧3小时,以在超亲水“层间孔”内形成低水活度的钴(II,III)氧化物金属盐。

实施例22

使用实施例13中的低水活度锌金属盐制备包覆了氧化锌的超亲水性二氧化钛。将制备的LWA锌盐在氧气流速为10cm3/min的管式炉中以300℃煅烧3小时,以在超亲水“层间孔”内制备低水活度氧化锌金属盐。

实施例23

包覆了吸湿性氧化钒的超亲水性二氧化钛可以通过如下步骤制备:首先将正硅酸甲酯溶解在10mL乙醇中。接着,通过溶胶-凝胶法向正硅酸甲酯悬浮液中加入15%的钒和钛催化剂(V/Ti重量比为15%),紧跟着加入0.1M氨水。将制备的悬浮液老化2天以形成醇凝胶。随后,通过醇凝胶超临界干燥制备15-15VT醇凝胶。

LWA干燥剂材料的特定实施例

实施例24

使用实施例1中的微波处理消解的TiO2悬浮液来制备自包覆的有序介孔二氧化钛。将消解的悬浮液离心并用二次去离子水洗涤,然后在65℃下过夜干燥。样品进一步用100mL四氯化钛(TiCl4)处理,然后在70℃下加热30分钟。随后,通过在450℃下将混合物煅烧30分钟制备低水活度有序介孔二氧化钛。图22示出了介孔二氧化钛中空球的TEM图像。

实施例25

使用实施例1中的微波处理消解的TiO2悬浮液来制备包覆了LWA二氧化钛的活性氧化铝。将消解的悬浮液离心并用二次去离子水洗涤,然后在65℃下干燥过夜。接着,用氧化铝(百分比为1∶99),然后用1%的氧化钴进一步处理样品,以形成掺入低水活度二氧化钛的活性氧化铝干燥剂材料。通过SEM分析样品的形态,如图23所示。

实施例26

具有0.025m2表面积的如本发明所述制备的LWA材料的塑料网与两个5英寸长的不锈钢柱附接。将玻璃皿放置在两个柱之间的下方以收集获取的水。使用温湿度计来实时测量湿度和温度。在所述装置前使用风扇来实现空气循环。将LWA材料涂覆在0.015m2的网面积上。在一段时间内获取收集的水。每天检查以确保湿度和温度的稳定。被收集到的水保存在离心管中。测量获取的水的pH。检测采集水的质量。分析用于富集水的LWA的稳定性。

为了评估本发明的用于去除湿气和/或富集水的材料的性能,在没有再生和零能源消耗的30天的测试期间内,在室温(24-25℃)和60±5%的相对湿度下,测量通过所述材料从空气中被动去除湿气的速率。并且在30至120天的测试期间,在23-27℃的温度和60%、80%和100%的相对湿度水平下,测量被动去除湿气的速率。实验数据示于图24和25。根据实验数据,湿气的去除是被动的,因此,此技术是一项清洁低碳技术,当所述材料用于独立的除湿器时不需要加热或冷却,仅需要很小的用电量(风扇)。因此,在现有的除湿器和/或空气调节系统中使用这种材料可以提高能效并减少碳足迹。现参考图26,图26示出了在室温(24-25℃)和60±5%的相对湿度下操作的优化材料从空气被动湿气去除的速率图。图26所示的实验数据证实了在低相对湿度下的被动和持续的水收集。这可以实现系统内部湿度控制的灵活性。

为了进一步评估样品的性质,利用小鼠测试了本发明的用于湿气去除和/或水富集的材料的毒性。如图27所示,样品安全无毒。

本发明的实施例有利地提供了用于从空气中去除湿气和/或富集水的材料,其包括被包覆在亲水材料的细小孔内的低水活度材料。去除湿气和/或富集水的过程是被动的,不需要加热或冷却。因此,本发明的用于去除湿气和/或富集水的材料可以有利地提高能效。此外,本发明的用于去除湿气和/或富集水的材料是无毒的,且易于维护,因为它们只需要每年一次用盐溶液洗涤进行简单的再生步骤。此材料的排放也不会引起任何健康或环境问题,因为它们可以用酸处理转化为无毒材料。

尽管上面仅详细描述了几个示例性实施例,但本领域技术人员将容易地理解,在不实质性地脱离本发明的情况下,可以对示例性实施例进行各种修改。因此,这些修改旨在包括在如所附权利要求中所限定的本发明的范围内。在权利要求中,方法加功能的条款旨在包含本文中描述为执行所述功能的结构,而不仅仅是结构等同,但还应包括等效结构。因此,虽然钉子和螺钉可以不是结构等同物,因为钉子采用圆柱形表面以将木质部件紧固在一起,而螺钉采用螺旋形表面,但是在固定木质部件的环境中,钉子和螺钉可以是等效结构。除了权利要求明确使用“用于…的装置”的文字以及相关功能,申请人的明确意图不是援引35U.S.C.§112,第6段以用于本文任何权利要求的任何限制。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1