通道上下两壁面指定位置可变形的微流控芯片的制作方法

文档序号:11117883阅读:836来源:国知局
通道上下两壁面指定位置可变形的微流控芯片的制造方法与工艺

本发明涉及一种基于常规微通道的微流控芯片,在微通道上下两壁面的指定位置处设置外加结构,使壁面可变形。通过设计不同的外加结构以调节可变形部分的位置或尺寸,进而影响通道内部的流动状况,起到调节液滴或气泡生成的作用。



背景技术:

随着社会的进步,地球上日益枯竭的资源与人们不断增长的需求成为一个非常突出的矛盾,在科学研究和生产实践中如何利用更少量的样品来实现同样甚至更好的功能逐渐吸引人们的关注,也是近年来的研究热点,微流控芯片技术就是其中一种满足这些要求的新兴领域。

微流控芯片技术是在特征尺度为微米级的芯片上进行一系列操作以实现特定功能的新型技术,通常涉及到力学、化学、物理学等多个基础学科领域,并越来越多地向多学科交叉领域方向发展,可实现的功能也越来越多,包括新型材料的制备、纳米粒子的合成、细胞的在线培养和药物筛选等功能都已经成为比较成熟的技术。由于芯片的整体尺寸很小,在实现上述功能的同时只需要消耗很少量的样品,为一些稀有材质的实验提供了非常节约的途径,极大降低了研究成本。此外,微流控技术还可以提高反应速率,增加反应的平行操作数量,减少各单元之间的泄漏和污染,以及多种功能的友好兼容。

微流控芯片在实现各种功能时,有很大一部分需要将液滴或气泡这种工具作为独立的化学反应、样品输运和组分混合单元来使用,其均匀度对整个过程起到非常重要的影响,需要人们更加关注基于微流控系统的微尺度液滴生成及其均匀度控制。其中,通过改变芯片结构来调整液滴的均匀度是一种简便可行的方法。



技术实现要素:

本发明基于常用生成微液滴/气泡的微通道结构,通过改变通道上下壁面指定位置处的壁面类型而使其可变形,以达到调节液滴/气泡生成效果的目的。

本发明所述的通道上下两壁面指定位置可变形的微流控芯片,主要结构如下:

微流控芯片由上凹槽层1、主通道薄膜层2、下凹槽薄膜层3和基底层4四部分依次键合组成。

上凹槽层1的下底面为开口侧,上凹槽层1下底面的开口侧上设有上凹槽结构7,上凹槽层1上设有三个通孔分别是第一连续相入口5、第一离散相入口6、第一出口8;主通道薄膜层2的下底面为开口侧,主通道薄膜层2下底面的开口侧设有通道结构12,主通道薄膜层2上设有三个通孔分别是第二连续相入口9、第二离散相入口10、第二出口11,通道结构12的上游分别与第二连续相入口9和第二离散相入口10相连接,通道结构12的下游与第二出口11相连接;下凹槽薄膜层3的下底面为开口侧,开口侧包含下凹槽结构13。第二连续相入口9、第二离散相入口10、第二出口11、通道结构12组成主通道。

微流控芯片的四部分互相配合使用,第一连续相入口5和第二连续相入口9相连组成连续相通孔,第一离散相入口6和第二离散相入口10相连组成离散相通孔,第一出口8和第二出口11相连组成出口通口;上凹槽结构7与通道结构12之间的间隔层,下凹槽结构13与通道结构12之间的间隔层均为可变形壁面,间隔层的间距要足够小于主通道的宽度和高度。

常规微通道结构的芯片不设置上凹槽结构7和下凹槽结构13。

所述可变形壁面为固体PDMS薄层,该固体PDMS薄层的变形能力由上凹槽结构7与通道结构12,以及下凹槽结构13与通道结构12之间的间距决定;间距要足够小于主通道的宽度和高度即主通道薄膜层2和下凹槽薄膜层3的厚度要足够小,以保证固体PDMS薄层在通道结构12的内部流体流动作用下容易发生变形;同时,上凹槽结构7和下凹槽结构13为通道结构12上下两壁面的变形提供了空间,凹槽的尺寸和位置分别决定了可变形部分的尺寸和位置。

所述微流控芯片由聚二甲基硅氧烷(polydimethylsiloxane,缩写为PDMS)制成。

本发明所述的微流控芯片在微通道上下两壁面指定位置处设置可变形结构,通过影响液体流动状况,进而起到调节液滴生成效果的作用。其中,用于变形的间隔薄层的厚度影响变形的难易程度,一般要足够小于主通道的宽度和高度,可变形壁面的尺寸和位置可以根据需要设定。

附图说明

图1是本发明通道上下两壁面指定位置可变形的微流控芯片的三维总体轮廓示意图。

图2是本发明通道上下两壁面指定位置可变形的微流控芯片中可变形壁面部分的横截面实物图。

图3是本发明通道上下两壁面指定位置可变形的微流控芯片与同尺寸壁面固定不可变形的微流控芯片,在相同流动条件下生成液滴效果的对比图。其中,(a)、(b)为壁面固定不可变形的微流控芯片生成液滴的状况,(c)为通道上下两壁面指定位置可变形的微流控芯片生成液滴的状况。

图中:1、上凹槽层,2、主通道薄膜层,3、下凹槽薄膜层,4、基底层,5、第一连续相入口,6、第一离散相入口,7、上凹槽结构,8、第一出口,9、第二连续相入口,10、第二离散相入口,11、第二出口,12、通道结构,13、下凹槽结构。

注:

1、图1中通道结构12示意的是最简单的一种T型微通道结构,本发明适用于多种不同的微通道结构。

2、图3拍摄的实验条件为:离散相水的流量为4μl/min,连续相葵花油的流量为12μl/min。

具体实施方式

下面结合结构附图对发明通道上下两壁面指定位置可变形的微流控芯片的工作过程和作用效果进行详细说明。

本发明的微流控芯片具体工作过程如下:离散相液体顺着第一离散相入口5从第二连续相入口9流入,连续相液体顺着第一连续相入口6从第二离散相入口10流入,两者在通道结构12的交汇处相遇,离散相液体破碎形成液滴并随连续相一起沿着通道往下游流动,最终顺着第二出口11流出微流控芯片。在流动过程中,由于PDMS材料本身具有弹性,并且在上凹槽结构7和下凹槽结构13处具有较小的抗弯刚度以及变形的空间,使得PDMS薄层在液体作用下发生变形以及振动,进而影响液体的流动以及液滴的生成过程。

本发明所述的结构,为了保证壁面在设定位置处变形容易实现,上凹槽结构7与通道结构12的间距,以及下凹槽结构13与通道结构12之间的间距,要小于主通道的宽度和高度,即主通道薄膜层2和下凹槽薄膜层3的厚度要足够小。

为了验证该发明对于调整液滴生成的有效性,制作相同结构和尺寸的上下壁面不能变形的常规微流控芯片,并进行相同流动条件下液滴生成的对比实验。调整两相流速使微流控芯片持续生成液滴,保持相应流速稳定一段时间后利用高速摄像显微系统记录液滴生成结果。处理数据后发现,壁面固定不可变形的微流控芯片生成液滴存在不稳定状况,液滴生成在两种断裂方式之间周期性转变,如图3(a)所示为液滴在下游断裂的过程,而图3(b)所示为液滴在上游断裂的过程。相同流动条件下,本发明通道上下两壁面指定位置可变形的微流控芯片中实验中没有观察到不稳定断裂方式的转变,如图3(c)所示生成过程非常稳定。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1