聚偏氟乙烯和超高分子量聚乙烯共混微孔膜及其制备方法与流程

文档序号:16208292发布日期:2018-12-08 07:24阅读:413来源:国知局
聚偏氟乙烯和超高分子量聚乙烯共混微孔膜及其制备方法与流程

本发明涉及微孔膜技术领域,尤其涉及一种聚偏氟乙烯和超高分子量聚乙烯微孔膜及其制备方法。

背景技术

聚偏氟乙烯(pvdf)的表面能极低,是一种疏水性很强的材料,且具有很好的化学稳定性、耐热性、机械稳定性。但聚偏氟乙烯膜的疏水性能和力学性能很难同时提高,还可进一步改进以延长使用寿命,满足膜蒸馏、膜萃取等疏水膜工艺的要求。

目前制备疏水微孔膜的方法主要有以下三种:熔融法、湿法相转化法和热致相分离法。相对于熔融法,热致相分离法制膜不仅成孔效果好,且稀释剂萃取后所得孔结构具有较好的连通性;同时,在稀释剂的作用下,铸膜液体系具有更好的流动性(xi等人通过熔融法和拉伸(ms-s)方法制备微孔聚乙烯(pe)中空纤维膜(xizy,xuyy,zhulp,etal.effectofstretchingonstructureandpropertiesofpolyethylenehollowfibermembranesmadebymelt-spinningandstretchingprocess[j].polymersforadvancedtechnologies,2008,19(11):1616–1622)。另外,热致相分离法制膜过程是由于体系热量流逝而导致的相分离,相对于湿法相转化法中的物质交换更容易控制(cn104474923a公开了一种热致相分离法制备聚偏氟乙烯/聚乙烯醇共混膜的方法)。

微注塑成型技术是一种进行聚合物微结构制造的技术,它是利用模板自身的限域作用以及和高分子间的相互作用,对表面的形貌、形状、结构、尺寸和排布等进行调节,具有制造工艺简单,几乎不受塑件几何形状的限制,生产成本低,易于实现大批量自动化生产等特点。目前微注塑成型技术主要应用于光通信、医疗技术、生物技术、传感器和传动装置和微光学器件等领域,研究热点主要集中在微注塑成型设备、微型模具的制造加工、微成型材料的选取、微成型过程中工艺的控制、微成型理论及数值模拟分析和微制品质量表征等方面,很少将其用于多孔膜的制备。

在已有的报道中,可见一些研究采用熔融法结合微注塑成型技术制备微结构聚合物样品。lin等人研究高密度聚乙烯熔融后微注塑过程中熔体的流动诱导结晶行为及其对高密度聚乙烯微注塑力学性能的影响(linx,caton-rosef,rend,etal.shear-inducedcrystallizationmorphologyandmechanicalpropertyofhighdensitypolyethyleneinmicro-injectionmolding[j].journalofpolymerresearch,2013,20(4):1-12.)。还有少数研究者采用湿法结合微注塑成型工艺制备微结构制品。如wu等人第一次提出室温注塑成型技术结合颗粒浸出方法制造由可生物降解聚酯组成的三维多孔支架(wul,jingd,dingj.a"room-temperature"injectionmolding/particulateleachingapproachforfabricationofbiodegradablethree-dimensionalporousscaffolds.[j].biomaterials,2006,27(2):185-191.)。

磁控溅射是物理气相沉积的一种,具有设备简单、易于控制、镀膜面积大和附着力强等优点。特里帕蒂(tripathi)等人以聚四氟乙烯为靶材,采用射频磁控溅射的方法,在玻璃基板上沉积均匀的超薄聚四氟乙烯溅射膜(tripathis,haquesm,raokd,etal.investigationofopticalandmicrostructuralpropertiesofrfmagnetronsputteredptfefilmsforhydrophobicapplications[j].appliedsurfacescience,2016,385:289-298.)。虽然磁控溅射技术已成熟应用于材料表面改性,但是将磁控溅射技术与微注塑成型技术相结合在微孔膜技术领域非常罕见。



技术实现要素:

本发明提供一种聚偏氟乙烯和超高分子量聚乙烯共混微孔膜及其制备方法,提供一种共混微孔膜,兼具良好的疏水性能、机械性能和渗透性能,该膜可用于膜蒸馏技术等膜分离技术领域。

本发明提供一种聚偏氟乙烯和超高分子量聚乙烯共混微孔膜的制备方法,包括如下步骤:

s1、将超高分子量聚乙烯在60℃下烘2~3h,将聚偏氟乙烯在90℃下烘2~3h;

s2、将步骤s1所得的聚偏氟乙烯、超高分子量聚乙烯与抗氧剂、稀释剂混合,常温下搅拌1~2h,获得分散均匀的悬浊液;

s3、将步骤s2所得的悬浊液喂入双螺杆挤出机,所述双螺杆挤出机为6区分段加热,其中加热区1~6温度依次为130℃、140℃、160℃、175℃、190~220℃、200~230℃,出料口温度为200~250℃;将从出料口挤出的铸膜冻胶直接注入金属模具中进行注塑成型,模具温度与双螺杆挤出机出料口温度相同,模具的模腔表面具有微棱镜阵列式结构,而后将注有铸膜冻胶的模具置于0~100℃水介质中冷却得到初生冻胶膜;

s4、将步骤s3所得初生冻胶膜经萃取去除稀释剂后置于冷冻干燥机中干燥12h以上,得到聚偏氟乙烯/超高分子量聚乙烯干态共混微孔膜。

进一步地,所述微棱镜阵列式结构的微结构循环尺寸为20~200μm;进一步可以为50~100μm。

进一步地,在步骤s4之后包括步骤s5:以步骤s4所得聚偏氟乙烯/超高分子量聚乙烯干态共混微孔膜为基材,利用磁控溅射技术在其表面进行表面改性处理。

进一步地,所述磁控溅射技术为射频磁控溅射;以聚四氟乙烯、聚全氟乙丙烯、聚偏氟乙烯或石墨为靶材,溅射功率为100~200w,溅射时间为30s~30min,溅射压力0.1~1pa。

进一步地,制备得到的共混微孔膜的厚度为0.30~1.50mm。

进一步地,稀释剂为邻苯二甲酸二丁酯和石蜡油的共混物;

将步骤s3所得初生冻胶膜经四道萃取后置于冷冻干燥机中干燥,所述四道萃取为:浸入无水乙醇中12~24h进行一道萃取;置于120号汽油中12~24h进行二道萃取;置于无水乙醇中6~12h进行三道萃取;置于去离子水中浸泡24~48h进行四道萃取。

进一步地,制得的共混微孔膜用于膜分离技术;进一步地,所述膜分离技术可以为膜蒸馏技术、膜萃取技术、气态膜分离技术。

进一步地,所述共混微孔膜由以下组分制成:

进一步地,抗氧剂为β-(3,5-二叔丁基-4-羟基苯基)丙酸十八碳醇酯,其与超高分子量聚乙烯的质量比为1:10。

本发明又提供一种聚偏氟乙烯/超高分子量聚乙烯共混微孔膜,由上述任一制备方法制备得到。

与现有技术相比,本发明的有益效果在于:

(1)本发明公开提供一种聚偏氟乙烯/超高分子量聚乙烯共混微孔膜的制备方法,采用微注塑成型技术与热致相分离法结合制膜。制得的膜具有微米阵列结构和多孔结构组成的复合表面结构,在确保良好的机械强度的基础上增加膜表面粗糙度,提高疏水性。

(2)本发明公开提供的共混微孔膜的制备方法中,超高分子量聚乙烯在膜中呈网络状连接结构,增加了聚偏氟乙烯晶体之间的连接,增强了膜的机械强度性。

(3)本发明公开提供的共混微孔膜的制备方法中,采用磁控溅射技术对干态微孔膜进行表面改性处理,在干态微孔膜表面沉积低表面能纳米粒子,纳米粒子沉积在微孔膜微阵列结构上形成微纳复合结构的同时降低膜表面的表面能,进一步提高膜的疏水性。

(4)本发明公开提供的共混微孔膜的制备方法中,使用双稀释剂和双聚合物体系,膜内部具有多种孔结构,同时存在两种稀释剂被萃取后的孔结构和两种聚合物间的界面孔结构,进一步提高孔隙率和膜孔连通性。

附图说明

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。

图1为本发明实施例所述聚偏氟乙烯/超高分子量聚乙烯共混微孔膜的制备方法的流程示意图;

图2为本发明又一实施例所述聚偏氟乙烯/超高分子量聚乙烯共混微孔膜的制备方法的流程示意图;

图3为本发明实施例所述聚偏氟乙烯/超高分子量聚乙烯共混微孔膜的制备方法的工艺路线图;

图4为对比例1制备的微孔膜表面的电子显微镜图;

图5为实施例1制备的微孔膜表面的电子显微镜图;

图6为实施例1制备的微孔膜表面的原子力显微镜三维图;

图7为实施例2中制备的微孔膜表面的电子显微镜图;

图8为实施例2中制备的微孔膜表面的原子力显微镜三维图。

具体实施方式

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

膜蒸馏是近年来出现的一种新的膜分离工艺。该工艺可充分利用工厂热或太阳能,成本低廉,且设备简单,易于自动化操作。所用膜材料至少需要满足疏水性和多孔性两个要求。聚偏氟乙烯膜的疏水性能还可进一步改进以满足膜蒸馏等工艺的要求。

本申请发明人发现,pvdf膜在使用中、清洗中易于破损,机械强度较低,现有技术在提高pvdf膜疏水性的同时很难增强膜的机械强度。

本发明实施例提供一种聚偏氟乙烯膜/超高分子量聚乙烯共混微孔膜的制备方法,将微注塑技术与热致相分离法相结合,制得的微孔膜在疏水性能、力学性能及渗透性能上得到同步提升。通过本发明实施例的制备方法可在不破坏其机械强度的基础上提高其疏水性、渗透性,耐使用、耐清洗。

本发明实施例制备得到的微孔膜可用于疏水膜应用领域,具体可用于膜分离技术,如膜蒸馏技术、膜萃取技术、气态膜分离技术等。

进一步地,本发明实施例制备得到的微孔膜可用于膜蒸馏技术。膜蒸馏(membranedistillation,md)是膜技术与蒸馏过程相结合的分离过程。用于膜蒸馏的膜材料应该至少满足疏水性和多孔性两个要求。另外,足够的机械强度、好的热稳定性也是md用膜材料所必需的。

如图1所示,该制备方法具体可以包括以下步骤:

s1、将超高分子量聚乙烯(uhmwpe)在60℃下烘2~3h,将聚偏氟乙烯(pvdf)在90℃下烘2~3h;

s2、将步骤s1所得的聚偏氟乙烯、超高分子量聚乙烯与抗氧剂、稀释剂混合,常温下搅拌1~2h,获得分散均匀的悬浊液;

s3、将步骤s2所得的悬浊液喂入双螺杆挤出机,所述双螺杆挤出机为6区分段加热,其中加热区1~6温度依次为130℃、140℃、160℃、175℃、190~220℃、200~230℃,出料口温度为200~250℃;将从出料口挤出的铸膜冻胶直接注入金属模具中进行注塑成型,模具温度与双螺杆挤出机出料口温度相同,模具的模腔表面具有微棱镜阵列式结构,而后将注有铸膜冻胶的模具置于0~100℃水介质中冷却得到初生冻胶膜;

s4、将步骤s3所得初生冻胶膜经萃取去除稀释剂后置于冷冻干燥机中干燥12h以上,得到聚偏氟乙烯/超高分子量聚乙烯干态共混微孔膜(后文简称为干态微孔膜)。

在一些实施例中,双螺杆挤出机的出料口温度可以为220~240℃。出料温度和模具温度会改变铸膜冻胶的粘度,进而影响微注塑的复制精度。同时温度的变化会影响相分离过程中稀释剂的移动和聚集,影响膜表面的粗糙度和孔结构,进而影响了膜的疏水性。

模具温度与双螺杆挤出机出料口温度相同,即,步骤s3中,将从出料口挤出的铸膜冻胶直接注入220~240℃的高温模具中进行注塑成型。

在一些实施例中,适用的模具其模腔表面具有微棱镜阵列式结构,其微结构循环尺寸为20~200μm。进一步地,微结构循环尺寸可以为50~150μm、50~100μm、50~80μm。例如具体可以为40μm、50μm、60μm、80μm、100μm、120μm等。微结构循环尺寸也就是微棱镜阵列式结构的结构周期。模具的微结构循环尺寸会影响膜表面粗糙度,进而影响膜的疏水性。

在一些实施例中,步骤s4中,将步骤s3得到的干态微孔膜经萃取,如溶剂萃取以去除稀释剂,并超滤水浸泡以去除所用溶剂,随后置于冷冻干燥机中干燥12h以上,例如12~23h、如12、16、18、22h,得到干态微孔膜。

在一些实施例中,采用双稀释剂和双聚合物体系。稀释剂为石蜡油和邻苯二甲酸二丁酯的混合物。步骤s4的萃取分为四道萃取:浸入无水乙醇中12~24h进行一道萃取,除去稀释剂邻苯二甲酸二丁酯;置于120号汽油中12~24h进行二道萃取,除去稀释剂石蜡油;置于无水乙醇中6~12h进行三道萃取,去除120号汽油;置于去离子水中浸泡24~48h进行四道萃取,去除无水乙醇。

在一些实施例中,共混微孔膜由以下组分制成:聚偏氟乙烯10.00~30.00wt%、超高分子量聚乙烯0.50~10.00wt%、石蜡油40wt%、邻苯二甲酸二丁酯19.00~49.45wt%、抗氧剂0.05~1.00wt%,各组分之和为100wt%。

本发明实施例制得的共混微孔膜,采用双稀释剂和双聚合物体系,膜内部具有多种孔结构,同时存在两种稀释剂被萃取后的孔结构和两种聚合物间的界面孔结构,具有较高的孔隙率。

本发明实施例制得的共混微孔膜,采用了双稀释剂——石蜡油和邻苯二甲酸二丁酯的混合物,在该双稀释剂体系下,聚偏氟乙烯和超高分子量聚乙烯均具有良好的流动性,同时多种孔结构的协同作用改善了微孔膜的渗透性和机械强度等性能。

在一些实施例中,抗氧剂可以为β-(3,5-二叔丁基-4-羟基苯基)丙酸十八碳醇酯。本发明实施例中,使用单一抗氧剂体系,抗氧剂在总组分(总组分=pvdf+uhmwpe+稀释剂+抗氧剂)中的质量分数为0.05~1.00wt%,其中,抗氧剂与超高分子量聚乙烯的质量比可以为1:8~10,具体可以为1:10。

本申请发明人在另一篇专利申请cn106492645a中提出了增强型超高分子量聚乙烯和聚偏氟乙烯二元共混膜及其制备方法。在该方法中,发明人通过将热致相分离法与熔融法相结合制备了聚偏氟乙烯/超高分子量聚乙烯共混膜,其中聚偏氟乙烯高温下不与稀释剂作用,而是直接熔融。而在本发明公开中,发明人提出一种新的共混微孔膜制备方法,采用复合稀释剂将聚偏氟乙烯和超高分子量聚乙烯分别熔融,同时将热致相分离法与微注塑技术相结合。

微注塑成型技术是一种进行聚合物微结构制造的技术,可对表面的形貌、形状、结构、尺寸和排布等进行调节。本申请发明人发现,现有技术中,一般将微注塑技术与熔融法或湿法相转化法相结合,而未有将微注塑技术与热致相分离法(tips法,thermallyinducedphaseseparationmethod)相结合。且不仅是在微孔膜领域,其他领域也罕见将微注塑技术与热致相分离法相结合。原因可能是热致相分离法与微注塑技术二者的具体成型过程相差很大。如何在控制热致相分离成孔过程的同时兼顾微注塑技术的微结构,阻碍了将热致相分离法与微注塑技术结合制备微结构表面多孔膜。

热致相分离法与微注塑技术二者都涉及高温溶解、低温成型,但对各自的工艺都有其严格的要求,加热温度、冷却温度和压力等均不相同,二者的结合需要考虑同一个参数同时对两个过程的影响。本发明公开所述制备方法,先将聚合物组分聚偏氟乙烯和超高分子量聚乙烯分别烘干,而后与稀释剂、抗氧剂在常温下搅拌获得悬浊液;然后将获得的悬浊液由双螺杆挤出机挤出并注入金属模具,在此过程中对于双螺杆挤出机的加热区以及金属模具的温度都进行严格控制;模具随后要置于水介质中冷却;最后置于冷冻干燥机中干燥得到干态微孔膜。这样,本发明制备方法将微注塑技术与热致相法结合,提供一种偏氟乙烯/超高分子量聚乙烯共混微孔膜的新的制备方法,制得的微孔膜具有微米阵列结构和多孔结构组成的复合表面结构,同时兼具良好的表面粗糙度、拉伸强度、孔隙率,在疏水性能、力学性能及渗透性能上得到同步提升。

参照图2,本发明公开的制备方法还可以包括步骤s5——以步骤s4所得聚偏氟乙烯/超高分子量聚乙烯干态共混微孔膜为基材,利用磁控溅射技术在其表面进行表面改性处理。

在一些实施例中,磁控溅射技术为射频磁控溅射。应用射频磁控溅射以低表面能靶材在干态微孔膜表面沉积低表面能纳米粒子。

在一些实施例中,以聚四氟乙烯、聚全氟乙丙烯、聚偏氟乙烯、石墨、为靶材等低表面能物质为靶材,溅射功率为100~200w,溅射时间为30s~30min,溅射压力为0.1~1pa。

本发明公开的制备方法中,采用磁控溅射技术对干态微孔膜进行表面改性处理,在干态微孔膜表面沉积低表面能纳米粒子,纳米粒子沉积在微孔膜微阵列结构上形成微纳复合结构的同时降低膜表面的表面能,进一步提高膜的疏水性。

图3示出了本发明实施例所述聚偏氟乙烯/超高分子量聚乙烯共混微孔膜的制备方法的工艺路线图。如图3所示,本发明实施例的制备方法将tips法与微注塑技术相结合,注塑模具采用金属模具。模具表面具有微棱镜阵列式微结构,pvdf与uhmwpe共混得到网络增强多孔膜。初步将tips法与微注塑技术相结合得到微棱镜阵列表面多孔膜,然后采用磁控溅射技术在膜表面沉积低表面能纳米粒子进一步构建微纳复合表面结构,得到微纳复合结构表面多孔膜。微孔膜表面具有多孔结构、微米阵列结构和低表面能纳米粒子组成的微纳复合结构,膜内部为网络状连接多孔结构,超高分子量聚乙烯增强了聚偏氟乙烯晶体间的连接。最后,得到的微孔膜兼具良好的疏水性能、机械性能和渗透性能。本方法所涉及的工艺路线成本低,可操作性强,便于工业化生产。

由本发明实施例制得的微孔膜,其厚度可以为0.30~1.50mm。

下文结合具体实施例以进一步详细阐述本发明实施例的共混微孔膜及其制备方法。

对比例1

1)将聚偏氟乙烯在90℃下烘2h。

2)将30wt%聚偏氟乙烯和70wt%邻苯二甲酸二丁酯在常温下搅拌1h,获得分散均匀的悬浊液。

3)将步骤2)所得的悬浊液喂入双螺杆挤出机,双螺杆挤出机各区温度依次为130℃、140℃、160℃、175℃、190℃、200℃,出料口温度为220℃,转速为80r/min。将从出料口挤出的铸膜冻胶注入220℃的平滑模具中进行注塑成型,冷却后得到初生冻胶膜,冷却温度为20℃。

4)将步骤3)所得初生膜浸入无水乙醇中24h进行一道萃取,除去稀释剂邻苯二甲酸二丁酯;最后将膜放入去离子水中浸泡24h进行二道萃取,去除无水乙醇。

5)将步骤4)萃取后的膜置于冷冻干燥机中干燥,得到干态超高分子量聚乙烯/聚偏氟乙烯微孔膜。

对制得的微孔膜进行性能测试,结果如表1所示。

实施例1

1)将超高分子量聚乙烯在60℃下烘2h,聚偏氟乙烯在90℃下烘2h。

2)将28wt%聚偏氟乙烯,2wt%超高分子量聚乙烯,0.2wt%抗氧剂,29.8wt%邻苯二甲酸二丁酯和40wt%石蜡油混合,常温下搅拌1h,获得分散均匀的悬浊液。

3)将步骤2)所得的悬浊液喂入双螺杆挤出机,双螺杆挤出机各区温度依次为130℃、140℃、160℃、175℃、190℃、200℃,出料口温度为220℃,转速为80r/min。将从出料口挤出的铸膜冻胶注入220℃的微结构模具中进行注塑成型,模具的模腔表面具有微棱镜阵列式结构,微结构循环尺寸为100μm,冷却后得到初生冻胶膜,冷却温度为20℃。

4)将步骤3)所得初生膜浸入无水乙醇中24h进行一道萃取,除去稀释剂邻苯二甲酸二丁酯;置于120号汽油中24h进行二道萃取除去稀释剂石蜡油后置于无水乙醇中12h进行三道萃取去除120号汽油;最后将膜放入去离子水中浸泡24h进行四道萃取,去除无水乙醇。

5)将步骤4)萃取后的膜置于冷冻干燥机中干燥,得到干态微孔膜。

对该实施例制得的微孔膜进行性能测试,结果如表1所示。

实施例2

1)将超高分子量聚乙烯在60℃下烘2h,聚偏氟乙烯在90℃下烘2h。

2)将28wt%聚偏氟乙烯,2wt%超高分子量聚乙烯,0.2wt%抗氧剂,29.8wt%邻苯二甲酸二丁酯和40wt%石蜡油混合,常温下搅拌1h,获得分散均匀的悬浊液。

3)将步骤2)所得的悬浊液喂入双螺杆挤出机,双螺杆挤出机各区温度依次为130℃、140℃、160℃、175℃、190℃、200℃,出料口温度为220℃,转速为80r/min。将从出料口挤出的铸膜冻胶注入220℃的微结构模具中进行注塑成型,模具的模腔表面具有微棱镜阵列式结构,微结构循环尺寸为100μm,冷却后得到初生冻胶膜,冷却温度为20℃。

4)将步骤3)所得初生膜浸入无水乙醇中24h进行一道萃取,除去稀释剂邻苯二甲酸二丁酯;置于120号汽油中24h进行二道萃取除去稀释剂石蜡油后置于无水乙醇中12h进行三道萃取去除120号汽油;最后将膜放入去离子水中浸泡24h进行四道萃取,去除无水乙醇。

5)将步骤4)萃取后的膜置于冷冻干燥机中干燥,得到干态微孔膜。

6)以步骤5)所得干态微孔膜为基材,以石墨为靶材,利用磁控溅射技术在其表面沉积石墨纳米粒子,即得所述疏水改性聚偏氟乙烯/超高分子量聚乙烯微孔膜,溅射压力1pa,溅射功率为160w,溅射时间为3min。

对该实施例制得的微孔膜进行性能测试,结果如表1所示。

实施例3

1)将超高分子量聚乙烯在60℃下烘2h,聚偏氟乙烯在90℃下烘2h。

2)将28wt%聚偏氟乙烯,2wt%超高分子量聚乙烯,0.2wt%抗氧剂,29.8%邻苯二甲酸二丁酯和40wt%石蜡油混合,常温下搅拌1h,获得分散均匀的悬浊液。

3)将步骤2)所得的悬浊液喂入双螺杆挤出机,双螺杆挤出机各区温度依次为130℃、140℃、160℃、175℃、190℃、200℃,出料口温度为240℃,转速为80r/min。将从出料口挤出的铸膜冻胶注入240℃的微结构模具中进行注塑成型,模具的模腔表面具有微棱镜阵列式结构,微结构循环尺寸为50μm,冷却后得到初生冻胶膜,冷却温度为20℃。

4)将步骤3)所得初生膜浸入无水乙醇中24h进行一道萃取,除去稀释剂邻苯二甲酸二丁酯;置于120号汽油中24h进行二道萃取除去稀释剂石蜡油后置于无水乙醇中12h进行三道萃取去除120号汽油;最后将膜放入去离子水中浸泡24h进行四道萃取,去除无水乙醇。

5)将步骤4)萃取后的膜置于冷冻干燥机中干燥,得到干态微孔膜。

对该实施例制得的微孔膜进行性能测试,结果如表1所示。

实施例4

1)将超高分子量聚乙烯在60℃下烘2h,聚偏氟乙烯在90℃下烘2h。

2)将28wt%聚偏氟乙烯,2wt%超高分子量聚乙烯,0.2wt%抗氧剂,29.8%邻苯二甲酸二丁酯和40wt%石蜡油混合,常温下搅拌1h,获得分散均匀的悬浊液。

3)将步骤2)所得的悬浊液喂入双螺杆挤出机,双螺杆挤出机各区温度依次为130℃、140℃、160℃、175℃、190℃、200℃,出料口温度为240℃,转速为80r/min。将从出料口挤出的铸膜冻胶注入240℃的微结构模具中进行注塑成型,模具的模腔表面具有微棱镜阵列式结构,微结构循环尺寸为200μm,冷却后得到初生冻胶膜,冷却温度为20℃。

4)将步骤3)所得初生膜浸入无水乙醇中24h进行一道萃取,除去稀释剂邻苯二甲酸二丁酯;置于120号汽油中24h进行二道萃取除去稀释剂石蜡油后置于无水乙醇中12h进行三道萃取去除120号汽油;最后将膜放入去离子水中浸泡24h进行四道萃取,去除无水乙醇。

5)将步骤4)萃取后的膜置于冷冻干燥机中干燥,得到干态微孔膜。

对该实施例制得的微孔膜进行性能测试,结果如表1所示。

表1性能测试结果

由实施例1~4与对比例1对比可知,参见图5a,膜表面有整齐的微米级阵列结构。参见图5c,uhmwpe在膜中以网络状存在。参见表1,在实施例1中,接触角达到137.42°,同时膜拉伸强度仍高达1.25mpa(比对比例1高0.43mpa,比1mpa高出0.25mpa)。与现有方法相比,本发明公开所述制备方法将热致相法与微注塑相结合制备共混膜,在增强机械强度的基础上提高了疏水性。

对比实施例1和2,进行磁控溅射处理的微孔膜表面沉积了一层纳米粒子(见图5b和图7),有效增加了膜的粗糙度,提高了膜正面接触角,增强了膜的疏水性。

对比实施例3~4可以看出,模具微结构循环尺寸减小,膜表面粗糙度增加,有利于膜表面水接触角的增加,膜的疏水性能增强。

在本说明书的描述中,参考术语“一个实施例”、“一些实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。

以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1