具有用于引发气相放热反应的点火器的多管式化学反应器的制作方法

文档序号:29631538发布日期:2022-04-13 16:03阅读:134来源:国知局
具有用于引发气相放热反应的点火器的多管式化学反应器的制作方法
具有用于引发气相放热反应的点火器的多管式化学反应器
1.对相关申请的引用
2.本技术涉及于2013年11月6日提交的第61/900,510号和第61/900,543号美国专利申请所公开和要求保护的主题,这些专利申请的全部内容通过引用结合在此。


背景技术:

3.本公开涉及化学反应器,尤其涉及一种结合有用于在其中引发多种气相放热反应的点火器的多管式化学反应器。
4.虽然本公开的教导通常适用于进行所有方式的气相放热反应的所有类型的多管式反应器,但是在本文中将通过多管式重整器和操作这种重整器以引发液体和气体可重整燃料的气相放热重整从而产生富氢重整产物的方法来对其进行具体举例说明。
5.气体或汽化可重整燃料向富含氢的含一氧化碳气体混合物(通常称为“合成气”或“syngas”的产物)的转化可按照任何这种公知的气相燃料重整操作进行,例如蒸汽重整、干重整、自热重整和催化部分氧化(cpox)重整。这些燃料重整操作之中的每一种都有其独特的化学性质和要求,并且每一种都具有相对于其它操作的特征性优点和缺点。
6.由于燃料电池(即,将诸如氢气、氢气和一氧化碳的混合物等可电化学氧化的燃料电化学转化为电能的装置)的潜力,改进的燃料重整器、燃料重整器部件和重整工艺的开发仍然是大量研究的焦点,在包括主电源装置(mpu)和辅助电源装置(apu)在内的常规应用中发挥了极大的作用。燃料电池还可用于特殊应用,例如作为电动车的车载发电装置、住宅用设备的备用电源、休闲用主电源、户外和其它离网位置的用电装置、以及用于便携式电池堆的重量更轻、功率密度更高、与环境温度无关的替代品。
7.由于氢的大规模、经济的生产、其分送所需的基础设施、以及其储存(尤其是作为运输燃料)的实用手段被广泛认为还有很长的路要走,因此目前的许多研究和开发都致力于改进作为电化学可氧化燃料(尤其是氢和一氧化碳的混合物)的来源的燃料重整器和作为这种燃料向电的转换器的燃料电池组件(通常被称为燃料电池“堆”)、以及将燃料重整器和燃料电池集成到更紧凑、可靠和高效的用于产生电能的装置中。


技术实现要素:

8.根据本公开,提供了一种多管式化学反应器,其包括多个间隔开的反应器单元,每个反应器单元包括细长管,该细长管具有带有内表面和外表面的壁、位于一端处的入口和位于相对端处的出口,所述壁封闭气流通道,该气流通道的至少一部分限定气相反应区,所述多管式化学反应器可包括至少一个点火器,该点火器用于在反应器单元的气相反应区内引发至少一种气相放热反应。所述点火器可包括辐射热产生元件,该辐射热产生元件与气相反应区热连通并靠近气相反应区,但与气相反应区物理隔离。
9.对于所述多个间隔开的反应器单元来说,在稳态操作模式期间,相邻反应器单元之间的最大距离可以是这样的距离,在超过该距离时所述多个间隔开的反应器单元的温度会下降到低于预定的最低阵列温度。相邻反应器单元之间的最小距离可以是这样的距离,
在低于该距离时反应器单元的出口处的温度会高于预定的最高温度。
10.所述多管式化学反应器可包括至少一个热电偶,该热电偶布置在包括多个间隔开的反应器单元的反应室内。
11.所述多管式化学反应器可包括多个点火器。在包括多个间隔开的反应器单元的反应室的一端可布置至少一个点火器,并且在反应室的相对端可布置至少一个点火器。所述多管式化学反应器可包括多个点火器和多个热电偶,这些点火器和热电偶布置在包括所述多个间隔开的反应器单元的反应室内。在所述反应室的一端可布置至少一个点火器和至少一个热电偶,并且在所述反应室的相对端可布置至少一个点火器和至少一个热电偶。
12.所述多个点火器和所述多个热电偶可在反应室内布置成使得位于反应室的一端处的至少一个点火器可与布置在反应室的相对端处的热电偶相对。
13.所述多管式化学反应器可包括气体反应物源,该气体反应物源与所述反应器单元的气相反应区流体连通。
14.所述多管式化学反应器可包括用于控制该多管式化学反应器的操作的控制器。该控制器可与所述至少一个点火器以及(若存在)所述至少一个热电偶和所述气体反应物源之中的至少一种操作连通。
15.根据本公开,提供了一种多管式化学反应器,其包括:沿着与长度为x的线l对应的公共纵轴排列成一排或多个基本相同配置的平行排的多个间隔开的反应器单元,所述线l从布置成一排的反应器之中的第一个反应器延伸到最后一个反应器,一排中的每个反应器单元包括细长管,该细长管具有带有内表面和外表面的壁、位于一端的入口和位于相对端的出口,所述壁封闭气流通道,该气流通道的至少一部分限定气相反应区;以及用于在反应器单元的气相反应区内引发至少一种气相放热反应的至少一个点火器,该点火器包括位于反应器单元的外露区段附近但与之物理隔离的辐射热产生元件,这种辐射热产生元件的延伸长度是线l的长度x的至少大约30%至大约100%。
16.根据本公开,提供了一种多管式化学反应器,其包括:多个间隔开的反应器单元,每个反应器单元包括细长管,该细长管具有带有内表面和外表面的壁、位于一端处的入口和位于相对端处的出口,所述壁封闭气流通道,该气流通道的至少一部分限定气相反应区;以及用于在反应器单元的气相反应区内引发多种气相放热反应的至少一个点火器,该点火器包括位于反应器单元的外露区段附近但与之物理隔离的辐射热产生元件,这种辐射热产生元件的延伸长度使得其靠近反应器单元的多个气相反应区。
17.cpox反应器单元的cpox气相反应区和每个点火器的热辐射元件可布置在绝热室内。点火器的操作可通过其热辐射元件将辐射热传递至其附近的至少一个cpox反应器单元的cpox气相反应区,以在该反应区内引发至少一种气相放热反应。
18.所述多管式气相化学反应器的点火器部件与布置在绝热室内的cpox反应器单元的反应区物理隔离,因而为反应器操作的管理提供了多种益处和优点。根据一排或平行排中的管式反应器单元的数量和布置,单个点火器单元和至多数个点火器单元通常足以在反应器单元的气相反应区内引发或启动一种或多种放热气相反应。这简化了反应器及其各个管式反应器单元的构造,并简化了反应器的操作以及可能需要的不工作或有缺陷的点火器的识别和更换。
19.本文中的反应器的点火器部件的另一个主要优点是,在反应器达到稳态操作时,
很容易对其进行去活,并根据反应器操作管理的需要对其重新激活以再次引发放热气相反应。点火器的激活和去活的便利性对于在正常运转期间可能经历频繁且快速的开关循环的多管式反应器是有益的。
20.根据本公开,提供了一种用于多管式化学反应器的启动方法,其包括以下步骤:在所有点火器中引发最大加热;确定在位于中心的反应器单元内引发气相放热反应;将外侧点火器的加热降低到第一加热水平,将内侧点火器的加热降低到第二加热水平,所述第二加热水平低于所述第一加热水平;确定在位于外侧的反应器单元内引发气相放热反应;关断点火器的加热。
附图说明
21.应理解,下述附图仅用于示例性目的。附图不一定是按比例绘制的,其绘图重点一般在于示出本教导的原理。附图并非意图以任何方式限制本教导的范围。相同的附图标记通常指代相同的部分。
22.图1是一种已知类型的气相放热化学反应器的示意性框图,具体而言,该气相放热化学反应器是一种具有多个管状气相cpox反应器单元的气体燃料cpox重整器。
23.图2是根据本教导的气相放热化学反应器的一个实施例的示意性框图,具体而言,该气相放热化学反应器是气相cpox重整器。
24.图3是用于管理图1和图2的气体燃料cpox重整器的操作的示例性控制系统的示意性框图。
25.图4是由控制器执行的用于管理气体燃料cpox重整器的操作的示例性控制程序的流程图,该控制器例如是图3所示的控制系统。
26.图5a是按照本发明构造的气体燃料cpox重整器的一个实施例的纵向截面图。
27.图5b是图5a所示的气体燃料cpox重整器的横向(垂直于纵轴)截面图。
28.图5c是图5a所示的气体燃料cpox重整器的一部分的平面截面图。
29.图5d是图2和图5a的气体燃料cpox反应器的实施例的分解透视图,其中示出了多排管状气相cpox反应器单元及其气相cpox反应区在绝热室内的布置。
30.图6是根据本发明教导的气相化学反应器的另一个实施例的纵向截面图,具体而言,该气相化学反应器是液体燃料cpox重整器。
31.图7是由控制器执行的用于管理图6的液体燃料cpox重整器的操作的示例性控制程序的流程图。
32.图8a-8c是示出根据本教导的气相化学反应器的启动程序的示意图。
具体实施方式
33.应理解,虽然本说明书被描述为适用于cpox重整器,但是本公开适用于所有放热重整器和/或反应。
34.还应理解,本文中的教导不限于所说明的特定程序、材料和修改,因此是可变化的。还应理解,在本文中所用的术语仅用于描述特定实施例的目的,而并非意图限制本教导的范围,本教导的范围仅由所附权利要求限定。
35.为了简明起见,本文中的论述和说明将主要集中于催化部分氧化重整反应和反应
物,包括催化部分氧化重整反应和反应物(可重整燃料和含氧气体)。但是,本文中所述的装置、组件、系统和方法可应用于其它放热重整反应(例如自热重整)和反应物(可重整燃料、蒸汽和含氧气体)以及本文所述的其它气相放热反应。因此,在本文中结合装置或方法提及含氧气体的情况下,应认为本教导包括与含氧气体结合的蒸汽,除非在上下文中另有明确声明或根据上下文另行理解。此外,在本文中结合装置或方法提及可重整燃料的情况下,应认为本教导包括组合或单独的蒸汽,即,可重整燃料和/或蒸汽,除非在上下文中另有明确声明或根据在上下文中另行理解。
36.此外,本教导的反应器、系统和方法应理解为适合于进行cpox重整和自热重整,例如发生在如本文所述的结构和部件内和/或采用如本文所述的一般方法的cpox重整和自热重整。也就是说,本教导的反应器、系统和方法可将适当的液体反应物(例如液体可重整燃料和/或液态水)从液体可重整燃料储存器输送至汽化器,以分别产生汽化的液体可重整燃料和蒸汽,并且将适当的气体反应物(例如含氧气体、气体可重整燃料和蒸汽之中的至少一种)从它们各自的源头输送至燃料电池单元或系统的期望部件(例如重整器)。
37.在输送系统中使用水的情况下,来自燃料电池单元或系统的重整器、燃料电池堆和后燃器之中的一个或多个的回收热量可用于蒸发水以产生蒸汽,该蒸汽可存在于输送系统中和/或从独立的源头引入到输送系统中。
38.在说明书和权利要求书中,在结构、装置、设备、组成等被描述为具有、包含或包括特定的组件时,或者在方法被描述为具有、包含或包括特定的方法步骤时,应想到这样的结构、装置、设备、组成等也基本上由所述部件构成,或者由所述部件构成,并且这样的方法也基本上由所述方法步骤构成,或者由所述方法步骤构成。
39.在说明书和权利要求中,在元件或部件被描述为包含在所述元件或部件的列表中和/或选自所述元件或部件的列表时,应理解,该元件或部件可以是所述元件或部件之中的任何一个,或者该元件或部件可选自由两个或更多所述元件或部件组成的组。此外,应理解,无论在本文中是否明示,在不脱离本教导的主题和范围的情况下,本文中所述的结构、装置、设备或组成或者方法的元素和/或特征可按多种方式组合。例如,在提及特定结构时,该结构可用在本教导的设备和/或方法的各种实施例中。
40.术语“包括”、“具有”、“包含”以及其语法上的等同形式的使用一般应理解为开放性和非限制性的,例如不排除额外的未引用的元素或步骤,除非在上下文中另有明确说明或可根据上下文另行理解。
41.除非另行说明,否则在本文中单数(例如“一”、“一个”和“该”)的使用包括复数(反之亦然)。
42.在术语“大约”在定量值之前使用的情况下,本教导还包括具体的定量值本身,除非另有明确说明。在本文中所用的术语“大约”指与标称值相差
±
10%,除非另有说明或可另行推断。
43.应理解,步骤的顺序或执行某些动作的顺序是无关紧要的,只要使本教导的操作可行。例如,除非在本文中另有说明或与上下文明显矛盾,否则在本文中说明的方法可按任何适当的顺序执行。此外,除非这些步骤因其性质而必须按顺序进行,否则它们可同时进行。
44.在本说明书的不同地方,数值是以数值范围公开的。具体而言,在本文中公开的数
值的范围包括该范围及其任何子范围内的每个值。例如,0至20的范围内的数值具体旨在独立地公开0、1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19和20及其任何子范围,例如0至10、8至16、16至20等。
45.除非另有说明,在本文中提供的任何和所有实例或示例性语言(诸如“例如”)的使用仅是为了更好地描述本教导,而不构成对本发明的范围的限制。说明书中的任何语言都不应解读为表示对本教导的实践至关重要的任何未要求的要素。
46.除非其上下文用法另有说明,否则诸如“上”、“下”、“顶”、“底”、“水平”、“竖直”等指示空间方位或姿态的术语和表述在本文中应理解为没有结构、功能或操作意义,并且仅反映在某些附图中示出的本教导的反应器的各种视图的任意选择的方位。
47.在本文中所用的“可重整燃料”指液体可重整燃料和/或气体可重整燃料。
[0048]“气体可重整燃料”的表述应理解为包括在stp条件下为气体并在经受重整时转化为富氢重整产物的可重整的含碳和含氢的燃料,例如甲烷、乙烷、丙烷、丁烷、异丁烷、乙烯、丙烯、丁烯、异丁烯、二甲醚、它们的混合物,例如天然气和液化天然气(lng)(主要是甲烷)、以及石油气和液化石油气(lpg)(主要是丙烷或丁烷,但包括主要由丙烷和丁烷以及氨等组成的所有混合物)。
[0049]“液体可重整燃料”的表述应理解为包括在标准温度和压力(stp)条件下为液体并在经历重整时转化为富氢重整产物的可重整的含碳和含氢的燃料,例如甲醇、乙醇、石脑油、馏出物、汽油、煤油、喷气燃料、柴油、生物柴油等。“液体可重整燃料”的表述应进一步理解为包括处于液态或气态(即,蒸汽)的此类燃料。
[0050]
在本文中所用的“气体重整反应混合物”在自热重整的情况下指包含气态液体可重整燃料(例如汽化的液体可重整燃料)、气体可重整燃料或其组合、以及含氧气体(例如空气)和/或水(例如以蒸汽的形式)的混合物。可使气体重整反应混合物进行重整反应以产生富氢产物(“重整产物”),该富氢产物还可包含一氧化碳。在进行催化部分氧化重整反应的情况下,气体重整反应混合物可被称为“气体cpox重整反应混合物”,该混合物包含可重整燃料和含氧气体。在进行自热重整反应的情况下,气体重整反应混合物可被称为“气体at重整反应混合物”,该混合物包含可重整燃料、含氧气体和蒸汽。
[0051]
术语“重整反应”应理解为包括在气体反应介质转化为富氢重整产物的过程中发生的放热反应。因此,本文中的表述“重整反应”例如包括cpox和自热重整。
[0052]
如前文所述,为了简明起见,本文中的论述和说明将集中于部分氧化重整反应和反应物,包括催化部分氧化重整反应和反应物(可重整燃料和含氧气体)。但是,本文中所述的装置、组件、系统和方法同样适用于其它重整反应(例如自热重整)及其各自的反应物。例如,在本文的说明中,对于自热重整,蒸汽可与含氧气体和/或可重整燃料一起引入。
[0053]
现在将通过与图1中示意性地示出的已知类型的气体燃料cpox重整器的对比来具体地详细地说明本公开的气相反应器。
[0054]
图2和图5a-5d示出了按照本发明的原理构造的气体燃料cpox反应器的实施例,图6示出了一种示例性的液体燃料cpox重整器。
[0055]
如图1所示,气体燃料cpox重整器1100包括离心式鼓风机1102,该离心式鼓风机1102用于将含氧气体(在此处和本教导的其它实施例中以空气为例)引入导管1103,并用于驱动该气流和其它气流(包括气体燃料-空气混合物和富氢重整产物)通过cpox重整器的各
种通道。导管1103可包括流量计1104和热电偶1105。这些装置和类似装置可布置在气体燃料cpox重整器内的不同位置,以便测量、监测和控制气体燃料cpox重整器的操作,在下文中将结合图3所示的控制系统对其进行更全面的解释。
[0056]
在示例性气体燃料cpox重整器1100的启动操作模式中,由鼓风机1102引入导管1103中的空气与在较低的压力下从气体燃料储罐1113通过配有可选的热电偶1115、流量计1116和流量控制阀1117的燃料管线1114引入导管1103中的气体可重整燃料结合,在此处和本教导的其它实施例中,该气体可重整燃料以丙烷为例。空气和丙烷在导管1103的混合区1118中结合。混合器(例如静态混合器,例如管线混合器1119)和/或在导管1103的内表面内形成的产生涡流的螺旋槽或者外部供电的混合器(未示出)可布置在导管1103的混合区1118内,以提供比其它情况下更均匀的丙烷-空气气体cpox反应混合物。
[0057]
丙烷-空气混合物(即,气体cpox反应混合物)进入歧管或集气室1120,该歧管或送气室1120将反应混合物分配到管状cpox反应器单元1109和1110的入口。在cpox重整器1100的启动操作模式中,具有热辐射元件1123b的点火器1123a(将结合图1和图4a-4d的气体燃料cpox重整器进行更详细的说明)在管状cpox反应器单元1109的气相cpox反应区1110内引发气体cpox反应混合物的放热气相cpox反应,从而开始富氢重整产物的生产。在达到稳态cpox反应温度(例如150℃至1100℃)时,该放热反应变得自持,并且可停止点火器的操作。在一个或多个cpox反应区1110附近布置有热电偶1125,以监测发生在cpox反应器单元1109内的cpox反应的温度,温度测量值被作为监测参数传递给重整器控制系统1126。
[0058]
如图1所示,重整器1100包括排列成至少一排的多个管状cpox反应器管1100,并且,在典型情况下,至少一对平行排(例如如图5b、5c和5d中的本发明的cpox反应器的实施例所示)沿着由线l限定的公共纵轴排列,线l具有从一排中的第一个反应器管的中心到这排中的最后一个反应器的中心测得的长度x。管状cpox反应器单元1109和1110的气相cpox反应区最好布置在绝热室1128内,从而很容易根据需要回收和利用在重整器1100的稳态运行期间产生的cpox放热的热量,例如用于重整器内的空气、气体燃料和/或其它气流的预热,或者蒸发液体燃料。在图1的已知类型的重整器1100的实施例中,能够注意到,点火器1123a的热辐射元件(例如1123b)在其一端处探入绝热室1128中,并且终止在超过第二cpox反应器单元1110的很短距离处,该距离与线l的距离x的大约20-25%对应。
[0059]
重整器1100还可包括电流源(例如可充电锂离子电池系统1127),以便为其电动部件(例如鼓风机1102、流量计1104和1116、流量控制阀1117和点火器1123a)提供电力。
[0060]
根据需要,可将来自气体燃料cpox重整器的流出产物(例如富氢重整产物)引入一个或多个常规或已知的一氧化碳去除装置中,以降低其一氧化碳(co)含量,例如在将流出产物作为燃料引入到使用对co中毒特别敏感的催化剂(例如聚合物电解质膜燃料电池中常见的催化剂)的燃料电池堆中的情况下。因此,例如可将流出产物引入水煤气变换(wgs)转化器中,在该转化器中co被转化为二氧化碳(co2),同时产生额外的氢气,或者,可将流出的重整产物引入反应器,在该反应器中使co优先氧化(prox)为co2。也可采用这些工艺的组合来减少一氧化碳,例如在wgs之后进行prox,或者相反。通过使重整产物通过已知或常规的净化单元或装置来降低重整产物中的一氧化碳含量也在本发明的范围之内,所述净化单元或装置配有氢选择性膜,该氢选择性膜将重整产物分离成氢气流和含一氧化碳的副产物流。这种类型的单元/装置还可与一个或多个其它的一氧化碳还原单元组合,例如前述的
wgs转化器和/或prox反应器。
[0061]
按照本发明的原理构造的图2的气相cpox反应器100与图1的气相cpox反应器1100基本相同,只是cpox反应器1100的点火器1123的热辐射元件1123b和cpox反应器100的点火器123的相应热辐射元件123b沿着线l的长度延伸的距离x与线l的长度的百分比彼此不同。在所有其它方面,图1中的反应器1100和图2中的反应器100是相同的,因此除了这两个反应器之间的上述结构差异外,不需要对cpox反应器100进行单独和重复的说明,上述结构差异分别与热辐射元件1123b和123b相对于线l的长度有关。如前文所述,在cpox反应器1100的热辐射元件1123b的情况下,该元件1123b沿着线l延伸的长度x不超过线l的长度的大约25%。与图1(现有技术)的cpox反应器1100的热辐射元件1123b的前述最大长度相比,图2的cpox反应器100的热辐射元件123b延伸的距离x是线l的长度的至少大约30%,优选至少大约60%,更优选大约100%,并且,如果需要,甚至可以是更大的距离,例如比线l的长度长大约5%到大约10%,如图2和图5的cpox反应器的实施例所示。在图2的cpox反应器100的情况下,与在这种反应器中引发自持cpox所需的时间相比,产热元件123b沿着线l的大得多的延伸距离对于减少在其cpox反应器管的反应区内引发自持cpox的时间具有非常理想的效果,例如至少减少大约10%至大约20%,优选至少减少大约20%至大约40%,更优选至少减少大约40%至大约60%,并且,令人惊奇的是,不需要输送高得多的电功率(在热辐射元件123b是电阻元件的情况下)。
[0062]
由1123b提供的功率是20w,由123b提供的功率是40w。更重要的是,单位长度的瓦特数比较短、功率较低的单元要低,而后者的热密度要高得多。这种配置容易发生在完全传热和床层点燃之前使附近局部催化剂过热并导致自燃或催化剂蒸发(》1000℃)的危险。较长的加热器为优先启动条件提供了更一致和受控的热源。
[0063]
虽然通过采用布置在绝热室1128的相对端的彼此相对的点火器(如图5c和5d中的cpox反应器的实施例所示)能够减少引发自持cpox所需的时间,但是很容易认识到并理解,本文中的实现显著减少如图3中的单点火器cpox反应器100的实施例所示例的cpox引发时间(即,更快的cpox引发)的目标的方案是实现该目标的一种更简单的设计(因此制造更简单)。
[0064]
图3所示的示例性控制系统200用于控制本教导的气体燃料cpox重整器的操作,例如图2的cpox重整器100和图5a-5d的重整器400。本领域技术人员很容易认识到,通过在考虑图6的液体燃料cpox重整器500的空气预热和液体燃料汽化部件的操作的基础上进行适当的修改,控制系统200也可用于控制这种类型的重整器的操作。
[0065]
如图2所示,控制系统200包括控制器201,以在气体燃料cpox重整器202的启动、稳态和关停操作模式下对其进行管理。所述控制器可以是在处理器上运行的软件。但是,采用以一个或多个数字或模拟电路或其组合实现的控制器也在本教导的范围之内。
[0066]
控制系统200还包括与控制器201通信并适于监测cpox重整器202的选定操作参数的多个传感器组件,例如热电偶和相关的燃料压力表204、热电偶和相关的空气压力表209以及重整器热电偶214。
[0067]
根据本教导,控制器201可响应于来自传感器组件的输入信号、来自用户输入装置和/或编程的子程序和命令序列的用户命令管理气体燃料cpox重整器的操作。更具体地说,控制器201可通过向气体燃料cpox重整器的期望区段或部件的控制信号接收部分发送指示
特定动作的命令信号来与之通信。因此,例如控制器201可响应于来自热电偶和相关压力表204和209的流量输入信号和/或来自重整器热电偶214的温度输入信号向燃料流量控制阀205发送控制信号,例如用于控制燃料从气体燃料储罐203通过燃料管线206向导管207的流动,向离心式鼓风机208发送控制信号以控制空气向导管207中的流动并驱动气体cpox反应混合物在cpox重整器202内的流动,向点火器211发送控制信号以控制其开关状态,并且向电池/电池充电器系统212发送控制信号以管理其功能。
[0068]
本文中的传感器组件、控制信号接收装置和通信路径可以是本领域已知的任何适当构造。所述传感器组件可包括针对被监测的操作参数的任何适当的传感器装置。例如,可用任何适当的流量计监测燃料流量,可用任何适当的压力感测或压力调节装置等监测压力。所述传感器组件还可以但不一定必须包括与控制器通信的变送器。所述通信路径通常是有线电信号,但是也可采用任何其它适当形式的通信路径。
[0069]
在图2中,通信路径被示意性地示为单箭头或双箭头。终止于控制器201的箭头示意性地表示输入信号,例如测量的流量或测量的温度的值。从控制器201延伸的箭头示意性地表示为指导来自箭头终止位置处的部件的响应动作而发送的控制信号。双箭头路径示意性地表示控制器201不仅向cpox重整器202的相应部件发送命令信号以提供确定的响应动作,而且接收来自cpox重整器202和机械单元(例如燃料控制阀205和鼓风机208)的操作输入以及来自传感器组件(例如压力表204和209以及热电偶214)的测量输入。
[0070]
图4示出了示例性控制程序的流程图,该控制程序可由控制系统的控制器执行,以自动进行气体燃料cpox重整器(例如图2的重整器100和图5a-5d的重整器400)的操作。该流程图可由控制器按固定的时间间隔(例如每10毫秒左右)执行。图4所示的控制逻辑执行多个功能,包括启动和稳态操作模式下的气流和cpox反应温度的管理、以及重整器关停操作模式的程序的管理。
[0071]
如图5a-5d中的代表本发明的另一些实施例的示例性气体燃料cpox重整器400及其部件的多种视图所示,通常在环境温度下,经由离心式鼓风机402通过导管404的入口403以预设的质量流量引入空气作为含氧气体。通过燃料管线441和燃料入口442向导管404中引入丙烷。丙烷和空气开始在导管404的混合区420内结合,以提供气态cpox反应混合物。可包括任何适当类型的混合器(例如设置在混合区420和/或导管404的螺旋槽内壁表面内的静态混合器),以提供与混合区420中形成的气体cpox反应混合物相比具有更高的组成一致性的气体cpox反应混合物。
[0072]
气体cpox反应混合物在通过可选的静态混合器和/或与布置在混合区420内的螺旋槽接触后通过出口425离开导管404并进入燃料分配歧管426。气体cpox反应混合物从歧管426进入cpox反应器单元408的入口431,并进入cpox反应区409,在该反应区中,反应混合物经历放热气相cpox反应以产生富含氢、含一氧化碳的重整产物。在启动模式中,一个或多个点火器435引发cpox。在cpox变得自持后(例如,在反应区的温度达到大约250℃至大约1100℃时),可关闭点火器435,因为不再需要外部点火来维持现在自持的放热cpox反应。绝热层410(例如微孔或氧化铝基耐火材料型的绝热层)包围cpox重整器400的这些部分,以减少这些部件的热损失。
[0073]
图5a-5d示出了本发明的一个实施例,其中在重整器400的启动操作模式期间,使用两个点火器435(每个独立的cpox反应器单元408阵列使用一个)在布置在反应室436内
和/或穿过反应室436的cpox反应器单元408的放热cpox反应区409内引发cpox反应。如图5c和5d所示,cpox反应器单元408排列成布置在绝热室436内的独立的两对管状cpox反应器单元的平行排(具体而言,在所示的实施例中每排有7个反应器单元,当然,也可考虑包含多于或少于该数量的cpox反应器单元和/或以非平行方式排列的排,例如以锯齿模式排列),一对cpox反应器单元排位于导管404一侧的侧面上,另一对这样的cpox反应器单元排位于导管404另一侧的侧面上。一对cpox反应器管排的周界标明绝热室436的开放空间438与绝热层410之间的边界。与cpox反应器单元408的cpox反应区409的至少一部分对应的cpox反应器单元408的壁的外表面437外露在开放空间438内。电阻型点火器435(例如额定功率为10-80瓦以上的点火器)布置在隔热室436的相对端,在这些位置,它们的辐射热产生元件439靠近cpox反应器单元408的外表面437布置,但与该外表面物理隔离。热电偶440布置在与点火器435相对的反应室436的端部,以便监测cpox反应区409的温度,并提供重整器控制输入,如结合图3所示的控制系统200所述。点火器的操作导致传递辐射热,并且辐射热穿过一个或多个附近的cpox反应器单元的壁,由此在这种反应器单元的cpox反应区内引发cpox。这样,从这些附近的cpox反应器单元的cpox反应区发出的热辐射能够在cpox反应器单元排内的其余cpox反应器单元的反应区内引发cpox,如图5c中的波浪箭头所示。
[0074]
与每个cpox反应器单元具有自己的物理附接或集成的点火器的cpox点火器系统相比,设置单个或最多几个避开与cpox反应器单元408的气相反应区直接接触的点火器435提供了多种优点。识别不工作的点火器可能是一个难题,并且很难在移除和更换不工作的点火器时不损坏其所属的cpox反应器单元和/或不干扰一排cpox反应器单元中的其它反应器单元。因此,采用单个或数个点火器并使其热辐射元件适当地靠近一个或一对cpox反应器单元排布置但避免与其中的反应器单元物理接触(例如将点火器的热辐射元件等距地布置在两排cpox反应器单元之间,如图5b、5c和5d中的cpox重整器的实施例所示)能够轻松并简单地从cpox重整器400中识别出并抽出发生故障或有缺陷的点火器,并用正常工作的点火器替换它。
[0075]
如图5c和5d所示,其中使用两个点火器来引发cpox反应器单元408的cpox反应区409内的cpox反应,相对于绝热室的另一侧的点火器435和热电偶440的位置反转绝热室436一侧的点火器435和热电偶440的位置可能是有利的,尤其是在两个绝热室之间可能存在显著的传热的情况下。已经观察到这种布置导致在每个独立的cpox反应器单元阵列的cpox反应区内更快速地引发cpox。但是,应理解,在反应室内具有适当尺寸和布置的cpox反应器单元的情况下,可使用单个点火器在反应室内的cpox反应器单元的cpox反应区内引发cpox。
[0076]
本领域技术人员很容易认识到并理解,cpox反应器单元的横截面构造、数量和尺寸以及从它们的几何中心或质心测量的它们的分隔距离取决于特定气体燃料cpox反应器的操作和机械性能规格。在具有基本一致的圆形横截面的cpox反应器单元的情况下(例如图4c和4d所示的cpox反应器单元408),这样的cpox反应器单元的数量、它们的长度以及它们的透气壁的内径和外径(限定它们的透气壁的厚度)由cpox重整器的制氢能力决定,而该能力又与多个因素成函数关系,包括类型、数量(cpox催化剂在透气壁内的装载和分布)、壁的多孔结构的特性(影响壁的透气性并由此影响cpox反应的特性)(例如孔体积(是孔径的函数)、孔的主要类型(大部分是开放的(即,网状的)、或者大部分是封闭的(即、非网状的))、孔的形状(球形或不规则形))、cpox反应混合物的体积流量、cpox温度、背压等。
[0077]
特定气体燃料cpox重整器的期望机械性能特征在很大程度上取决于用于构造cpox反应器单元的材料的热学和机械性能、cpox反应器单元的壁的透气结构的孔的体积和形态、反应器单元的尺寸(尤其是壁厚)等因素。
[0078]
为了使气体燃料cpox重整器适当地发挥作用,封闭气相cpox反应区的管状cpox反应器单元的催化活性壁结构的透气性应允许气体可重整燃料自由进入这样的壁结构并在其中扩散,从而不仅与表面cpox催化剂有效接触,而且与内部cpox催化剂(若存在)有效接触。应说明的是,对于汽化的可重整燃料具有有限的气体渗透性的cpox反应器单元壁结构可能是传质受限的,因而显著阻碍气体可重整燃料向富氢重整产物的cpox转化。相比之下,具有适当的气体渗透性的催化活性反应器壁结构促进气体可重整燃料的cpox转化和对于具有期望的组成的富氢重整产物的选择性。
[0079]
在本教导的指导下,采用已知的常规测试程序,本领域技术人员能够轻松地构建具有对于待处理的特定气体可重整燃料表现出最佳气体渗透性的催化活性壁结构的cpox反应器单元。
[0080]
可用于制造管式cpox反应器单元的cpox反应区的催化活性壁结构的材料是能够使这种壁结构在cpox反应所特有的高温和氧化环境中保持稳定的材料。常规或已知的难熔金属、难熔陶瓷及其组合可用于构造cpox反应区的催化活性壁结构。其中的某些材料(例如钙钛矿)还可具有实现部分氧化的催化活性,因此不仅可用于制造cpox反应区的催化活性壁结构,还能为这种结构提供部分甚至全部cpox催化剂。
[0081]
可用的难熔金属有钛、钒、铬、锆、钼、铑、钨、镍、铁等,以及它们彼此之间的组合和/或与其它金属和/或金属合金的组合等。难熔陶瓷是用于构造催化活性壁结构的一类特别有吸引力的材料,因为与许多也可用于此目的的耐火金属和金属合金相比,它们的成本较低。利用已知和常规的成孔工序,能够比较容易地将这种陶瓷形成为具有很容易复现的孔隙类型的管状透气结构,并且陶瓷的总体上非常令人满意的结构/机械性能(包括热膨胀系数和热冲击性能)以及耐化学降解性使它们成为特别有利的材料。用于构造cpox反应区(如前文所述,可包括cpox反应器单元的整个壁结构)的适当的耐火陶瓷例如包括钙钛矿、尖晶石、氧化镁、二氧化铈、稳定化的二氧化铈、二氧化硅、二氧化钛、氧化锆、稳定化的氧化锆(例如氧化铝稳定的氧化锆、氧化钙稳定的氧化锆、二氧化铈稳定的氧化锆、氧化镁稳定的氧化锆、氧化镧稳定的氧化锆和氧化钇稳定的氧化锆)、氧化锆稳定的氧化铝、烧绿石、钙铁铝石、磷酸锆、碳化硅、钇铝石榴石、氧化铝、α-氧化铝、γ-氧化铝、β-氧化铝、硅酸铝、堇青石、镁铝尖晶石等,在第6,402,989号和第7,070,752号美国专利中公开了其中的多种材料,这些专利的全部内容通过引用结合在此;以及稀土铝酸盐和稀土镓酸盐,在第7,001,867号和第7,888,278号美国专利中公开了其中的多种材料,这些专利的全部内容通过引用结合在此。
[0082]
一般来说,给定设计的cpox重整器的总燃料转化能力是其各个cpox反应器单元的燃料转化能力的总和。相邻cpox反应器单元之间的最小距离是这样的,在重整器的稳态操作模式中,该最小距离使得反应器单元的温度不超过预定或预设的最大值,而且,相邻cpox反应器单元之间的最大距离是这样的距离,在超过该距离时,一个或多个cpox反应器单元内的温度下降到低于重整器稳态操作模式的预定或预设的最小值。在上述原则的指导下,对于给定的重整器设计,可采用常规测试方法确定相邻cpox反应器单元之间的最小距离和
最大距离。
[0083]
更具体地说,所述最大距离可以是这样的距离,在稳态操作模式期间,若超过该距离,则间隔布置的cpox反应器单元的阵列的温度会下降到低于预定的最低阵列温度。根据多种因素(包括在本文中论述的因素),在稳态操作模式期间,间隔布置的cpox反应器单元的阵列的预定最低阵列温度可以是大约550℃、大约575℃、大约600℃、大约625℃、大约650℃、大约675℃、大约700℃、大约725℃、大约750℃、大约775℃、大约800℃、大约825℃或大约850℃。
[0084]
相邻cpox反应器单元之间的最小距离可以是这样的距离,在低于该距离时cpox反应器单元的出口处的温度会高于预定的最高温度。所述预定的最高温度可以是与cpox反应器单元的出口热连通和流体连通的燃料电池堆的入口能够容忍的温度,例如,燃料电池堆的入口的密封不会劣化并保持正常工作的温度。根据多种因素(包括在本文中论述的因素),cpox反应器单元的预定的最高温度可以是大约775℃、大约800℃、大约825℃、大约850℃、大约875℃、大约900℃、大约925℃、大约950℃、大约975℃或大约1000℃。
[0085]
本教导设想了使用任何迄今为止已知的常规cpox催化剂(包括催化剂体系)、将催化剂结合在多孔基材或载体(具体而言是cpox反应器单元的可透气壁)中的方法、以及催化剂分布模式,包括但不限于被限制在壁的特定区段的催化剂、沿着反应器单元的长度提高和/或从壁的内表面到其外表面降低的催化剂负载、沿着反应器单元的长度在组成上发生变化的cpox催化剂、以及类似的变化形式。因此,例如cpox反应器单元的壁内的催化剂负载从cpox反应区的起点到其终点或终点附近提高有助于在该区内保持恒定的cpox反应温度。
[0086]
在许多已知和常规的cpox催化剂中,可在此使用的cpox催化剂有金属、金属合金、金属氧化物、混合金属氧化物、钙钛矿、烧绿石、它们的混合物和组合,包括例如在美国专利5,149,156;5,447,705;6,379,586;6,402,989;6,458,334;6,488,907;6,702,960;6,726,853;6,878,667;7,070,752;7,090,826;7,328,691;7,585,810;7,888,278;8,062,800以及8,241,600中公开的多种材料,这些专利的全部内容通过引用结合在此。
[0087]
虽然已知有许多高活性的含贵金属的cpox催化剂并且它们可在此使用,但是它们通常比其它已知类型的cpox催化剂较少使用,这是因为它们的成本高,容易在高温下烧结并由此发生催化活性降低,并且容易发生硫中毒。
[0088]
钙钛矿催化剂是一类可在本教导中使用的cpox催化剂,因为它们也适合于构造cpox反应器单元的催化活性壁结构。钙钛矿催化剂的特征在于其具有abx3的结构,其中“a”和“b”是尺寸差别很大的阳离子,“x”是与两种阳离子都键合的阴离子,通常是氧。适当的钙钛矿cpox催化剂的例子包括lanio3、lacoo3、lacro3、lafeo3和lamno3。
[0089]
钙钛矿的a位改性通常影响它们的热稳定性,而b位改性通常影响它们的催化活性。通过在钙钛矿的a位和/或b位进行掺杂,可针对特定的cpox反应条件对钙钛矿进行特定的改性。掺杂导致活性掺杂剂在钙钛矿晶格内的原子级分散,从而抑制其催化性能的劣化。钙钛矿还能在cpox重整的特征性高温下表现出优异的耐硫性。可用作cpox催化剂的掺杂钙钛矿的例子包括la
1-x
ce
x
feo3、lacr
1-y
ruyo3、la
1-x
sr
x
al
1-y
ruyo3和la
1-x
sr
x
feo3,其中x和y是例如在0.01-0.5(例如0.05-0.2等)范围之内的数值,这取决于掺杂剂的溶解度极限和成本。
[0090]
图5所示的液体燃料cpox重整器500和图6所示的用于重整器500的自动操作的示例性控制程序是在第61/900,510号美国专利申请中公开的类型。
[0091]
如图6的作为本教导的另一个代表的示例性液体燃料cpox重整器500所示,在环境温度下以预设的质量流量经由离心式鼓风机502通过导管504的入口503引入作为含氧气体的空气,该导管504包括有利于紧凑设计的大致u形的导管段。在重整器的启动模式操作中,最初时使处于环境温度的空气通过由电加热器506供热的第一加热区505以将其加热到预定的升高温度范围内,该电加热器506可以是常规或其它已知的电阻型,其额定功率例如是10-80瓦以上,这取决于重整器500的燃料处理能力的设计范围。对于较宽范围的cpox重整器配置和操作能力,电阻式加热器能够将引入到导管中的环境空气的温度升高到期望的水平。在重整器500的稳态操作模式期间,可关断电加热器506,这样,被引入到导管504中的空气最初时在第二加热区507内被从细长管状透气cpox反应器单元508的cpox反应区509回收的放热加热,所述cpox反应器单元508例如具有与图5a-5d的气体燃料cpox重整器400的cpox反应器单元408相关的上述结构和组成。通过这种方式,可将引入到导管504中的空气的温度从环境温度提高到某个预设的升高温度范围内,具体温度受本领域技术人员很容易认识到的各种设计因素(即,结构和操作因素)的影响。
[0092]
像图5a-5d的气体燃料cpox重整器400的情况一样,绝热层510最好包围液体燃料cpox重整器500的热辐射部分,以减少从该部分产生的热损失。
[0093]
为了提高在启动模式下通过第一加热区505或在稳态模式下通过第二加热区507而被初始加热的空气的温度,随着初始加热的空气继续在导管504中向下游流动,它最好流过由可选的第二电加热器单元513供热的可选的第三加热区512。由于可选的第二电加热器单元513仅需要将初始加热的空气的温度提高较小的程度,因此它可用作能够对空气温度进行通常较小的调节的增量加热器,这有助于对重整器的燃料蒸发系统和管式cpox反应器单元的运转进行精确且快速的热量管理。
[0094]
通过终止于液体燃料散布装置515(例如芯材(如图所示)或喷射装置)中的导管504内的燃料管线514引入液体可重整燃料,例如在上文中提到的液体可重整燃料之中的任何一种、以及在本教导的这个实施例和其它实施例中以汽车柴油为例的液体可重整燃料。
[0095]
可使用任何常规或其它已知的泵或等效装置518使流体通过液体燃料cpox重整器的通道和导管,例如将液体燃料通过燃料管线514引入到导管504中。例如,计量泵、旋转泵、叶轮泵、隔膜泵、蠕动泵、容积泵(例如摆线泵)、齿轮泵、压电泵、电动泵、电渗泵、毛细泵等可用于此目的。在一些实施例中,泵或等效装置518可按间歇或脉冲流方式输送燃料。在某些实施例中,泵或等效装置能够以基本连续的液流的方式输送燃料。在特定实施例中,泵或等效装置可响应于变化的cpox重整器操作要求快速调节燃料流量。
[0096]
如上文所述,加压的液体燃料可通过芯材或者作为任何常规或其它已知的喷雾装置的细喷雾或其它液滴形式在导管内散布,所述喷雾装置例如是燃料注入器、加压喷嘴、雾化器(包括超声波型雾化器)、喷雾器等。
[0097]
在启动模式下由第一加热区505内的电加热器506产生的热量或在稳态模式下从第二加热区507内的cpox回收的放热量(如果需要,可与由可选的加热区512内的可选的第二电加热器513产生的热量结合)共同作用以蒸发引入到导管504中的液体燃料,并且这些部件共同构成重整器的燃料蒸发器系统的主要部件。
[0098]
可选的第二电加热器513不仅用于逐步升高在其相关的可选的第三加热区内通过的被初始加热的环境温度空气的温度,而且还可用于在液体燃料被引入到导管504中之前
加热该液体燃料,从而在该液体燃料进入导管时迅速促进燃料的汽化。
[0099]
为了在液体燃料进入主导管504之前对其进行加热,燃料管线514穿过导管504的壁,在燃料管线穿过或接近主导管504的可选的第三加热区512的位置,燃料管线的区段519的长度被加长,以延长燃料在其中流动的停留时间。为此目的,加长的燃料管线段可采用多种构造,例如布置在与第二加热区对应的导管的外表面上或附近的盘绕或螺旋缠绕构造(如图所示)或一系列纵向折叠构造、或者布置在第二加热区处或附近的导管内的任何类似的此类构造。不论加长的燃料管线段519采取什么样的确切构造和/或布置,该燃料管线段519必须以有效传热的方式邻近可选的第三加热区512,以接收足以将其中的燃料温度升高到某个预设温度范围内的热量。因此,导管504的第三加热区512内的可选的第二电加热器513的一部分热输出除了进一步加热在该区内流动的空气之外,还会传递给在燃料管线514的远侧区段519内流动的燃料,例如柴油燃料,所述燃料管线514的远侧区段可如附图标记519所示延长或加长,从而将其温度升高到预设范围内。无论为燃料管线内的燃料选择哪个温度值范围,若要避免气阻和由此引起的重整器500的关停,则该温度范围都不应超过燃料的沸点(在柴油的情况下是从150℃至350℃)。
[0100]
液体燃料散布器515在导管504内布置在可选的第二加热区512和相关的可选的第二电加热器513的下游,并在混合区520的上游。布置在反应室536内的热电偶522和布置在混合区520内的热电偶523分别监测发生在cpox反应器单元508的cpox反应区509内的cpox重整的温度和汽化燃料-空气混合物的温度。
[0101]
在本文所述的液体燃料蒸发器系统中,柴油没有或至多很少有机会与加热表面(例如电阻加热元件的加热表面)直接接触,这种直接接触会造成使柴油燃料的温度升高到其闪点以上的风险,由此导致燃料飞溅而不是蒸发,和/或导致燃料热解,而燃料热解会导致结焦。因此,能够轻松并可靠地将柴油燃料的温度保持在低于其闪点的水平,并且不会发生严重的飞溅或焦化事件。
[0102]
在通过布置在混合区520内的静态混合器521之后,气体cpox反应混合物通过出口525离开主导管504并进入歧管526。气体cpox反应混合物从歧管526通过入口531进入管状cpox反应器单元508。气体cpox反应混合物然后进入cpox反应区509,在该反应区中,所述混合物经历气相cpox反应,从而产生富含氢气、含一氧化碳的重整产物。在启动模式中,至少一个具有布置在反应室536内的热辐射元件的点火器535被激活,由此引发cpox。点火器535及其操作基本上与气体燃料cpox重整器400的点火器435及其操作相同。在cpox变得自持后(例如,在反应区509的温度达到大约250℃至大约1100℃时),可关闭点火器535,因为不再需要外部点火来维持现在自持的放热cpox反应。
[0103]
此外,根据本发明,可向重整器中引入蒸汽,从而可操作重整器来进行自热和/或蒸汽重整反应。
[0104]
在一个实施例中,最初时可操作重整器以进行液体或气体可重整燃料的cpox转化,从而提供放热,在有或没有额外热量(例如由电加热器提供的额外热量)的情况下,该放热可被回收以在蒸汽发生器中产生蒸汽。由此产生的蒸汽可在重整器中的一个或多个位置引入到重整器中。一个适当的位置是蒸发器处,在该蒸发器中,蒸汽可提供热量以蒸发液体燃料。例如,被引入图6所示的重整装置500中的芯材515中的蒸汽可提供热量以蒸发芯材表面上的液体燃料,同时有助于消除或抑制这些表面的堵塞。
[0105]
在另一个实施例中,本发明的重整器可连接至燃料电池堆,在该燃料电池堆中,来自重整器的富氢重整产物被转化成电流。燃料电池堆以及相关的后燃器单元(若存在)的操作能够提供废热源,该废热可被回收并用于蒸汽发生器的操作,在此也可以有或没有额外热量,例如由电加热器提供的额外热量。然后,可将来自蒸汽发生器的蒸汽引入重整器,例如通过图6的重整器500的芯材515引入,以支持自热或蒸汽重整。在集成式重整器和燃料电池堆的这种布置中,所涉及的废热源可提供必要的热量,以驱动在自热和蒸汽重整过程中所涉及的吸热反应。
[0106]
图8a-8c是示出根据本教导的气相化学反应器的启动程序的示意图。在图8a-8c中,冷重整器管801以黑色表示,热重整器管802以白色表示。图8a-8c示出了由8排(4对)重整器管组成的反应器410,每一对重整器管排有配套的加热器439,即,加热器439a、439b、439c和439d。在启动期间,中心重整器管会倾向于更快地升温,因为它们具有来自床中的所有方向的热输入,并且没有暴露于“冷”反应器壁的至少一对重整器管排,即,由加热器439a和439d加热的成对管排比由加热器439b和439c加热的成对管排升温慢。控制加热器439a、439b、439c和439d以达到一定的反应器床温,然后在反应器达到其目标温度时限制并降低每个重整器的功率百分比。但是,由加热器439b和439c加热的管排对倾向于比由加热器439a和439d加热的管排对更快地达到期望的温度。为了补偿这种加热时间的差异,在达到期望的反应器床温度时,优先降低由加热器439b和439c加热的管排对的功率,从而限制床的中心过热(并由此损坏催化剂)的趋势,同时确保由加热器439a和439d加热的管排对达到期望的燃料处理温度(并由此减少结焦并确保正确的燃料电池堆操作)。
[0107]
在操作中,在开始启动过程之前,重整器管801是冷的。在如图8a所示的启动时,点火器439a-439d均被设置在其全加热额定值或设置在该值附近。如图8b所示,随着位于更中心处的重整器管802开始点燃并升温,降低所有点火器439a-439d的加热级别,其中内部点火器439b和439c比外部点火器439a和439d的降低量更大。如图8c所示,随着所有重整器管802点燃并升温,使所有点火器439a-439d的加热级别进一步降低,并最终达到其关断状态。
[0108]
还应理解,点火器的形状可能与所公开的实施例的形状不同。在以上说明中,点火器被描述和示出为具有直线形状,但不限于这种直线形状。实际上,可将点火器成形为具有任何数量的构造,以沿着并非均沿着一条直线排列而是可按不同的角度或者在不同的平面内延伸的成对的重整器管延伸。
[0109]
总而言之,应理解,本教导的输送系统能够输送适当的反应物以进行重整反应,包括部分氧化(“pox”)重整(例如催化部分氧化(“cpox”)重整)、蒸汽重整和自热(“at”)重整。可从输送系统的“液体可重整燃料”输送部件、导管和组件输送液体反应物(例如液体可重整燃料和水),并使液体反应物在它们中流过。可从输送系统的“气体可重整燃料”输送部件、导管和组件输送气体反应物(例如气体可重整燃料、蒸汽和含氧气体(例如空气)),并使气体反应物在它们中流过。可从本教导的输送系统的外围或辅助部件和组件输送某些气体反应物(例如蒸汽和含氧气体),并使这些气体反应物在它们中流过,例如,可从独立地与燃料电池单元或系统的汽化器、重整器和燃料电池堆之中的至少一个可操作地流体连通的含氧气体源输送含氧气体,例如用于在重整之前与液体可重整燃料和/或汽化的液体可重整燃料混合。
[0110]
本教导涵盖未脱离其精神或基本特征的其它特定形式的实施例。因此,前述实施
例在各个方面都被认为是示例性的,而不是对在本文中说明的本教导的限制。因此,本发明的范围由所附权利要求而不是由前文的说明限定,并且在权利要求的等同内容的含义和范围内的所有变化都应包含在本发明之内。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1