一种铜基异质结催化剂及其制备方法、应用

文档序号:27677798发布日期:2021-11-30 21:45阅读:337来源:国知局
一种铜基异质结催化剂及其制备方法、应用

1.本发明公开涉及半导体材料技术领域,尤其涉及一种铜基异质结催化剂及其制备方法、应用。


背景技术:

2.由于染料、添加剂、农药、医药在工业生产、食品加工、种植、畜牧和水产养殖等领域被广泛使用,且使用过程中存在乱用、滥用现象严重,导致环境水体中有机污染物含量严重超标,这些具有较高的致畸性和致癌性的污染物通过直接接触或食物链富集进入人体后,时刻威胁着人类健康。由于大多数有机污染物具有极强的化学稳定性,在自然条件下很难发生自降解,采用生物处理和普通的物理方法处理不仅操作步骤复杂,也很难对其进行彻底分解。因此,迫切需要开发低廉、高效、绿色、环保的处理技术将高毒性、持久性有机污染物转化成无毒或低毒性物质。
3.太阳能作为一种清洁、可再生的自然资源,捕获并转化太阳能是解决能源危机和环境污染问题的最佳策略。其中,半导体光催化技术能够实现对太阳能的高效利用,具有对环境无二次污染,降解彻底,常温常压下反应的优势。如工业废水中常含有大量重金属离子,利用光催化反应能够将高价的hg,pt,pb,ag等重金属离子还原并沉积在催化剂的表面,既减少了重金属的污染,又可以将其进一步回收利用。环境废水中多种有机污染物(除草剂、杀虫剂、染料、抗生素、酚类等)都能利用光催化技术直接氧化分解为无毒无害的有机小分子、二氧化碳和水。含磷、含硫有机农药可以完全被无机化,生成相应的po
43

和so
42

。结构稳定的抗生素(四环素类、磺胺类、喹诺酮类、大环内酯类和氯霉素类)可以被直接矿化。利用光催化技术处理染料废水能大幅降低染料的色度,使水体的透光性增加,彻底降解染料分子中的苯环、胺基、偶氮基团等致癌物质。然而,随着有机污染物成分趋于复杂化,数量和种类急剧增加,降解难度显著加大,对光催化剂性能的要求越来越高。
4.综上,半导体光催化技术具有可直接利用太阳能、降解彻底、无二次污染、常温常压下反应的优势,在环境净化领域展现出巨大的潜力。但光催化剂作为技术的核心,依然面临光谱响应范围窄,光生载流子分离效率低的问题,导致催化剂的实际催化能力远远低于其理论值,严重制约光催化技术的规模化应用。


技术实现要素:

5.鉴于此,本发明公开提供了一种铜基异质结催化剂及其制备方法、应用,以解决现有催化剂普遍存在的光生载流子分离效率差、光谱吸收范围窄的问题。
6.第一方面,本发明提供了一种铜基异质结催化剂,所述催化剂为cuco2s4@cuco2o4复合材料。
7.优选地,所述cuco2s4@cuco2o4复合材料中,cuco2s4与cuco2o4的摩尔比为1:1,1:2,2:1或3:1。
8.第二方面,本发明提供了一种铜基异质结催化剂的制备方法,包括如下步骤:
9.1)利用溶剂热法制备空心球形cuco2o4;
10.2)以硫化钠为硫源,在水热环境中将部分cuco2o4中的晶格氧取代,原位转化为cuco2s4,形成界面连接紧密的cuco2s4@cuco2o4异质结界面催化剂;
11.其中硫源的加入量可控制半导体异质结中cuco2o4和cuco2s4的比例。
12.优选地,所述步骤1)制备空心球形cuco2o4具体方法为:将丙三醇和异丙醇混合得到透明溶液;称取六水合硝酸钴、三水合硝酸铜,倒入上述透明溶液中,溶解得到粉红色溶液;将所述粉红色溶液倒入高压反应釜中180

200℃反应8

10h;待冷却至室温,倒掉上清液,将所得到的沉淀物放入离心管中,洗涤、干燥。
13.优选地,所述步骤2)具体为:制备na2s溶液与cuco2o4混合,搅拌后转入反应釜中,120

140℃下反应8

10h,冷却至室温,离心清洗,烘干;再将烘干后的样品在马弗炉中煅烧2

3h,升温速率为3

5℃/min,得到cuco2s4@cuco2o4复合材料。
14.第三方面,本发明提供了一种铜基异质结催化剂的应用,其可应用于光催化降解dcf和还原cr(ⅲ)中。
15.本发明的有益效果:
16.本发明提供了一种铜基异质结催化剂及其制备方法和应用,该制备方法仅通过一步硫化cuco2o4,诱导cuco2s4原位生长即形成具有低能垒界面的异质结半导体,且无机元素s的引入,可降低cuco2o4的禁带宽度,拓宽其光吸收范围。上述制备方法中硫原的加入量可控制半导体异质结中cuco2o4和cuco2s4的比例,直接影响催化剂的性能,同时硫化反应的条件,如温度、时间,影响硫原子取代cuco2o4中晶格氧的效率;制备出的双功能催化剂能够用于光催化降解dcf和还原cr(ⅲ)。
17.应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本发明的公开。
附图说明
18.此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。
19.为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
20.图1为本发明公开实施例提供的cuco2o4的表征图;其中图1a

1c为cuco2o4的sem图像,1d为cuco2o4的eds图像;
21.图2为本发明公开实施例提供的cuco2o4@cuco2o4的表征图;其中图2a

2c为cuco2o4@cuco2o4(a、b、c)的sem图,图2d为cuco2o4@cuco2o4的eds图;
22.图3为本发明公开实施例提供的cuco2o4、cuco2o4@cuco2o4的x

射线衍射光谱图;
23.图4为本发明公开实施例提供的cuco2o4、cuco2s4@cuco2o4的紫外

可见光漫反射光谱图;
24.图5为本发明公开实施例提供的cuco2o4、cuco2s4@cuco2o4的紫外

可见光漫反射光谱图;
25.图6为本发明公开实施例提供的一种铜基异质结催化剂的催化降解效果图;其中
图6(a)为不同硫化程度催化剂对dcf催化降解效果;6(b)为不同硫化程度催化剂对cr(vi)的光催化还原效果;
26.图7为本发明公开实施例提供的不同催化剂使用量对dcf及cr(vi)催化降解效果图;其中图7(a)为催化剂使用量对dcf的降解效果;7(b)为不同催化剂用量对cr(vi)的光催化还原效果。
具体实施方式
27.这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明的一些方面相一致的系统的例子。
28.为解决现有技术中光催化剂的实际催化能力远远低于其理论值,严重制约光催化技术的规模化应用等问题。本实施方案提供了一种铜基异质结催化剂,其结构式为cuco2s4@cuco2o4。具有铜、钴双金属活性位点的cuco2o4是一种半导体材料,具有可见光响应,其价格低廉、地球储备丰富、具有优异的光电性能而被广泛用于光、光电催化体系。单一的cuco2o4作为光催化剂时,由于光生电子与空穴极易复合,导致其实际催化能力远小于理论值。因此,选择与cuco2o4具有相似结构,能级匹配的半导体构建异质结至关重要,本实施方案选择了三元金属硫化物cuco2s4,不仅与cuco2o4晶型结构相似,能级匹配,而且对可见光有更好的吸收,本实施方案构建的cuco2s4@cuco2o4可有效抑制载流子复合,并提高对太阳光的利用率。
29.本实施方案具体提供了一种铜基异质结催化剂的制备方法,利用溶剂热法制备了具有丰富孔隙的空心球形cuco2o4,然后以硫化钠为硫源,在水热环境中将部分cuco2o4中的晶格氧取代,原位转化为cuco2s4,形成界面连接紧密的cuco2s4@cuco2o4异质结,并将其作为双功能催化剂用于光催化降解dcf和还原cr(ⅲ)。
30.具体如下:一种铜基异质结催化剂的制备方法,其中制备空心球形cuco2o4可采用如下方法:将丙三醇和异丙醇混合得到透明溶液;称取六水和硝酸钴、三水合硝酸铜,倒入上述透明溶液中,溶解得到粉红色溶液;将所述粉红色溶液倒入高压反应釜中180

200℃反应8

10h;待冷却至室温,倒掉上清液,将所得到的沉淀物放入离心管中,洗涤、干燥。
31.制备na2s溶液与cuco2o4混合,搅拌后转入反应釜中,120

140℃下反应8

10h,冷却至室温,离心清洗,烘干;再将烘干后的样品在马弗炉中煅烧2

3h,升温速率为3

5℃/min,得到cuco2s4@cuco2o4复合材料。
32.下面结合附图对本发明作进一步描述,便于更加清楚地说明本发明的技术方案,但不能将它们理解为对本发明保护范围的限定。
33.实施例1
34.cuco2s4@cuco2o4异质结复合材料的制备
35.将48ml丙三醇(甘油)和240ml异丙醇移入500ml大烧杯中,搅拌直至得到透明的溶液;用分析天平称取2.3340g六水及硝酸钴及3.8706g三水合硝酸铜,倒入透明的溶液中,搅拌溶解得到粉红色的溶液;将粉红色的溶液倒入高压反应釜,放置在鼓风干燥箱中,180℃反应10h;待冷却至室温,倒掉上清液,将所得到的沉淀物放入离心管中,依次用去离子水(5
次)、无水乙醇(3次)洗涤、于鼓风干燥箱中60℃条件下烘干。
36.用量筒准确量取50ml去离子水于100ml烧杯中。然后,用分析天平准确称取0.1057g na2s加入到烧杯中,搅拌至其溶解后加入0.25g已制备好的cuco2o4,搅拌30min后转入反应釜中,120℃下反应10h。待其冷却至室温后,用去离子水、乙醇各离心清洗三次,烘干备用。将烘干后的样品在马弗炉中350℃煅烧3h,升温速率为3℃/min,得到cuco2s4@cuco2o4复合材料。
37.利用扫描电镜(sem)对cuco2o4和cuco2s4@cuco2o4的形貌进行表征。如图1a

1c所示,cuco2o4是一种由小的cuco2o4纳米粒子组装而成的中空多孔球形结构,直径约为400nm。这种表面粗糙,具有丰富的孔隙和中空的结构,不仅具有大的比表面积,可提供更多的催化活性位点,而且有利于入射光通过多级散射和衍射而被吸收,提高催化剂对太阳光的利用率,进而提高光催化剂的催化氧化(还原)能力。此外,利用能谱(eds)表征证明,在cuco2o4中存在cu、co、o三种元素。
38.如图2a

2c,为cuco2s4@cuco2o4的sem图所示,以cuco2o4为基底材料,硫化钠为硫源,经过一步硫化后,cuco2s4@cuco2o4复合材料依然保持中空多孔微球的形貌,但部分cuco2o4受na2s诱导二次生长,由纳米粒子转为纳米片状结构。由cuco2s4@cuco2o4纳米片组装的中空多孔微球更有利于入射光的吸收,而且具有更大的比表面积和更多活性位点,有利于提高催化剂的光催化能力。eds表征显示,在cuco2s4@cuco2o4复合材料中,除了cu、co、o外,还出现了s元素,且o元素特征峰分强度减弱,说明cuco2o4中部分氧原子被s原子取代,cuco2s4@cuco2o4复合材料被成功制备。
39.利用x

射线衍射仪(xrd)对cuco2o4和cuco2s4@cuco2o4的晶型结构进行表征。如图3所示,位于19.06
°
,31.34
°
,36.95
°
,38.94
°
,45.03
°
,56.01
°
,59.60
°
,和65.68
°
处的特征衍射峰归属于cuco2o4的(111),(220),(311),(222),(400),(422),(511)和(440)晶面,结果证明cuco2o4被成功制备。
40.在cuco2s4@cuco2o4的xrd图谱上,除了位于19.06
°
,36.95
°
,38.94
°
,45.03
°
,59.60
°
,和65.68
°
处cuco2o4的特征衍射峰,还在26.58
°
,31.27
°
,49.98
°
,54.79
°
和61.88
°
处出现了分别归属于cuco2s4(022),(113),(115),(044)和(026)晶面的特征衍射峰,且无其它杂峰的出现,表明cuco2o4晶格中的部分氧成功被硫原子取代,被转化为cuco2s4,cuco2s4@cuco2o4异质结复合材料被成功制备。
41.图4为利用紫外

可见光漫反射光谱对cuco2o4和cuco2s4@cuco2o4的光吸收情况进行考察。cuco2o4对紫外光及低于600nm的可见光有较好的吸收,当部分cuco2o4转化为cuco2s4后,cuco2s4@cuco2o4复合材料对紫外

可见光吸收增强,特别是对600

800nm波段的可见光有明显吸收。这是由于cuco2s4@cuco2o4纳米片组装而成的中空多孔微球,与纳米粒子堆积形成的中空多孔微球比更有利于入射光经过多级散射与衍射而被吸收,另一方面硫原子取代cuco2o4晶格中的氧后,提升其价带位置,从而缩小半导体的带隙,拓宽光谱吸收范围。光谱吸收强度变大,范围的变宽有利于提高催化剂的量子效率,展现令人满意的光催化能力。
42.图5为利用紫外

可见光漫反射光谱对cuco2o4,cuco2s4和cuco2s4@cuco2o4的光吸收情况进行考察。cuco2o4对紫外光及低于600nm的可见光有较好的吸收。当部分cuco2o4转化为cuco2s4后,cuco2s4@cuco2o4复合材料对紫外

可见光吸收增强,特别是对600

800nm波段
的可见光有明显吸收。这是由于cuco2s4@cuco2o4纳米片组装而成的中空多孔微球,与纳米粒子堆积形成的中空多孔微球比更有利于入射光经过多级散射与衍射而被吸收,另一方面硫原子取代cuco2o4晶格中的氧后,提升其价带位置,从而缩小半导体的带隙,拓宽光谱吸收范围。光谱吸收强度变大,范围的变宽有利于提高催化剂的量子效率,展现令人满意的光催化能力。
43.实施例2
44.展示了硫化程度的不同对催化剂性能的影响,我们与实施例1相同的合成步骤,分别称取0.6341g、0.3170g、0.1585g、0.1057g na2s于溶液中制备了不同硫化程度的催化剂,分别命名为cuco2s4@cuco2o4‑
1、cuco2s4@cuco2o4‑
2、cuco2s4@cuco2o4‑
3、cuco2s4@cuco2o4‑
4。cuco2s4@cuco2o4‑
1中cuco2s4与cuco2o4的摩尔比为1:2,cuco2s4@cuco2o4‑
2中cuco2s4与cuco2o4的摩尔比1:1,cuco2s4@cuco2o4‑
3中cuco2s4与cuco2o4的摩尔比为2:1;cuco2s4@cuco2o4‑
4中的摩尔比为3:1。
45.研究cuco2s4@cuco2o4的催化氧化降解和还原性能,本实施例选择抗炎药双氯芬酸钠(dcf)和重金属离子铬(

)分别作为光催化氧化降解和还原研究的目标物。向反应器中准确移入50ml,10mg/l dcf溶液,再加入cuco2s4@cuco2o4催化剂。加入催化剂之后,首先在在磁力搅拌器上避光搅拌半小时,达到吸附平衡后,用滴管取吸取5ml溶液,以5000r/min的转速离心5min,使溶液与催化剂分离,取其上层清液测定其吸光度。测定结束后,将溶液与催化剂一起倒回反应器中。然后,打开氙灯开始光催化降解实验,每隔半小时取一次溶液,按上述步骤测定其吸光度。再通过标准曲线计算出dcf的浓度,并计算出dcf的降解率,公式如下:
[0046][0047]
式中:c0溶液的初始浓度,c
e
为不同催化时间下溶液的浓度。
[0048]
铬(

)光催化还原与降解dcf实验步骤一致,只是调换为浓度不同的cr
6+
(100ml 20mg/l重铬酸钾溶液)。
[0049]
实验考察了具有不同硫化程度催化剂对降解dcf和还原cr(vi)的效果。如图6a、6b所示,以cuco2o4作为催化剂时,对dcf的降解率仅为8%,对cr(vi)的光催化还原效率仅为9.06%。这是因为纯cuco2o4作为催化剂时,光生载流子在分离与转移过程中易发生复合,导致催化性能下降。当以硫化钠为硫源将部分cuco2o4原位转化为cuco2s4,形成cuco2s4@cuco2o4异质结后,光催化性能明显提高。再继续加大,催化降解效率下降,这是由于大部分cuco2o4转化为了cuco2s4,破坏了异质结的最佳结构,因此接下来本实施例选择cuco2s4@cuco2o4(2:1)作为催化剂,对dcf、cr(vi)进行光催化降解还原研究。
[0050]
在确定催化剂最佳硫化程度后,对催化剂的用量进行考察,分别选择了50mg、100mg、200mg进行催化降解dcf的实验。如图7a所示,随着催化剂用量的增加,催化降解效率变高,当加入100mg催化剂时,dcf的降解率可达到80.6%,而继续加大催化剂的用量至200mg,催化效果没有明显增加,因此选择100mg催化剂作为最佳催化剂用量。
[0051]
实验同样考察了催化剂用量对cr(vi)的光催化还原效果的影响,如图7b所示,随着催化剂用量的增加,光催化还原效率增加。当催化剂用量增加至100mg时,催化效率无明显变化,因此考虑实验成本的因素,选择50mg催化剂为最佳用量对cr(vi)进行光催化还原。
在4h时间内,cr(vi)还原率达到73.33%。说明cuco2s4@cuco2o4(2:1)催化剂对cr(vi)具有较好的催化还原能力,可用于治理含铬废水。
[0052]
综上所述,以100mg cuco2s4@cuco2o4‑
3作为催化剂,对50ml,10mg/l dcf进行光催化降解5小时,降解效率可达80.6%;以50mg催化剂为最佳用量对cr(vi)进行光催化还原。在4h内,cr(vi)还原率达到73.33%。证明已制备的cuco2s4@cuco2o4‑
3异质结复合材料可作为双功能催化剂,处理含dcf和cr(vi)废水的能力,且不产生二次污染。
[0053]
以上公开的本发明优选实施例只是用于帮助阐述本发明。优选实施例并没有详尽叙述所有的细节,也不限制该发明仅为所述的具体实施方式。显然,根据本说明书的内容,可作很多的修改和变化。本说明书选取并具体描述这些实施例,是为了更好地解释本发明的原理和实际应用,从而使所属技术领域技术人员能很好地理解和利用本发明。本发明仅受权利要求书及其全部范围和等效物的限制。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1