一种具有受阻Lewis酸碱对结构的复合光催化材料及其应用

文档序号:31345076发布日期:2022-08-31 11:33阅读:84来源:国知局
一种具有受阻Lewis酸碱对结构的复合光催化材料及其应用
一种具有受阻lewis酸碱对结构的复合光催化材料及其应用
技术领域
1.本发明属于催化剂设计制备和液相含氮化物脱除领域,具体涉及一种具有受阻lewis酸碱对结构的复合光催化材料及其应用。


背景技术:

2.水质变差极大地影响了人类生计以及人类生活福祉,水环境复杂且多变,有各种污染因素,比如细菌感染、染料污染、硝酸盐、重金属等等。金黄色葡萄球菌是最常见的病原体之一,容易引发传染病。它可以引起,肺部的化脓性的病变,还可以引起浅析性的这种多脏器的损伤,比如关节炎,或者化脓性心内膜炎。另外,六价铬(cr(vi))作为水环境一种普遍存在的重金属离子,已经成为一种工业生产中代谢出的主要环境污染物质,它的排放主要是来源于印染、电镀、皮革鞣制等行业。含cr(vi)废水对环境和人类危害不可小觑,其不仅对生态系统有着持久的危害性,并且易在食物链中蓄积,若长期接触对人体有致癌危险。目前,用于处理废水的方法主要有:物理吸附法、沉淀法、离子交换法、光催化还原方法等。在众多处理方法中,光催化技术作为一种能实现利用太阳能,绿色且高效。然而常规的以tio2为代表的光催化剂在反应过程中存在太阳能利用率低和量子效率低等问题,严重制约了光催化技术的实际应用。
3.金属-有机骨架材料(mofs)作为一类具有三维网络结构的微孔-介孔的杂化材料,具有比表面积大、孔隙率高、结构丰富多样并且灵活可调等特点,具有潜在的实际应用前景。在众多的mofs光催化剂中,mil-125(ti)-nh2存在大量的ti-o簇可被可见光直接激发,且ti-o团簇是有吸引力的二级结构单元,通过充当tio2纳米粒子的类似物,可以实现优异的化学稳定性和光催化性能。除此之外,mil-125(ti)-nh2具有多种不同的性能,常用于催化和光催化反应中。且其不饱和的金属中心是一种天然的lewis酸,氨基官能团具备分子连接器的功能,因此我们通过桥联第二组分pdi,构筑受阻lewis酸碱对结构,mil-125(ti)-nh2作为lewis酸位点,pdi作为lewis碱位点,配体的大空阻阻碍酸碱位点的中和反应,总而构筑出了具有受阻lewis酸碱对结构的pdi@mil-125(ti)-nh2复合光催化材料,电子向作为lewis酸的mil-125(ti)-nh2转移,空穴向pdi转移,优化电子空穴分离路径,并将得到的复合物用于处理复杂的水环境。


技术实现要素:

4.本发明的目的在于提供一种具有受阻lewis酸碱对结构的复合光催化材料,此复合光催化剂具有良好的多孔结构、活性位点多、光催化性能好,能够有效实现水污染中金黄色葡萄球菌的消灭以及重金属六价铬的还原。
5.为实现上述目的,本发明采用如下技术方案:
6.本发明公开了一种具有受阻lewis酸碱对结构的复合光催化材料,包括金属有机框架材料mil-125(ti)-nh2以及负载于所述金属有机框架材料上的pdi。
7.进一步的,一种具有受阻lewis酸碱对结构的复合光催化材料,由以下方法制得:
8.s1、钛酸四丁酯与2-氨基对苯二甲酸溶解于n,n-二甲基甲酰胺中与甲醇形成混合物,其中,所述n,n-二甲基甲酰胺在混合物中体积含量为90~92%,所述2-氨基对苯二甲酸的摩尔含量与所述钛酸四丁酯的摩尔含量为3:1;
9.s2、将步骤s1制得混合物加热到150℃反应,冷却后得到黄色固体产物;
10.s3、将所述黄色固体产物离心分离,并用甲醇交换洗涤除去产物mil-125(ti)-nh2孔道内残留的dmf,最后真空干燥获得mil-125(ti)-nh2样品;
11.s4、将pdi负载于所述mil-125(ti)-nh2样品中,形成pdi@il-125(ti)-nh2复合光催化剂。
12.进一步的,在步骤s2中,将所述混合物加热到150℃反应72小时。
13.进一步的,步骤s4的具体步骤为:将0.1g mil-125(ti)-nh2样品分散于30ml去离子水中,超声分散,并加入pdi溶液,混合搅拌后加入一定体积的硝酸溶液后水浴加热;然后用去离子水超声洗涤,并离心,最后真空烘干得到不同质量比的pdi@mil-125(ti)-nh2复合光催化剂。
14.进一步的,所述pdi溶液的浓度为10g/l。
15.进一步的,所述硝酸溶液的量为40~240μl。
16.进一步的,所述pdi与mil-125(ti)-nh2样品的质量比为0.01~0.06。
17.进一步的,所述步骤s4的水浴加热的时间温度为90min,60℃
18.本发明还公开了一种具有受阻lewis酸碱对结构的复合光催化材料在处理污染水方面的应用。
19.本发明的显著优点在于:
20.1、本发明以钛酸四丁脂为钛源,以2-氨基对苯二甲酸为配体,通过简单的溶剂热法得到比表面积大、结构丰富可调的mil-125(ti)-nh2金属有机框架材料,具有良好的光催化活性。
21.2、本发明采用3,4,9,10-苝四羧基二亚胺(pdi)修饰mil-125(ti)-nh2,通过氨化反应桥联的方式将pdi负载到带有氨基的mil-125(ti)-nh2上,有效优化了复合催化剂的电子空穴分离路径,从而进一步提高电子空穴分离效率,利于金黄色葡萄球菌的灭活以及六价铬的降解。本发明提供的具有受阻lewis酸碱对结构的pdi@mil-125(ti)-nh2复合光催化材料可以应用于金黄色葡萄球菌的灭活以及六价铬的降解中,在可见光分别照射15min和50min,细菌灭活率和六价铬还原率分别达到99%和90%以上。
附图说明
22.图1为本发明实施例1制得mil-125(ti)-nh2和实施例2(b4)以及pdi的sem图;
23.图2为本发明实施例1制得的mil-125(ti)-nh2和实施例2制得的不同比例pdi@mil-125(ti)-nh2以及pdi的x射线粉末衍射图;
24.图3为本发明实施例1制得的mil-125(ti)-nh2和实施例2(b4)以及pdi的傅里叶红外图;
25.图4为本发明实施例1制得的mil-125(ti)-nh2和实施例2制得的不同比例pdi@mil-125(ti)-nh2以及pdi的可见光光催化灭活细菌性能图;
26.图5为本发明实施例1制得的mil-125(ti)-nh2和实施例2制得的不同比例pdi@
mil-125(ti)-nh2以及pdi的可见光光催化还原六价铬性能图;
27.图6为实施例2(b2和b4)的反应前后的x射线粉末衍射图。
具体实施方式
28.为了使本发明所述的内容更加便于理解,下面结合具体实施方式对本发明所述的技术方案做进一步的说明,但是本发明不仅限于此。
29.实施例1:
30.将二氨基对苯二甲酸(2.174g,12mmol)和钛酸四丁酯(1.36ml,3mmol)溶解在含有n,n二甲基甲酰胺(54ml)和无水甲醇(6ml)的溶液中。将得到的混合物匀速搅拌1小时以形成均匀的溶液,然后转移到四氟乙烯内衬反应釜中。在600rpm下搅拌30分钟后,将四氟乙烯内衬反应釜密封在不锈钢套中,并在150℃下加热72h。经过热处理后,使高压釜自然冷却至室温,离心制得产物,当天用n,n二甲基甲酰胺和无水甲醇分别洗涤数3次,然后每隔24小时用无水甲醇洗涤一次(总共3次),再在70℃下真空干燥,得到黄色mil-125(ti)-nh2粉末。
31.实施例b1~b4:
32.将二氨基对苯二甲酸(2.174g,12mmol)和钛酸四丁酯(1.36ml,3mmol)溶解在含有n,n二甲基甲酰胺(54ml)和无水甲醇(6ml)的溶液中。将得到的混合物匀速搅拌1小时以形成均匀的溶液,然后转移到四氟乙烯内衬反应釜中。在600rpm下搅拌30分钟后,将四氟乙烯内衬反应釜密封在不锈钢套中,并在150℃下加热72h。经过热处理后,使高压釜自然冷却至室温,离心制得产物,当天用n,n二甲基甲酰胺和无水甲醇分别洗涤数3次,然后每隔24小时用无水甲醇洗涤一次(总共3次),再在70℃下真空干燥,得到黄色mil-125(ti)-nh2粉末。用酸催化氨化法制备了具有受阻lewis酸碱对结构的pdi@mil-125(ti)-nh2复合光催化材料。步骤为,将100mg mil-125(ti)-nh2分散在的30ml去离子水中并超声5min,接着将含有1mg pdi单体的pdi溶液加入至上述溶液中并搅拌60min,随后向混合物中加入40μl的4mol/l hno3溶液并在60℃下搅拌1.5小时进行氨化,洗涤至中性并在70℃下干燥后,得到浅绿色复合光催化材料表示为1%pdi@mil-125(ti)-nh2(b1)。同样,分别使用2mg,4mg和6mg pdi单体制备2%pdi@mil-125(ti)-nh2(b2),4%pdi@mil-125(ti)-nh2(b3)和6%pdi@mil-125(ti)-nh2(b4)。
33.如图1所示为本发明实施例1制得mil-125(ti)-nh2和实施例2(b4)以及pdi的sem图。制备的mil-125(ti)-nh2具有规则的圆盘形状,圆盘的直径约为200-500nm。原始pdi的直径为15-30nm。随着pdi负载的增加,pdi倾向于形成棒状结构,并紧密附着在复合光催化材料中的mil-125(ti)-nh2上,且棒状结构在6%pdi@mil-125(ti)-nh2中占主导地位。
34.如图2所示,为本发明实施例1制得的mil-125(ti)-nh2和实施例2制得的不同比例pdi@mil-125(ti)-nh2以及pdi的x射线粉末衍射图。mil-125(ti)-nh2中所有衍射峰的位置与其理论峰位置非常吻合,说明合成成功。具有不同pdi负载的pdi@mil-125(ti)-nh2纳米复合光催化材料表现出相似的xrd图谱,表明mil-125(ti)-nh2框架的完整性得以保持。值得注意的是,由于pdi负载相对较低,在pdi负载浓度为1%、2%和4%和6%的复合光催化材料中未观察到27.1
°
处的特征pdi峰。
35.如图3所示,为本发明实施例1制得的mil-125(ti)-nh2和实施例2(b4)以及pdi的傅里叶红外图.在6%pdi@mil-125(ti)-nh2的ft-ir光谱中,发现了mil-125(ti)-nh23455,
1681,1420,1256,和749cm-1
)和pdi(1681,1586,1442,和1357cm-1
)的特征峰,证实了复合光催化材料中pdi和mil-125(ti)-nh2的存在。
36.试验例光催化灭活金黄色葡萄球菌
37.方法:将催化剂(10mg)分散在40ml生理盐水溶液(0.9%nacl通过高压灭菌器灭菌)中;然后,加入100μl复苏细菌。在黑暗和光照(λ≥420nm)中以一定的时间间隔取样1ml悬浮液。然后,将100μl用盐水溶液稀释的样品铺展到琼脂平板上并在37℃下孵育18小时以评估金黄色葡萄球菌的浓度。采用平板计数法对催化剂灭活性能进行估算。
38.如图4所示,为本发明实施例1制得的mil-125(ti)-nh2和实施例2制得的不同比例pdi@mil-125(ti)-nh2以及pdi的可见光光催化灭活细菌性能图。原始mil-125(ti)-nh2和pdi表现出非常低的光催化活性,可见光照射15min后细菌存活率分别为40%和49%。相比之下,当使用6%pdi@mil-125(ti)-nh2作为光催化剂时,几乎没有细菌可以存活,说明mil-125(ti)-nh2与pdi形成复合物后光催化活性显着增强。
39.试验例光催化还原六价铬
40.方法:
41.使用带有420nm截止滤光片的300w氙灯作为可见光源。将光催化剂(20mg)加入40ml 20mg
·
l-1
(k2cr2o7/h2o)六价铬溶液中,使用0.2mol
·
l-1
h2so4溶液调节ph为4。在照射之前,将反应溶液在黑暗中搅拌60分钟以达到吸附-解吸平衡。取出1.5ml悬浮液,并以一定的时间间隔取样离心。在540nm处用二苯基卡巴肼法,使用紫外可见分光光度计测定cr(vi)浓度。
42.还原率的计算公式:还原率=(a
t
/a0)
×
100%。其中a0表示为进行1h暗反应该体系达到吸附-脱附平衡后,试样的吸光度;a
t
表示光照时间为t时测得的试样吸光度。
43.如图5所示,为本发明实施例1制得的mil-125(ti)-nh2和实施例2制得的不同比例pdi@mil-125(ti)-nh2以及pdi的可见光光催化还原六价铬性能图。纯mil-125(ti)-nh2和pdi在50min可见光照射后还原率降低70%和18%,而使用pdi@mil-125(ti)-nh2时,cr(vi)的还原率显著提高,2%pdi负载的复合物的还原率达到最高,为90%。此外,更高浓度的负载使还原率开始下降,可能是mil-125(ti)-nh2作为主要的六价铬还原的活性位点,更高的pdi负载影响了mil-125(ti)-nh2的活性位点。
44.如图6所示,为实施例2(b2和b4)的反应前后的粉末xrd图。可以看出,经过光催化灭活金黄色葡萄球菌实验和光催化还原六价铬实验,pdi@mil-125(ti)-nh2复合光催化材料的晶型并没有太大的改变,说明可重复利用性强。
45.以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1