一种合成型长寿命天然气发动机油及其制备方法与流程

文档序号:22236961发布日期:2020-09-15 19:46阅读:248来源:国知局
本申请属于发动机润滑领域,具体涉及一种合成型长寿命天然气发动机油及其制备方法。
背景技术
:天然气以其资源丰富、排放污染低、价格低廉等优点,日益受到重视,被认为是一种非常具有发展前景的燃料。天然气主要成分为甲烷,是一种气态燃料,能够与空气充分混合,因此其燃烧后基本没有微粒排放,燃烧后的co生成量也很少;与其它化石类燃料相比,天然气在开采、生产、储藏、运输、使用等全生命周期内产生的污染物排放量更少,因此又被称为“清洁燃料”。但天然气燃料在燃烧室中以气体形式存在,没有类似汽柴油的液体润滑性能,干摩擦剧烈会导致机件磨损;没有液态燃料通过蒸发使进入燃烧室的空气冷却的作用,所以燃烧室的温度会更高,机油易氧化硝化而变质,滑润能力差。因此天然气发动机油面临着换油周期短,油品极易氧化、硝化,发动机气门、阀系磨损加剧等问题。技术实现要素:为了解决上述问题,本申请提出了一种合成型长寿命天然气发动机油及其制备方法;其中,一种合成型长寿命天然气发动机油,包括如下重量份数的原料:天然气合成油50~75份、烷基萘基础油15~30份、清净剂3.0~5.0份、分散剂2.0~4.0份、抗氧剂0.5~1.5份、极压抗磨剂0.5~1.5份、防锈剂0.3~1.0份、腐蚀抑制剂0.1~0.5份、黏度指数改进剂5.0~9.0份、降凝剂0.1~0.3份、破乳剂0.01~0.05份、消泡剂0.01~0.05份。天然气合成油,即gastoliquid,是一种以天然气为原料合成的基础油,合成工艺的工艺基础是费托合成。费托合成是1925年由德国化学家弗朗兹·费歇尔和汉斯·托罗普施所开发的以合成气(一氧化碳和氢气)为原料在催化剂和适当的反应调价下合成液态饱和烃和碳氢化合物的工艺过程,反应过程可概括如下:(2n+1)h2+nco→cnh(2n+2)+nh2o天然气合成油是先将天然气分子部分氧化成一氧化碳和氢气,再通过费托合成法合成有液态饱和长链烷烃。天然气是气态的低分子烃和非烃气体,主要成分是甲烷,同时也含有少量的乙烷、丙烷、氮和丁烷组成。与石油相比,天然气具有组成纯净、几乎不含硫、磷及其化合物、储量多、资源广等优势,费托合成的主要产物是碳氢化合物,副产物为碳氧化合物和水,反应相对彻底,易于提纯。由上述工艺合成的天然气合成油具有无硫、无磷、无芳烃,饱和程度高,黏度指数高,黏温特性好,氧化安定性、低温性能优异,挥发性低、抗乳化、抗泡性能好等优势。烷基萘具有极其出色的抗氧化性能,水解安定性,极好的添加剂溶解性和分散性能。有研究表明,烷基萘基础油中富有电子的萘环可以吸收氧,从而中断氧化链的传递,阻止烃的继续氧化,防止氧化的发生。表1中列出了不同类型基础油抗氧化性能比较。由表中的数据可以看出后,烷基萘类基础油与其他基础油相比,具有极其突出的抗氧化性能。富电子的萘环结构同时较强的极性,对极性添加剂具有良好的溶解性和分散性,表2是不同类型基础油的苯胺点的比较,苯胺点高,极性弱,苯胺点低极性强。同时,与酯类基础油不同,烷基萘的分子结构没有易水解的基团,水解安定性较好。表1、不同类型基础油抗氧化性能比较项目低粘度烷基萘高粘度烷基萘paos己二酸酯多元醇酯100℃运动黏度,mm2/s4.712.45.85.34.3旋转氧弹实验(150℃,621kpa,水,铜)/min1951801770-差式扫描热分析(180℃,3.45mpa)/min60+60+2.55.060+氧化腐蚀试验后总酸值(以氢氧化钾计)/(mg·g-1)0.0920.089-7.11.3表2、不同类型基础油苯胺点比较项目低粘度烷基萘高粘度烷基萘paos合成酯烷基苯ⅰ类基础油100℃运动黏度,mm2/s4.712.45.55.24.24.0苯胺点,℃32901192077.8100烷基萘基础油的富电子的萘环结构,与天然气合成油的饱和烷烃结构形成缔结作用,两者相互协同,形成以下结构,既能发挥天然气合成油高度饱和的耐氧化特性,又能兼具烷基萘的强极性和抗水性。其中n为10~25。本发明以天然气合成油和烷基萘基础油作为基础油组合,具有出色的热氧稳定性能,能够为天然气发动机油提供超长使用寿命;还具有出色的清洁性能、抗磨防锈性能,能够全方面的保护发动机摩擦副;还具有出色的添加剂感受性能,可以提高体系稳定性能;极佳的油膜稳定性能和抗磨特性,能够提供更好的燃油经济性。优选地,所述清净剂为磺酸盐清净剂或水杨酸盐清净剂。清净剂中的金属盐是钠、钙、镁、锌、钡等,本申请中清净剂的加入能清洗发动机内的积碳、油泥,具有很强的吸附作用,对金属件上的漆膜、积碳等起到洗涤作用,使其分散到油中。优选地,所述分散剂为无灰分散剂,所述无灰分散剂为丁二酰亚胺。本申请中分散剂的加入用于维持因高温氧化的不溶性物质的悬浮,并溶解已沉积在金属件上油泥、积炭等,其以胶束分散在油中,能溶解含羟基、羰基的含氧化合物、含硝基化合物和水分等,起到增溶的作用。优选地,所述抗氧剂为高分子苯酚、烷基化二苯胺中的一种或多种,所述高分子苯酚的分子量为900~1100,所述烷基化二苯胺中的烷基c原子数为c4~c8。本申请中抗氧剂的加入可以提高油品的抗氧化能力,减少油泥、漆膜等有害沉积,抑制黏度增长,延长油品使用寿命。优选地,所述极压抗磨剂为硫磷类抗磨剂,所述硫磷类抗磨剂包括二烷基硫代磷酸锌、二烷基二硫代氨基甲酸锌、硫代氨基甲酸钼中的一种或多种。本申请中抗磨剂的加入可以降低设备磨损,提高低油膜覆盖下油品的抗极压和抗磨能力,减少活塞、气缸、凸轮、挺杆等的设备摩擦损伤。优选地,所述防锈剂为无机磺酸盐、有机胺或含氮杂环化合物;所述腐蚀抑制剂为苯并三氮唑及其衍生物。本申请中的防锈剂在金属表面形成致密保护膜,防止发动机部件锈蚀;本申请腐蚀抑制剂可以保护设备内的有色金属,包括铜、铝及其合金,减少化学或电化学金属腐蚀,保护发动机关键部件。优选地,所述黏度指数改进剂为乙烯丙烯共聚物或苯乙烯与双烯共聚物;所述降凝剂为聚甲基丙烯酸酯类聚合物。本申请中的黏度指数改进剂能增加油品黏度,提高油品黏温特性,低温启动性好,降低磨损,节省燃油,使油品能够适用于更宽的温度范围;本申请中的降凝剂能够改善油品的低温流动性能,提高冷启动性,减少启动磨损,减少燃油损耗。优选地,所述破乳剂为油溶性非离子型表面活性剂,油溶性非离子型表面活性剂为分子量1500-10000的环氧乙烷、环氧丙烷的聚合物。优选地,所述抗泡剂为有机硅类消泡剂,所述有机硅类消泡剂为高分子硅氧烷类消泡剂。另一方面,本申请还公开了一种合成型长寿命天然气发动机油的制备方法,包括:s1:将45~55wt%的天然气合成油、45~55wt%的烷基萘基础油加入到调和釜中进行搅拌,搅拌温度为48~52℃,搅拌速率为90~110r/min;s2:依次加入清净剂、分散剂、抗氧剂、极压抗磨剂、防锈剂、腐蚀抑制剂、黏度指数改进剂、降凝剂及剩下的天然气合成油和烷基萘基础油,继续搅拌1~2h;s3:再依次加入破乳剂、消泡剂,停止加热,继续搅拌并冷却至室温,即得到所述合成型长寿命天然气发动机油。本申请能够带来如下有益效果:本发明所述合成型长寿命天然气发动机油具有以下有效效益:组分合理,黏温性能好,高温油膜保持性更好;沉积物控制性能好,油品酸值变化和黏度变化小,清净性能好;换油周期长,高温时具有良好的抗氧化硝化能力,能抑制油泥的产生,控制活塞和气阀沉积物;合理的灰分控制,有效防止气门、阀系磨损,保护发动机等部件,能满足不同燃料及不同灰分产品的需求,在顶环槽碳、台碳,活塞、环和缸套擦伤等方面有优异的表现。具体实施方式合成型长寿命天然气发动机油的制备方法:先加入配方总量45~55wt%的天然气合成油和烷基萘基础油加入到调和釜中,开启搅拌,搅拌温度为50℃±2℃,搅拌速度为100±10r/min。保持该温度和搅拌速度,依次加入清净剂、分散剂、抗氧剂、极压抗磨剂、防锈剂、腐蚀抑制剂、黏度指数改进剂、降凝剂,继续保持50℃±2℃的搅拌温度,100±10r/min的搅拌速度,搅拌调和1~2小时。然后依次加入破乳剂、消泡剂。关闭加热,搅拌冷却至室温。整个调和过程的搅拌时间不低于4小时。即得本发明所述合成型长寿命天然气发动机油。调和完成后,用过滤精度不大于5μm的过滤系统过滤2-3次,方可灌装成品。具体的实施条件如下:实施例1样品成分原料名称含量(kg)生产商天然气合成油gtl43064.34shell烷基萘基础油synesstic1220exxonmobil清净剂磺酸盐清净剂3chevron分散剂丁二酰亚胺4infineum抗氧剂烷基化二苯胺1basf极压抗磨剂二烷基硫代磷酸锌0.5vanderbilt防锈剂含氮杂环化合物0.6basf腐蚀抑制剂苯并三氮唑及其衍生物0.2vanderbilt黏度指数改进剂苯乙烯与双烯共聚物6infineum降凝剂聚甲基丙烯酸酯类聚合物0.3evonik破乳剂环氧乙烷/环氧丙烷嵌段共聚物0.04lubrizol消泡剂有机硅氧烷0.02lubrizol实施例2样品成分原料名称含量(kg)生产商天然气合成油gtl42055.85shell烷基萘基础油synesstic1225exxonmobil清净剂磺酸盐清净剂4.5chevron分散剂丁二酰亚胺4infineum抗氧剂高分子苯酚1.5basf极压抗磨剂1二烷基硫代磷酸锌0.5vanderbilt极压抗磨剂2硫代氨基甲酸钼0.5vanderbilt防锈剂有机胺0.6basf腐蚀抑制剂苯并三氮唑及其衍生物0.4vanderbilt黏度指数改进剂乙烯丙烯共聚物7lubrizol降凝剂聚甲基丙烯酸酯类聚合物0.1evonik破乳剂环氧乙烷/环氧丙烷嵌段共聚物0.03lubrizol消泡剂有机硅氧烷0.02lubrizol实施例3样品成分原料名称含量(kg)生产商天然气合成油gtl42064.14shell烷基萘基础油kr-01920king清净剂磺酸盐清净剂4chevron分散剂丁二酰亚胺3infineum抗氧剂烷基化二苯胺1chemtura极压抗磨剂1二烷基硫代磷酸锌0.2vanderbilt极压抗磨剂2二烷基二硫代氨基甲酸锌0.3vanderbilt极压抗磨剂3硫代氨基甲酸钼0.5vanderbilt防锈剂含氮杂环化合物0.4basf腐蚀抑制剂苯并三氮唑及其衍生物0.3basf黏度指数改进剂苯乙烯与双烯共聚物6infineum降凝剂聚甲基丙烯酸酯类聚合物0.1evonik破乳剂环氧乙烷/环氧丙烷嵌段共聚物0.02lubrizol消泡剂有机硅氧烷0.04lubrizol实施例4样品成分原料名称含量(kg)生产商天然气合成油gtl43052.64shell烷基萘基础油na-lubekr-01530king清净剂中碱值烷基水杨酸钙4infineum分散剂单烯基丁二酰亚胺3lubrizol抗氧剂1二叔丁基对甲酚0.1basf抗氧剂2辛基丁基二苯胺0.5chemtura极压抗磨剂二烷基二硫代磷酸锌1.5afton防锈剂磺酸钡0.5king腐蚀抑制剂烷基化苯三唑0.5vanderbilt黏度指数改进剂乙烯丙烯共聚物7.0lubrizol降凝剂聚甲基丙烯酸酯0.2evonik破乳剂环氧乙烷/环氧丙烷嵌段共聚物0.01lubrizol消泡剂有机硅氧烷0.05lubrizol实施例5样品成分原料名称含量(kg)生产商天然气合成油gtl43070.77shell烷基萘基础油na-lubekr-01915king清净剂低碱值烷基水杨酸钙5infineum分散剂高分子量丁二酰亚胺2lubrizol抗氧剂1高分子量液态苯酚0.5basf抗氧剂2二壬基化二苯胺0.5basf极压抗磨剂硫代氨基甲酸钼0.5vanderbilt防锈剂磺酸钙0.3chemtura腐蚀抑制剂烷基化苯三唑0.1vanderbilt黏度指数改进剂氢化苯乙烯异戊二烯聚合物5.0infineum降凝剂聚甲基丙烯酸酯0.3evonik破乳剂环氧乙烷/环氧丙烷嵌段共聚物0.03lubrizol消泡剂有机硅氧烷0.03lubrizol实施例6样品成分原料名称含量(kg)生产商天然气合成油gtl43055.94shell烷基萘基础油na-lubekr-01525king清净剂高碱值烷基化磺酸钙3infineum分散剂高分子量丁二酰亚胺4lubrizol抗氧剂1高分子量液态苯酚0.25basf抗氧剂2辛基丁基二苯胺0.25basf极压抗磨剂二烷基二硫代氨基甲酸锌1.0lubrizol防锈剂磺酸钡1.0king腐蚀抑制剂烷基化苯三唑0.3vanderbilt黏度指数改进剂乙烯丙烯共聚物9.0lubrizol降凝剂聚甲基丙烯酸酯0.2evonik破乳剂环氧乙烷/环氧丙烷嵌段共聚物0.05lubrizol消泡剂有机硅氧烷0.01lubrizol对比例1对比例2实施例7:表征本实施例中的表征手段如下表所示:序号性能指标方法依据1运动黏度,100℃gb/t265-882黏度指数gb/t1995-983闪点,℃gb/t3536-20084倾点,℃gb/t3535-20065发动机油表观黏度ccs,mpa·sgb/t6538-20006低温泵送黏度mrv,mpa·ssh/t0652-20137蒸发损失,250℃,1hsh/t0059-19968总碱值(以氢氧化钾计)/(mg·g-1)sh/t0251-20049硫酸盐灰分,%gb/t2433-201110铜片腐蚀,100℃,3hgb/t5096-2017实验方法概述:1.运动黏度:gb/t265-88石油产品运动粘度测定法和动力粘度计算法,在某一恒定的温度下,测定一定体积的液体在重力下流过一个标定好的玻璃毛细管粘度计的时间,粘度计的毛细管常数与流动时间的乘积,即为该温度下测定液体的运动黏度。2、黏度指数:gb/t1995-98石油产品黏度指数计算法,由40℃和100℃运动黏度计算润滑油及有关物质黏度指数的方法。黏度指数是表示石油产品的运动黏度随温度变化这个特征的一个约定值。3.闪点:gb/t-3536-2008石油产品闪点和燃点测定克利夫兰开口杯法,将试样装入试验杯至规定的刻度线,先迅速升高试样的温度,当接近闪点时再缓慢地以恒定的速率升温。在规定的温度间隔,用一个小的试验火焰扫过试验杯,使试验火焰引起试样页面上部蒸汽闪火的最低温度即为闪点。4.倾点:gb/t3535-2006石油产品倾点测试法,试样经预加热后,在规定的速率下冷却,每隔3℃检查一次试样的流动性。记录观察到试样能够流动的最低温度作为倾点。5.发动机油表观黏度ccs:gb/t6538-2000发动机油表观黏度测定法,一个电子马达驱动一个与定子紧密配合的转子,在转子和定子的空隙间充满试样,通过调节流过定子的冷却剂流量来维持试验温度,并在靠近定子内壁处测定这一温度。校正转子的转速使之作为黏度的函数。由校正的结果和转子的转速来确定试样的黏度。6.低温泵送黏度mrv:sh/t0652-2013低温下发动机油屈服应力和表观黏度测定法,试验油在80℃下恒温,接着在程序控制的冷却速率下冷却至最终试验温度。给转子轴逐渐施加一个较低的扭矩直至开始旋转,测定试验油的屈服应力。然后施加一个较高的扭矩,测定试验油的表观黏度。7.蒸发损失:参考noack蒸发损失sh/t0059-1996:试样与蒸发损失测定仪中,在250℃和恒定的压力下加热1h,蒸发出的油蒸汽由空气携带出去。根据加热前后试样质量之差测定试样的蒸发损失。8.总碱值:sh/t0251-2004石油产品碱值测定法(高氯酸点位滴定法),试样溶解于滴定试剂中,以高氯酸冰乙酸标准滴定溶液为滴定剂,以玻璃电极为指示电极,甘汞电极为参比电极进行点位滴定,以电位滴定曲线的电位突跃点为判断终点。9.硫酸盐灰分:gb/t2433-2011添加剂和含添加剂润滑油硫酸盐灰分测定法,点燃试样,并烧至只剩下灰分和碳为止。冷却后用硫酸处理残留物并在775℃下加热,直到碳完全氧化。待灰分冷却后再用硫酸处理,在775℃下加热并恒重,即可算出硫酸盐灰分的质量分数。10.铜片腐蚀:gb/t5096-2017石油产品铜片腐蚀试验法,将一块已磨光好的铜片浸没在一定体积的试样中,根据试样的产品类别加热到规定的温度,并保持一定的时间,加热周期结束时,取出铜片,经洗涤后,将其与铜片腐蚀标准色板进行比较,评价铜片变色情况,确定腐蚀级别。本发现采用的实验条件是温度100℃,实验时间3h。表3实施例以及对比例产品性能测试结果根据上表3的数据可得到,发明中的合成型长寿命天然气发动机油具有以下几方面的优势:1、更低的蒸发损失:本发明实施例蒸发损失均明显低于对比例1和对比例2,说明本发明实施例有更少的机油损耗。2、更好的低温流动性能:本发明实施例抗的倾点、发动机油表观粘度、低温泵送黏度指标明显优于对比例1和对比例2,说明本发明实施例具有更好的低温流动性能,启动更顺畅,发动机启动磨损更低,燃油经济性更好。3、更合理的灰分和碱值:本发明实施例具有更合理的灰分和减值,能够有效防止气门、阀系磨损,保护发动机等部件,满足不同燃料的需求。4、更长的换油周期:在两台装配天然气发动机的中国重汽重卡车中,分别对本发明实施例5的合成型长寿命天然气发动机油和上述对比例1以及对比例2的燃气发动机油进行行车实验,燃料类型lng,动力输出430马力,换油周期50000公里,实验周期为3个周期,分别取样检测黏度、碱值、不溶物指标、铁含量变化。表4实施例5的用油性能测试结果表5对比例1和对比例2的用油性能测试结果从上表4和表5的数据可知:出行车实验3个周期后,本发明实施例各项指标明显优于对比例的指标,且有较大的性能余量。因此,本发明所述的一种合成型长寿命天然气发动机油在移动式为天然气发动机的换油里程可以达到50000公里以上。综上所述,本发明提供的一种合成型长寿命天然气发动机油具有以下优点:a)组分合理,天然气合成油与烷基萘基础油相互配合,产生协同作用,有效提高发动机油的性能,且添加剂感受性好,性能稳定;b)出色的高温抗氧化、抗硝化能力,有效控制油泥、漆膜、积碳、胶质等有害沉积物的产生,保持发动机清洁,本发明合成型长寿命天然气发动机油的清洁性能较其它市售产品清洁能力提高5-10倍;c)极佳的低温特性,本发明合成型长寿命天然气发动机油的低温启动性能较其它市售产品提高2-3倍,有效降低启动磨损,减少燃油损耗;d)蒸发损失小,机油损耗低,本发明合成型长寿命天然气发动机油的机油损耗较其它市售产品降低20%左右;e)合理的碱值和灰分控制,有效防止气门、阀系磨损,保护发动机等部件,能满足不同燃料及不同灰分产品的需求,在顶环槽炭、台炭,活塞、环和缸套擦伤等方面有优异的表现;f)换油周期超过50000公里,换油周期长,用油成本低。本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于系统实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。以上所述仅为本申请的实施例而已,并不用于限制本申请。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1