稳定燃料油的生产的制作方法

文档序号:28804870发布日期:2022-02-09 01:41阅读:218来源:国知局
稳定燃料油的生产的制作方法
稳定燃料油的生产
1.相关申请的交叉引用
2.本技术要求于2019年6月10日提交的美国临时申请序列号62/859,389的优先权和权益。
技术领域
3.本公开涉及具有相对低硫含量的船用燃料组合物,以及形成此类组合物的方法。


背景技术:

4.根据《国际防止船舶造成污染公约》(称为《marpol公约》)附则vi,国际海事组织(imo)关于减少船舶硫氧化物(so
x
)排放的规定于2005年首次生效。从那时起,对硫氧化物的限量逐渐降低。根据修订后的marpol附则vi规定,指定排放控制区(eca)内船舶使用的燃料油的硫含量限量降低至0.10wt.%(2015年1月1日生效)。对于在指定eca以外作业的船舶,附则vi将燃料油的总硫含量上限设定为3.50wt.%(2012年1月1日生效),并进一步降低至0.50wt.%(2020年1月1日生效)。值得注意的是,后者0.50wt.%的硫含量上限对应于影响所有非eca燃料的全球法规,除非有替代的缓解方法,如车载洗涤器。
5.按照惯例,船用燃料油至少部分是通过使用残油或重油馏分形成的。由于许多类型的这些馏分的硫含量高,往往需要某些类型的另外加工和/或共混来形成低硫燃料油(0.50wt.%或更少的硫)。按照惯例,与一种或多种低硫馏分共混通常被用于调节所得共混燃料的硫含量。除了降低所得共混燃料的硫含量外,共混低硫馏分还可以改变燃料的粘度、密度、燃烧质量(计算碳芳香度指数或ccai)、倾点和/或其它特性。因为具有较低的倾点和/或粘度往往有利于提高船用燃料油的等级,所以为了满足0.50wt.%或更少的目标硫水平,共混可能往往比对残余馏分进行严格的加氢处理更为优选。
6.尽管将低硫馏分与残余馏分共混的常规策略可用于实现所需的燃料油硫目标,但与足够的低硫馏分共混以生产低硫燃料油可潜在地对稳定性造成困难。一些经济上有吸引力的低硫共混原料可以具有相对较低的芳烃含量以及有限的多环环烷烃和/或芳烃含量。残余和重质馏分主要由以下四类烃组成:饱和烃(主要是非极性直链烃、支链烃和环状链烷烃)、芳烃(包括稠合苯环化合物)、树脂(含有氮、氧或硫的极性芳环体系)和沥青质(具有不同组成并且含有氮、氧和硫的高极性复杂芳环化合物)。饱和烃、芳烃和树脂有时统称为软沥青质(maltene)。沥青质馏分被定义为不溶于链烷烃溶剂如正戊烷、正庚烷或异辛烷的部分。一般地,沥青质以由软沥青质(尤其是树脂)稳定的胶体悬浮液形式存在。此类残余或重油馏分在与一些低硫馏分共混时可能不完全相容,导致燃料共混物在某些条件下可能形成沉淀的沥青质。沥青质的沉淀会导致设备结垢、操作问题以及储存和处理困难。
7.有利的是开发在被添加了另外的低硫共混原料时具有增加的稳定性和相容性的船用燃料油以及形成所述船用燃料油的相应方法。


技术实现要素:

8.在一方面,提供了一种船用燃料油组合物,其硫含量为至多0.50wt.%,溶解能力(po)为至少0.30,p值为至少1.15。
9.在另一方面,提供了一种船用燃料油组合物,其硫含量为0.50wt.%或更低,溶解能力(po)为至少0.30,p值为至少1.15,其中所述船用燃料油组合物包含(a)15wt.%或更低的渣油烃组分,所述渣油烃组分包括溶剂脱沥青残余物、脱沥青油、常压塔底物和真空塔底物中的至少一种;(b)15至65wt.%的瓦斯油组分,所述瓦斯油组分包含未经加氢处理的真空瓦斯油、经加氢处理(hydrotreated)的真空瓦斯油和直馏瓦斯油中的至少一种;(c)15至85wt.%的芳族原料组分,所述芳族原料组分包含乙烯裂化器塔底物、油浆、重质循环油和轻质循环油中的至少一种;和(d)30wt.%或更低的经加氢处理的烃组分,所述经加氢加工(hydroprocessed)的烃组分包含蜡质轻质中性加氢裂化产物、柴油和喷气燃料中的至少一种。
10.在又一方面,提供了一种船用燃料油组合物,其硫含量为0.50wt.%或更低,溶解能力(po)为至少0.30,p值为至少1.15,其中所述船用燃料油组合物包含(a)15wt.%或更低的渣油烃组分,所述渣油烃组分包括溶剂脱沥青残余物、脱沥青油、常压塔底物和真空塔底物中的至少一种;(b)15至70wt.%的原油;(c)75wt.%或更低的芳族原料组分,所述芳族原料组分包含乙烯裂化器塔底物、油浆、重质循环油和轻质循环油中的至少一种;和(d)25wt.%或更低的包含馏出物的经加氢加工的烃组分。
11.在进一步的方面,提供了一种降低渣油烃组分的结垢倾向的方法,该方法包括:(a)确定渣油烃组分和至少一种其它烃组分的硫含量、溶解能力和p值;(b)选择至少一种其它烃组分,以使得渣油烃组分和至少一种其它烃组分的共混物的计算出的硫含量为至多0.50wt.%,计算出的溶解能力(po)为至少0.30,计算出的p值为至少1.15;以及(c)将渣油烃组分和至少一种其它烃组分共混以制备低结垢倾向的共混物,使得该共混物的硫含量为至多0.50wt.%,溶解能力为至少0.30,且p值为至少1.15。
具体实施方式
12.定义
13.如本文所用,术语“溶解能力”一般是指溶剂溶解溶质的能力。例如,对沥青质具有高溶解能力的流体意味着该流体与对沥青质具有低溶解能力的流体相比,具有更大的溶解或保持胶体分散体中的沥青质的能力。
14.术语“原油”是指从地质构造中提取的呈未精炼形式的石油。术语原油还应该理解为包括已经经受了水-油分离和/或气-油分离和/或脱盐和/或稳定的原油。衡量液态烃重或轻的一种方法是美国石油协会(api)比重。根据这个等级,轻质原油可以定义为api比重(astm d287)大于31.1
°
,中油可以定义为api比重在22.3
°
到31.1
°
之间,重质原油可以定义为api比重低于22.3
°
,且超重原油可定义为api比重低于10.0
°

15.术语“渣油”是指初始沸点高于343℃的任何烃,如常压或真空塔底物,树脂,来自溶剂脱沥青(sda)装置、减粘裂化器或热裂化装置残余物的沥青级分(pitch cuts)。“常压塔底物”可意指从常压粗馏塔的底部得到的烃材料。一般地,常压残余物含有大量焦炭前体和金属污染物。通常,常压塔底物具有初始沸点为约343℃、t5为约343℃至约360℃,且t95
为约700℃至约900℃的沸点范围。术语“t5”或“t95”分别表示样品的5质量%或95质量%(视情况而定)沸腾时的温度。“真空塔底物”可以意指沸点高于约524℃的烃材料并且可以包括一种或多种c
40+
烃。
16.术语“瓦斯油”是指沸点在约204℃至约524℃范围内的烃材料。这可以作为分馏段中真空蒸馏塔的侧级分获得。
17.术语“直馏”是指直接从常压蒸馏装置得到的馏分,任选地对其进行汽提,而不进行其它提炼处理,如加氢加工、流化催化裂化或蒸汽裂化。
18.术语“真空瓦斯油”及其首字母缩略词“vgo”是指沸点在约343℃至约565℃范围内的烃材料并且可包括一种或多种c
18
至c
50
烃。vgo可以通过对常压残余物的真空分馏来制备。此种馏分一般含有少量的焦炭前体和重金属污染物,这会污染催化剂。通常,vgo具有初始沸点为约340℃,t5为约340℃至约350℃,t95为约555℃至约570℃且终点为约570℃的沸点范围。
19.术语“馏出物”包括柴油和喷气范围烃(jet-range hydrocarbon)的混合物,并且可以包括如通过任何标准气相色谱模拟蒸馏方法(如astm d2887法)测定的沸点温度在约150℃至约400℃常压等效沸点(aebp)范围内的烃。
20.术语“柴油”可包括如通过任何标准气相色谱模拟蒸馏方法(如astm d2887法)测定的沸点温度在约250℃至约400℃aebp范围内的烃。
21.术语“喷气范围烃”或“喷气燃料”可包括如通过任何标准气相色谱模拟蒸馏方法(如astm d2887法)测定的沸点温度在约130℃至约300℃(例如,150℃至260℃)aebp范围内的烃。此外,术语“喷气范围烃”或“喷气燃料”可以指主要是c8至c
16
烃的混合物,其最大凝固点为-40℃(例如,jeta)或-47℃(例如,jeta-1)。
22.术语“重循环油”及其首字母缩写词“hco”是指由流化催化裂化(fcc)装置生产的烃材料。该料流的蒸馏级分在例如约330℃至510℃的范围内。hco可包括一种或多种c
16
至c
25
烃。
23.术语“轻循环油”及其首字母缩写词“lco”是指由fcc装置生产的烃材料。该料流的蒸馏级分在例如约220℃至330℃的范围内。lco可包括一种或多种c
13
至c
18
烃。
24.术语“油浆”是指含有来自fcc装置的操作的细颗粒催化剂的重芳烃副产品,并且可以包括未被澄清化的油浆以及已被澄清化从而去除或减少了细颗粒含量的油浆。油浆有时被称为炭黑油、澄清油(decant oil)或fcc底油。
25.当确定进料或产品馏分的沸点或沸程时,可以使用适当的astm测试方法,如astm d1160、d2887、d2892或d86中描述的程序。
26.如本文所用,术语“重量百分比”、“wt.%”、“按重量计的百分比”、“重量%”及其变化形式是指物质的浓度,即该物质的重量除以组合物的总重量,再乘以100。
27.燃料油稳定性和相容性
28.溶解度分析可作为评估燃料油稳定性和相容性的指南。如本文所用,“稳定性”涉及油将沥青质保持在胶溶(即胶体分散)或溶解状态并且不会随着工艺条件的变化或时间的推移而发生絮凝(即胶体分散的沥青质聚集成明显更大的团块,这些团块可能会或可能不会沉降)或沉淀的能力。更稳定的油将具有更低的形成污垢材料的倾向。如本文所用,“相容性”是指两种或多种油在特定浓度范围内共混在一起而没有分离迹象(如形成多相)的能
d4740,本发明船用燃料油组合物可具有1或2的现场评级。
39.船用燃料油组合物
40.在一些方面,船用燃料油组合物可包含(a)15wt.%或更少(例如,10wt.%或更少、5至15wt.%、5至12.5wt.%)的渣油烃组分,其包括溶剂脱沥青残余物、脱沥青油、常压塔底物和真空塔底物中的至少一种;(b)15至65wt.%(例如,30至60wt.%或35至55wt.%)的瓦斯油组分,其包括未经加氢处理的真空瓦斯油、加氢处理的真空瓦斯油和直馏瓦斯油中的至少一种;(c)15至85wt.%(例如,15至60wt.%、15至50wt.%、25至60wt.%、25至50wt.%、30至60wt.%或30至50wt.%)的芳族原料组分,其包括乙烯裂化器塔底物、油浆、重质循环油和轻质循环油中的至少一种;和(d)30wt.%或更少(例如,20wt.%或更少、10wt.%或更少、20至30wt.%、5至15wt.%)的经加氢加工的烃组分,其包括蜡质轻质中性加氢裂化产物、柴油和喷气燃料中的至少一种。
41.在一些方面,船用燃料组合物可包含(a)15wt.%%或更少(10wt.%或更少、5至15wt.%、5至12.5wt.%)的渣油烃组分,其包括溶剂脱沥青残余物、脱沥青油、常压塔底物和真空塔底物中的至少一种;(b)15至70wt.%(例如,20至70wt.%、20至60wt.%、20至50wt.%、20至30wt.%、40至70wt.%或40至60wt.%)的原油;(c)75wt.%或更少(例如,5至75wt.%、10至75wt.%、20至75wt.%、30至75wt.%、5至60wt.%、10至60wt.%、20至60wt.%、30至60wt.%、5至50wt.%、10至50wt.%、20至50wt.%或30至50wt.%)的芳族原料组分,其包括乙烯裂化器塔底物、油浆、重质循环油、轻质循环油的至少一种;和(d)25wt.%或更少(例如,20wt.%或更少、15wt.%或更少、10至25wt.%、10至20wt.%)的包括馏出物的经加氢加工的烃组分。
42.溶剂脱沥青残余物(例如sda级分焦油)可能会表现出以下一种或多种特性:(a)api比重为3
°
至6
°
;(b)50℃下的运动粘度(astm d445)为700至2500mm2/s;(c)15℃下的密度(astm d4052)为934至1052kg/m3;(d)硫含量(astm 4294)为10,000至50,000wppm;(d)倾点(astm d97)为-5℃至13℃;以及(e)闪点(astm d93b)为80℃至110℃。残余和重质馏分可以通过本领域已知的方法,诸如通过使用分馏、膜技术或通过溶剂脱沥青来脱沥青,以除去沥青质和/或沸点高于约566℃的馏分。船用燃料油组合物可包含至多15wt.%%(例如,1至15wt.%、5至15wt.%、1至12.5wt.%或5至12.5wt.%)的溶剂脱沥青残余物。
43.未经加氢处理的vgo可能会表现出以下一种或多种特性:(a)api比重为10
°
至15
°
;(b)50℃下的运动粘度为200至1000mm2/s;(c)15℃下的密度为966至1000kg/m3;(d)硫含量为10,000至20,000wppm;(d)倾点为-5℃至90℃;以及(e)闪点大于200℃。船用燃料油组合物可包含至多45wt.%(例如,至多25wt.%、10至45wt.%、10至25wt.%、15至45wt.%或15至25wt.%)的未经加氢处理的vgo。
44.经加氢处理的vgo可能会表现出以下一种或多种特性:(a)api比重为20
°
至34
°
;(b)50℃下的运动粘度为10至70mm2/s;(c)15℃下的密度为855至934kg/m3;(d)硫含量为至多1000wppm;(d)倾点为-25℃至120℃;以及(e)闪点为45℃至300℃。船用燃料油组合物可包含至多50wt.%(例如,至多45wt.%、至多40wt.%、25至50wt.%、25至45wt.%、25至40wt.%、30至50wt.%、30至45wt.%或30至45wt.%)的经加氢处理的vgo。
45.直馏瓦斯油可能具有以下一种或多种特性:(a)api比重为20
°
至34
°
;(b)50℃下的运动粘度为10至40mm2/s;(c)15℃下的密度为855至934kg/m3;(d)硫含量为至多1000wppm至
2000wppm;(d)倾点为5℃至30℃;以及(e)闪点为100℃至220℃。船用燃料油组合物可包含至多50wt.%(例如,25至50wt.%或35至50wt.%)的直馏瓦斯油。
46.芳族原料或工艺流通常将含有如根据astm d2140或astm d3238的测量的至少10%的ca含量和小于约90%的总cn加c
p
含量,后一种方法通常用于较重的石油馏分。芳族碳(%ca)、环烷碳(%cn)和链烷烃碳(%c
p
)的百分比分别表示油中存在的组合成芳环型结构、环烷环型结构和链烷链型结构的总碳原子的重量百分比。芳族原料可含有至少20%(例如,至少25%或至少30%)的ca含量,并且ca含量可高达90%或更多。示例性的芳族原料包括乙烯裂化器塔底物、油浆、重质循环油和轻质循环油。
47.重质循环油(hco)可能会表现出以下一种或多种特性:(a)api比重为-5
°
至8
°
;(b)50℃下的运动粘度为15至300mm2/s;(c)15℃下的密度为1014至1119kg/m3;(d)硫含量为至多13,000wppm;(d)倾点为-8℃至30℃;以及(e)闪点为45℃至150℃。在一些方面,船用燃料油组合物可包含15至50wt.%(例如,25至50wt.%或30至50wt.%)的hco。
48.轻质循环油(lco)可能会表现出以下一种或多种特性:(a)api比重为6
°
至20
°
;(b)50℃下的运动粘度为1至25mm2/s;(c)15℃下的密度为934至1029kg/m3;(d)硫含量为至多7000wppm;(d)倾点为-34℃至20℃;以及(e)闪点为30℃至130℃。船用燃料油组合物可包含至多10wt.%(例如,1至10wt.%或4至8wt.%)的lco。
49.蜡质轻质中性加氢裂化产物可能会表现出以下一种或多种特性:(a)api比重为30
°
至35
°
;(b)50℃下的运动粘度为20至40mm2/s;(c)15℃下的密度为850至876kg/m3;(d)硫含量为5至300wppm;(d)倾点为5℃至36℃;以及(e)闪点为100℃至220℃。船用燃料油组合物可包含至多30wt.%(例如,10至30wt.%)的蜡质轻质中性加氢裂化产物。
50.加氢裂化器塔底物(hcb)可能会表现出以下一种或多种特性:(a)api比重为30
°
至40
°
;(b)50℃下的运动粘度为5至10mm2/s;(c)15℃下的密度为825至876kg/m3;(d)硫含量为至多20wppm;(d)倾点为10℃至25℃;以及(e)闪点为100℃至150℃。船用燃料油组合物可包含至多20wt.%(例如,至多15wt.%、至多12wt.%、1至20wt.%、1至15wt.%、5至15wt.%、1至12wt.%或5至12wt.%)的加氢裂化器塔底物。
51.柴油可能会表现出以下一种或多种特性:(a)api比重为30
°
至40
°
;(b)50℃下的运动粘度为1至5mm2/s;(c)15℃下的密度为825至876kg/m3;(d)硫含量为至多15wppm;(d)倾点为-30℃至-13℃;以及(e)闪点为40℃至80℃。船用燃料组合物可包含至多15wt.%(例如,1至15wt.%、5至15wt.%、1至12wt.%或5至12wt.%)的柴油。
52.喷气燃料可能符合如astm d1655中所描述的jet a或jet fuel a-1的规范。船用燃料组合物可包含0至5wt.%(例如,大于0至5wt.%或1至5wt.%)的喷气燃料。
53.原油可能会表现出以下一种或多种特性:(a)api比重为10
°
至22.3
°
(例如15
°
至20
°
);(b)50℃下的运动粘度为100至250mm2/s;(c)15℃下的密度为935至966kg/m3;(d)硫含量为2000至4000wppm;(d)倾点为-10℃至20℃;以及(e)闪点为50℃至150℃。合适的原油可包括重质、低硫原油(硫化氢和二氧化碳含量低的油,通常含硫量低于0.5%)。
54.馏出物可能会表现出以下一种或多种特性:(a)api比重为40
°
至45
°
;(b)50℃下的运动粘度为1至1.5mm2/s;(c)15℃下的密度为811至825kg/m3;(d)硫含量为至多15wppm;以及(d)倾点最大值为-47℃。船用燃料油组合物可包含至多15wt.%(例如,1至15wt.%、5至15wt.%、1至12wt.%或5至12wt.%)的馏出物。
55.船用燃料组合物的特性
56.船用燃料油组合物可具有0.50wt.%(例如,0.49wt.%、0.48wt.%、0.47wt.%、0.46wt.%、0.45wt.%、0.44wt.%、0.43wt.%、0.42wt.%、0.41wt.%、0.40wt.%、0.35wt.%、0.30wt.%、0.25wt.%、0.20wt.%、0.15wt.%、0.10wt.%、0.05wt.%或0.01wt.%)的最大硫含量(iso 8754或iso 14596或astm d4294)和/或0.01wt.%(例如,0.05wt.%、0.10wt.%、0.15wt.%、0.20wt.%、0.25wt.%、0.30wt.%、0.35wt.%、0.40wt.%、0.41wt.%、0.42wt.%、0.43wt.%、0.44wt.%、0.45wt.%、0.46wt.%、0.47wt.%、0.48wt.%或0.49wt.%)的最小硫含量。
57.低硫船用燃料油组合物可以被配制成符合标准规范,如iso 8217。为了取得作为符合iso 8217:2017的燃料的资格,船用燃料油组合物必须符合那些国际公认的标准,包括:50℃时的最大运动粘度(iso 3104)为10.00至700.0mm2/s(例如,10.00至180.0mm2/s);15℃(iso 3675)下的最大密度为920至1010.0kg/m3(例如,920.0至991.0kg/m3);计算出的碳芳香度指数(ccai)为850至870(例如,850至860);最低闪点(iso 2719)为60.0℃;最大总沉积物-老化(iso 10307-2)为0.10wt.%;最大碳残余物-微量法(iso 10370)为2.50至20.00wt.%(例如,2.50至15.00);以及最大铝加硅(iso 10478)含量为25至60mg/kg(例如,25至50mg/kg)。船用燃料油组合物的硫含量可显著低于0.50wt.%(即,≤0.10wt.%硫),以取得作为符合marpol附则vi(修订版)的用于eca区域的超低硫船用残余燃料的资格。
58.实施例
59.以下说明性实施例旨在是非限制性的。
60.实施例1-10
61.制备了一系列船用燃料油组合物。表1给出了在实施例1-10的船用燃料油组合物中使用的共混组分的特性。
62.表1
63.实施例1-10中相应组分的特性
[0064][0065]
表2总结了实施例1-11的船用燃料油组合物的共混物含量。每种共混物均含有重质循环油。
[0066]
表2
[0067][0068]
表3提供了实施例1-10的船用燃料油组合物的某些物理和化学特性的总结。
[0069]
表3
[0070]
[0071][0072]
(1)沥青质含量不足以进行相容性测试。加入含有沥青质的标准材料并测定溶解能力。
[0073]
(2)由如美国专利第9,671,384号中所描述的在线过滤技术确定。
[0074]
如表3所示,表现出小于0.30的溶解能力(实施例5-6)的燃料油组合物具有较差的相容性,如小于1.0的p值、大量的总沉淀物和较差的现场测试评级结果所证明的。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1