电池罐用镀镍热处理钢板的制作方法

文档序号:14957275发布日期:2018-07-17 23:49阅读:131来源:国知局

本发明涉及一种电池罐用镀镍热处理钢板。



背景技术:

近年来,在音频设备、移动电话等多个领域中使用便携式设备,作为其工作电源而大多使用作为一次电池的碱性电池、作为二次电池的镍氢电池、锂离子电池等。随着搭载的设备的高性能化,这种电池也被要求长寿命化和高性能化等,用于填充由正极活性物质、负极活性物质等形成的发电元件的电池容器、电池罐作为电池的重要构成要素也被要求提高性能。

作为用于形成这样的电池罐的表面处理钢板,例如,在专利文献1、2中公开一种通过在钢板上形成镍镀层,之后实施热处理,从而形成铁-镍扩散层而成的表面处理钢板。

现有技术文献

专利文献

专利文献1:日本特开2014-009401号公报

专利文献2:日本特开平6-2104号公报



技术实现要素:

发明要解决的问题

然而,在上述专利文献1、2中,由于形成铁-镍扩散层时的热处理的条件为高温或长时间,因此,镍镀层的镍和作为基材的钢板的铁的相互扩散容易发展,在得到的表面处理钢板上,形成有铁-镍扩散层和软质化的镍层或更软的铁-镍扩散层,该软质化的镍层是作为镍层残留在该铁-镍扩散层的上层的物质进行再结晶化而形成的。

在将这样的表面处理钢板加工为电池罐时,由于最表层较软,因此,与对在镀敷后未实施热处理的表面处理钢板进行加工时相比,容易产生镍层相对于模具(冲头)的粘着。

然而,在使镀敷后未实施热处理的镀镍钢板形成为电池罐的情况下,铁基体容易自作为基材的钢板溶出而使耐腐蚀性变差。

本发明的目的在于,提供一种通过抑制铁的溶出而使耐腐蚀性优异且覆膜较硬的电池罐用镀镍热处理钢板。

用于解决问题的方案

采用本发明,提供一种电池罐用镀镍热处理钢板,其特征在于,该电池罐用镀镍热处理钢板在钢板上具有4.4g/m2~26.7g/m2的镍层,在利用高频辉光放电发射光谱分析装置自所述电池罐用镀镍热处理钢板的表面朝向深度方向连续地测量fe强度和ni强度时,fe强度显示出第1预定值时的深度(d1)与ni强度显示出第2预定值时的深度(d2)的差值(d2-d1)小于0.04μm。

此外,显示出所述第1预定值时的深度(d1)是显示出通过所述测量测得的fe强度的饱和值的10%的强度时的深度,显示出所述第2预定值时的深度(d2)是通过所述测量ni强度显示出极大值之后、进一步朝向深度方向进行测量时显示出该极大值的10%的强度时的深度。

在本发明的电池罐用镀镍热处理钢板中,优选的是,所述铁-镍扩散层的厚度相对于所述镍层的厚度的比(铁-镍扩散层的厚度/镍层的厚度)为大于0且为0.08以下,更优选为0.0001~0.05。

在本发明的电池罐用镀镍热处理钢板中,优选的是,所述镍层的厚度大于0.5μm。

在本发明的电池罐用镀镍热处理钢板中,优选的是,所述镍层的以10gf的载荷测量出的维氏硬度(hv)大于220。

采用本发明,提供一种电池容器,其中,该电池容器由上述电池罐用镀镍热处理钢板制成。

另外,采用本发明,提供一种电池,其中,该电池包括上述电池容器。

并且,采用本发明,提供一种电池罐用镀镍热处理钢板的制造方法,其中,该电池罐用镀镍热处理钢板的制造方法具有以下工序:镀镍工序,在该镀镍工序中,在钢板上形成镍含量为4.4g/m2~26.7g/m2的镍镀层;以及热处理工序,在该热处理工序中,对于形成有所述镍镀层的钢板,通过以350℃以上且小于450℃的温度保持30秒~2分钟来实施热处理。

发明的效果

采用本发明,能够提供一种利用覆膜的硬质化来抑制粘着而使连续冲压性优异且耐腐蚀性也优异的电池罐用镀镍热处理钢板。另外,采用本发明,能够提供使用这样的电池罐用镀镍热处理钢板得到的电池容器和电池。

附图说明

图1是表示应用了本发明的电池罐用镀镍热处理钢板的电池的一个实施方式的立体图。

图2是图1的沿着ii-ii线的剖视图。

图3是本发明的电池罐用镀镍热处理钢板的一个实施方式且为图2的iii部的放大剖视图。

图4是用于说明图3所示的电池罐用镀镍热处理钢板的制造方法的图。

图5是用于说明测量铁-镍扩散层的厚度的方法的图。

图6是用于说明测量镍层的表面部分的平均结晶粒径的方法的图。

具体实施方式

以下,根据附图说明本发明的一个实施方式。本发明的电池罐用镀镍热处理钢板被加工为与期望的电池的形状相对应的外形形状。作为电池,没有特殊限定,能够例示作为一次电池的碱性电池、作为二次电池的镍氢电池、锂离子电池等,作为这些电池的电池容器的构件,能够使用本发明的电池罐用镀镍热处理钢板。以下,利用将本发明的电池罐用镀镍热处理钢板应用于构成碱性电池的电池容器的正极罐的实施方式来说明本发明。

图1是表示应用了本发明的电池罐用镀镍热处理钢板的碱性电池2的一个实施方式的立体图,图2是图1的沿着ii-ii线的剖视图。在本例子的碱性电池2中,在有底圆筒状的正极罐21的内部隔着分隔件25填充有正极合剂23和负极合剂24,在正极罐21的开口部内表面侧铆接安装有由负极端子22、集电体26以及垫片27构成的封口构件。另外,在正极罐21的底部中央形成有凸状的正极端子211。而且,为了赋予绝缘性以及提高外观性等,在正极罐21上隔着绝缘环28安装有外壳29。

图1所示的碱性电池2的正极罐21能够通过利用深拉加工法、拉深减薄加工法(di加工法)、拉深伸长加工法(dtr加工法)、或在拉深加工后并用伸长加工和减薄加工的加工法等对本发明的电池罐用镀镍热处理钢板进行成型加工而得到。以下,参照图3说明本发明的电池罐用镀镍热处理钢板(镀镍热处理钢板1)的结构。

图3是放大表示图2所示的正极罐21的iii部的剖视图,在图3中,上侧相当于图1的碱性电池2的内表面(碱性电池2的与正极合剂23接触的面)。如图3所示,本实施方式的镀镍热处理钢板1是通过在作为构成镀镍热处理钢板1的基材的钢板11上形成铁-镍扩散层12和镍层14而构成的。

对于本实施方式的镀镍热处理钢板1,在钢板上具有4.4g/m2~26.7g/m2的镍层,且利用高频辉光放电发射光谱分析装置测得的d2-d1的差值小于0.04μm。由此,能够利用覆膜的硬质化来抑制加工为电池罐时的相对于模具的粘着,因此本实施方式的镀镍热处理钢板1的连续冲压性优异且电池罐加工后的耐腐蚀性也优异。

(钢板11)

作为本实施方式的钢板11,只要为成型加工性优异的钢板即可,而没有特殊限定,例如,能够使用低碳铝镇静钢(碳含量0.01重量%~0.15重量%)、碳含量在0.003重量%以下的超低碳钢、或在超低碳钢中添加ti、nb等而成的非时效性超低碳钢。钢板的厚度没有特殊限定,但优选为0.2mm~0.5mm。在钢板过厚的情况下,存在扩散所需要的热量不足而不能充分地形成扩散层的担忧。在钢板过薄的情况下,存在无法确保作为之后的电池罐所需要的厚度的情形、热传递较快而难以控制扩散层的厚度的担忧。

在本实施方式中,在对这些钢的热轧板进行酸洗而去除表面的氧化皮(氧化膜)之后进行冷轧,接着,在电解清洗之后,进行退火、调质轧制,或者是在所述冷轧、电解清洗之后,在未进行退火的情况下实施调质轧制,将经过了上述这些处理后得到的钢板作为钢板11使用。

(铁-镍扩散层12、镍层14)

在本实施方式的镀镍热处理钢板1中,在钢板11上形成镍镀层13之后,进行热处理。此时,因构成钢板11的铁和构成镍镀层13的镍发生热扩散而形成铁-镍扩散层12,该铁-镍扩散层12是铁和镍相互扩散而成的层。镍层14是在进行所述热处理时镍镀层13中的、靠近铁未扩散到的表层的部分因热而再结晶并软质化的层。

此外,在本实施方式中,通过如后述那样进行镀镍和热处理,从而使铁-镍扩散层12小于0.04μm而形成得非常薄。

镍镀层13例如能够通过使用镍镀浴形成在钢板11上。作为镍镀浴,能够使用在镀镍中通常使用的镀浴、即瓦特浴、氨基磺酸浴、硼氟化物浴、氯化物浴等。例如,能够通过作为瓦特浴而使用硫酸镍200g/l~350g/l、氯化镍20g/l~60g/l、硼酸10g/l~50g/l的浴组成物并以ph3.0~ph4.8(优选为ph3.6~ph4.6)、浴温50℃~70℃、电流密度10a/dm2~40a/dm2(优选为20a/dm2~30a/dm2)的条件来形成镍镀层13。

此外,作为镍镀层13,含硫的光泽镀敷由于存在导致电池特性降低的担忧而不优选,但不含有不可避免的杂质量以上的硫的无光泽镀敷当然能够应用于本发明,不含有不可避免的杂质量以上的硫的半光泽镀敷也能够应用于本发明。其原因在于,对于通过镀敷得到的层的硬度,虽然半光泽镀敷硬于无光泽镀敷,但通过用于形成本发明的扩散层的热处理,半光泽镀敷的硬度成为与无光泽镀敷的硬度相同的程度或比无光泽镀敷的硬度稍高的程度。在形成半光泽镀敷来作为镍镀层的情况下,只要在上述镀浴中添加半光泽剂即可。作为半光泽剂,只要为不使镀敷后的镍镀层含有硫(例如在利用荧光x射线进行的测量中含有率为0.05%以下)的半光泽剂,就没有特殊限定,例如,能够使用不饱和醇的聚氧乙烯加成物等的脂肪族不饱和醇、不饱和羧酸、甲醛、香豆素等。

在本实施方式中,如图4所示,在钢板11上形成上述镍镀层13,之后,通过进行热处理形成铁-镍扩散层12和镍层14,从而能够获得图3所示那样的镀镍热处理钢板1。

在本实施方式中,进行热处理之前的镍镀层13的镍含量相当于通过热处理得到的铁-镍扩散层12和镍层14所含有的镍的总量。

只要通过热处理得到的铁-镍扩散层12和镍层14所含有的镍的总量(进行热处理前的镍镀层13的镍含量)为4.4g/m2~26.7g/m2即可,优选为8.9g/m2~26.0g/m2,更优选为10.0g/m2~25.0g/m2。若铁-镍扩散层12和镍层14所含有的镍的总量过少,则基于镍的耐腐蚀性的提高效果不充分,在将得到的镀镍热处理钢板1制成电池容器时,耐腐蚀性降低且硬度变低,因此存在连续冲压性降低的担忧。另一方面,若铁-镍扩散层12和镍层14所含有的镍的总量过多,则存在因与作为基材的钢板11之间的密合性不充分而导致的剥离的担忧。另外,在将得到的镀镍热处理钢板1制成电池容器时,罐壁的厚度变厚,电池容器内部的容积变小(容积率降低。)。铁-镍扩散层12和镍层14所含有的镍的总量例如能够通过根据能够利用icp分析法测量的、铁-镍扩散层12和镍层14所含有的镍的总量(总重量)进行计算的方法来求出。或者,铁-镍扩散层12和镍层14所含有的镍的总量还能够通过在形成镍镀层13之后且进行热处理之前进行x射线荧光测量,从而测得构成镍镀层13的镍原子的附着量,并根据测得的附着量来进行计算的方法来求出。

热处理的条件只要根据镍镀层13的厚度适当选择即可,热处理温度优选为350℃以上且450℃以下,更优选为400℃以上且450℃以下,进一步优选为420℃以上且450℃以下,热处理中的均热时间优选为30秒~2分钟,更优选为30秒~100秒,进一步优选为45秒~90秒。另外,在热处理中,均热时间加上升温时间、冷却时间得到的时间优选为2分钟~7分钟,更优选为3分钟~5分钟。作为热处理的方法,从容易将热处理温度和热处理时间调整为上述范围这样的观点考虑,优选为连续退火法。

在本发明中,通过如上述那样进行热处理,从而在钢板11与镍层14之间形成铁-镍扩散层12,镀镍热处理钢板1成为在钢板11上自下起依次具有铁-镍扩散层12、镍层14那样的结构(ni/fe-ni/fe)。

此时,能够将d2-d1的差值视为铁-镍扩散层12的厚度,该d2-d1的差值能够通过如后述那样使用高频辉光放电发射光谱分析装置对镀镍热处理钢板1沿自最外层表面朝向钢板11去的深度方向连续地测量fe强度和ni强度的变化而求出。

具体而言,首先,使用高频辉光放电发射光谱分析装置来测量镀镍热处理钢板1中的fe强度,直至fe强度达到饱和为止,并以fe强度的饱和值为基准,将fe强度为其饱和值的10%时的深度(d1)作为镍层14与铁-镍扩散层12之间的交界。

例如,参照表示利用高频辉光放电发射光谱分析装置对实际制成的镀镍热处理钢板1进行测量得到的结果的一个例子的图5的(a)来进行说明。此外,在图5的(a)中,纵轴表示fe强度和ni强度,横轴表示利用高频辉光放电发射光谱分析装置自镀镍热处理钢板1的表面沿深度方向进行测量时的测量时间。

在本实施方式中,首先,根据fe强度的测量结果求出fe强度的饱和值。fe强度的饱和值由fe强度的时间变化率(fe强度变化/秒)求出。对于fe强度的时间变化率,在测量开始后,当检测出fe时,时间变化率急剧地变大,在超过极大值时,时间变化率减少并在大致零附近稳定。在大致零附近稳定时的fe强度是fe强度的饱和值,具体而言,将fe强度的时间变化率为0.02(fe强度/秒)以下的值时的、深度时间视为fe的强度饱和。

在图5的(a)所示的例子中,fe强度的饱和值成为在测量时间为20秒附近的70左右的值,能够将fe强度为其饱和值的10%即7左右时的深度作为镍层14与铁-镍扩散层12之间的交界检测出来。

另一方面,铁-镍扩散层12与钢板11之间的交界能够如下那样检测出来。即,在使用高频辉光放电发射光谱分析装置对镀镍热处理钢板1的ni强度进行测量时,自得到的ni强度的变化的曲线图提取极大值,将ni强度在显示出其极大值之后为该极大值的10%的值时的深度(d2)判断为铁-镍扩散层12与钢板11之间的交界。例如,参照图5的(a),ni强度的极大值为在测量时间为9秒附近的70左右的值,因此,能够将ni强度为其极大值的10%即7左右时的深度作为铁-镍扩散层12与钢板11之间的交界检测出来。

并且,在本实施方式中,能够根据如上述那样判断出来的各层的交界来求出铁-镍扩散层12的厚度。具体而言,在使用高频辉光放电发射光谱分析装置进行测量时,计算出以fe强度为其饱和值的10%的强度的时刻为起点到ni强度在显示出其极大值之后为极大值的10%的强度的时刻为止的测量时间,能够根据计算出的测量时间,求出铁-镍扩散层12的厚度。

此外,在根据测量时间来求出镀镍热处理钢板1的铁-镍扩散层12的厚度时,对于具有已知的镀敷厚度的、未进行热处理的镀镍钢板,预先如图5的(b)所示那样进行高频辉光放电发射光谱分析,利用图5的(b)计算出作为铁-镍扩散层算出的厚度量,在计算作为实际的测量对象的镀镍热处理钢板1的铁-镍扩散层12时,需要减去算出的厚度量。即,通过从自图5的(a)的曲线图算出的铁-镍扩散层12部分的厚度(在图5的(a)中,将以fe强度为其饱和值的10%的强度的时刻为起点到ni强度在显示出其极大值之后为极大值的10%的强度的时刻为止的测量时间换算为厚度得到的值)中减去同样地自图5的(b)的曲线图算出的厚度,能够求出图5的(a)的图表中的实际的铁-镍扩散层12的厚度。

在本发明中,对于如上述那样具有已知的镀敷厚度的、未进行热处理的镀镍钢板进行高频辉光放电发射光谱分析,将作为铁-镍扩散层算出的厚度量设为“基准厚度”,d1与d2之间的差值(d2-d1)指的是如前述那样减去基准厚度后得到的值。

此外,在高频辉光放电发射光谱分析装置的测量中,随着镍镀层的厚度的增加,通过镍镀层的测量而计算出的基准厚度变厚,因此,期望的是,在对铁-镍扩散层进行计算时,在各个镀敷附着量中确认基准厚度,或者利用镀敷附着量不同的两种以上的、进行热处理前的样品来测量基准厚度,求得镀敷附着量与基准厚度之间的关系式来进行计算。

另外,通过测量未进行热处理的镀镍钢板,能够求出深度时间(利用高频辉光放电发射光谱分析装置进行测量的测量时间)与实际厚度的关系,因此,利用该关系(表示深度时间与实际的厚度之间的关系的关系),能够将深度时间换算为成为实际的测量对象的镀镍热处理钢板1的铁-镍扩散层12的厚度。

此外,在如此利用高频辉光放电发射光谱分析装置来测量铁-镍扩散层12的厚度时,存在因高频辉光放电发射光谱分析装置的性能、测量条件等导致具有铁-镍扩散层12的厚度的检测极限值的情况。例如,在利用高频辉光放电发射光谱分析装置以φ5mm的测量直径对使用利用触针式表面粗糙度测量仪测得的表面粗糙度ra为0.05μm~3μm的钢板作为钢板11而制成的镀镍热处理钢板1进行测量的情况下,利用高频辉光放电发射光谱分析装置进行检测的能够检测厚度的区域(形状上的检测极限值)为0.04μm左右,在利用高频辉光放电发射光谱分析装置测得的铁-镍扩散层12的厚度为检测极限值以下的情况下,能够将该铁-镍扩散层12的厚度视为大于0μm且小于0.04μm。即,在通过在钢板11上形成镍镀层13之后进行热处理而形成铁-镍扩散层12和镍层14的情况下,在利用高频辉光放电发射光谱分析装置来测量铁-镍扩散层12的厚度时,即使为检测极限值以下,也能够将该铁-镍扩散层12的厚度视为大于0μm且小于0.04μm。此外,对于在钢板11上形成镍镀层13之后未实施热处理而得到镀镍钢板的情况,能够视为在该镀镍钢板上未形成有铁-镍扩散层12(铁-镍扩散层12的厚度为0)。

在本实施方式中,如此一来,利用高频辉光放电发射光谱分析装置测得的d1与d2之间的差值(d2-d1)只要小于0.04μm即可。此外,铁-镍扩散层12的厚度的下限只要大于0μm即可,即使是少许,只要形成有铁-镍扩散层12即可。优选为0.0001μm以上且小于0.04μm,更优选为0.001μm以上且小于0.02μm。如上所述,d2-d1是表示铁-镍扩散层12与钢板11的分界线的深度同镍层14与铁-镍扩散层12的分界线的深度的差的数值,该值较小意味着铁-镍扩散层较薄。作为具有这样的结构的镀镍热处理钢板1,例如可举出在温度为350℃以上、均热时间为30秒以上的条件下进行上述热处理而得到的镀镍热处理钢板1。

在本实施方式中,如上所述,对于镀镍热处理钢板1,通过在形成镍含量为4.4g/m2~26.7g/m2的镍镀层之后以350℃~450℃的温度保持30秒~2分钟来实施热处理,能够得到钢板11上的镍层被控制在4.4g/m2~26.7g/m2的范围内且d1与d2的差值小于0.04μm的镀镍热处理钢板。这样的镀镍热处理钢板在制成电池罐时能够抑制铁的溶出,因此耐腐蚀性优异,并且,由于表层较硬,因此在向电池罐进行成型加工时不易产生烧结,连续冲压性优异。此外,以往,对于在镀镍后实施热处理而形成有铁-镍扩散层的表面处理钢板,由于在形成铁-镍扩散层时的热处理条件为高温或长时间,因此,得到的表面处理钢板在钢板上形成有铁-镍扩散层以及在铁-镍扩散层的上层进行再结晶化而硬度大幅降低的镍层或比所述镍层更软的铁-镍扩散层。在使用表层的硬度如此大幅降低的钢板的情况下,在成型加工为电池罐的冲压时,容易产生相对于模具(冲头)的粘着,从而存在产生粘着而电池罐难以自模具脱模的情况。当无法自模具脱模的情况增加时,生产率会降低,因此,为了改善在使用这样的材料时的连续冲压性,需要与将未实施热处理的镀镍钢板形成为电池罐时相比使用更多的润滑剂、或对模具实施涂敷、或对加工条件进行严密的控制等。另一方面,对于在镀敷后未实施热处理的表面处理钢板,由于其覆膜较硬,因此连续冲压性优异,但对于所形成的电池罐,铁基体容易自作为基材的钢板溶出,为了确保高耐腐蚀性,需要使镀镍的厚度较厚,但镍厚度的增加会导致成本增加、电池内容量的减少。因此,在电池罐用表面处理钢板的技术中,难以同时提高制成电池罐时的耐腐蚀性和电池罐形成时的连续冲压性。与此相对,采用本实施方式,在形成镍含量为4.4g/m2~26.7g/m2的镍镀层之后,通过以350℃~450℃的温度保持30秒~2分钟来实施热处理,从而将钢板11上的镍层控制在4.4g/m2~26.7g/m2的范围内,且将d1与d2之间的差值控制为小于0.04μm,由此能够提供一种具有使制成电池罐时的耐腐蚀性等于或优于利用以往的热处理条件制成的表面处理钢板的耐腐蚀性且还提高了电池罐形成时的连续冲压性的、使两个特性高度平衡的镀镍热处理钢板1。

另外,以往,在具有镍镀层和铁-镍扩散层的表面处理钢板中,公知有一种从提高成型为电池容器时的加工密合性的观点、提高电池容器的耐腐蚀性的观点、确保铁-镍扩散层的密合性的观点等考虑而使铁-镍扩散层的厚度为0.5μm以上的方法(例如日本特开2009-263727号公报的段落0018。)。在此,为了使铁-镍扩散层的厚度如此为0.5μm以上,需要将在钢板上形成镍镀层之后的热处理的条件设为长时间或高温。例如,在将热处理的条件设为长时间的情况下,公知有一种使热处理温度为400℃~600℃、使热处理时间为1小时~8小时的条件。另外,在将热处理的条件设为高温的情况下,公知有一种使热处理温度为700℃~800℃、使热处理时间为30秒~2分钟的条件。对于以这样的热处理条件实施热处理后的镍层,其与相同程度的厚度的、未实施热处理的镀镍钢板相比,大幅软质化,例如,如后述那样,在维氏硬度中降低65以上,因此容易产生粘着。另一方面,对于具有未实施热处理的镍镀层的表面处理钢板,其硬度较高,但耐腐蚀性极差。在这样的状况下,本发明人等发现了,在表层具有未实施热处理的镍镀层的情况下,不仅硬度较高,而且在镀敷覆膜中残留的镀敷应变会导致缺乏延性,因此,在电池罐形成加工时在镀敷覆膜上产生的裂缝容易变深而到达铁基体,从而耐腐蚀性极差。

与此相对,采用本实施方式,对于镀镍热处理钢板1,通过进行控制而在钢板上具有4.4g/m2~26.7g/m2的镍层且使d1与d2之间的差值小于0.04μm而比较薄,能够抑制在制成电池罐时铁的溶出,因此耐腐蚀性优异,并且,由于表层较硬,因此在向电池罐进行成型加工时不易产生烧结,从而连续冲压性优异。在本实施方式中,由于为了设成上述结构而实施热处理,因此使镀敷应变减少并使镀镍的延性得到改善,由此,在向后述的电池罐进行成型加工时,在成型加工的应力的作用下,镀镍热处理钢板1的最表层的镍层14被拉长,能够得到镍覆盖在镀镍热处理钢板1的表面暴露的铁的效果。另外,对于以为了成为上述结构的热处理条件得到的镍层14,其硬度的降低幅度小于65,因此不易产生粘着。

在对原来的板厚(镀镍热处理钢板1的厚度)进行厚度减少量为10%以下那样的加工(例如拉深加工等)时,尤其能发挥上述那样的效果。

另外,在本实施方式中,镍层14的厚度优选为0.5μm以上,更优选为1.0μm以上,进一步优选为1.2μm以上,特别优选为1.5μm以上。另外,镍层14的厚度的上限没有特殊限定,优选为3.0μm以下,更优选为2.8μm以下。

通过进行控制而使镍层14的厚度相对于铁-镍扩散层12的厚度变得比较厚,由此,在将镀镍热处理钢板1用作电池容器的情况下,能够进一步提高电池容器的耐腐蚀性。即,对于热处理后的镀镍热处理钢板1,存在铁在电池容器内表面暴露且出现局部暴露的部分的情况。与此相对,在本实施方式中,通过在加工中实施最适合的热处理,从而在利用深拉加工法、拉深减薄加工法(di加工法)、拉深伸长加工法(dtr加工法)、或在拉深加工后并用伸长加工和减薄加工的加工法等对镀镍热处理钢板1进行成型加工时,在成型加工的应力的作用下,镀镍热处理钢板1的最表层的镍层14被拉长,镍覆盖在镀镍热处理钢板1的表面暴露的铁,其结果,能够进一步提高得到的电池容器的耐腐蚀性。尤其是,在本实施方式中,如上述那样,铁-镍扩散层12的厚度小于0.04μm而非常薄,因此,相对于铁-镍扩散层12的厚度,镍层14的厚度非常厚。因此,得到的镀镍热处理钢板1的通过上述镍层14的作用实现的效果变得更显著,即,在成型加工的应力的作用下,镀镍热处理钢板1的最表层的镍层14被拉长,镍覆盖在镀镍热处理钢板1的表面暴露的铁而提高耐腐蚀性的效果变得更显著。

对于热处理后的镍层14的厚度,能够通过使用上述高频辉光放电发射光谱分析装置进行的测量来检测镍层14与铁-镍扩散层12之间的交界而求出来。即,计算出以利用高频辉光放电发射光谱分析装置来开始测量镀镍热处理钢板1的表面的时刻为起点到fe强度为其饱和值的10%的强度的时刻为止的测量时间,能够根据计算出的测量时间来求出镍层14的厚度。在本实施方式中,通过利用高频辉光放电发射光谱分析装置来测量铁-镍扩散层12的厚度和镍层14的厚度,能够使用得到的测量结果来求出(铁-镍扩散层12的厚度/镍层14的厚度)的比。

另外,在本实施方式中,热处理后的镍层14的表面部分的平均结晶粒径优选为0.1μm~0.4μm,更优选为0.2μm~0.4μm。在本实施方式中,镍层14的表面部分的平均结晶粒径并不特殊限定,但当平均结晶粒径过小时,成为存在镀敷应力的状态,此时,在成型加工为电池容器时,存在在镀镍热处理钢板1上产生到达钢板11的较深的裂纹而使钢板11的铁暴露的情况。在该情况下,铁自钢板11的暴露的部分溶出,存在随着铁的溶出而产生的气体导致电池内部的内压上升的担忧。另一方面,如上述那样,当在镀镍热处理钢板1上产生到达钢板11的裂纹时,会产生不良,但从使电池容器的电池特性提高这样的观点考虑,在镀镍热处理钢板1的电池容器的内表面侧产生微细的裂纹的话较佳。对于该点,当镍层14的表面部分的平均结晶粒径过大时,存在镍层14的硬度变得过低的情况(镍层14过度软化),在该情况下,存在在成型加工为电池罐时容易产生粘着,结果难以自模具脱模的担忧。另外,在将镀镍热处理钢板1成型加工为电池容器时,无法使电池容器内表面产生微细的裂纹,因此存在无法充分地获得提高电池特性的效果、即利用裂纹来增大电池容器与正极合剂之间的接触面积降低电池的内部电阻从而提高电池特性的效果的担忧。

此外,存在热处理中的热处理温度越高,镍层14的表面部分的平均结晶粒径越大的倾向,本发明人等发现了,平均结晶粒径的大小根据温度范围阶段性地变大。相对于未实施热处理的镍层14的表面部分,即使在低温、例如300℃的条件下实施热处理后的镍层14的表面部分的结晶颗粒也会变大。在将热处理温度设置在400℃~600℃之间的情况下,随着温度升高,结晶粒径稍微变大,但温度引起的结晶粒径的大小的差并未怎么变大。当热处理温度大于700℃时,平均结晶粒径急剧地变大。因此,通过控制热处理的热处理温度,能够调整镍层14的表面部分的平均结晶粒径。

在本实施方式中,对于镍层14的表面部分的平均结晶粒径,例如,能够利用扫描型电子显微镜(sem)对镀镍热处理钢板1的表面进行测量,并使用得到的反射电子图像来求出。

具体而言,首先,根据需要对镀镍热处理钢板1的表面进行蚀刻,之后,例如如图6所示,利用扫描型电子显微镜(sem)对镀镍热处理钢板1的表面进行测量。此外,图6是表示以10000倍的倍率对实际制成的镀镍热处理钢板1进行测量而得到的反射电子图像的图像的一个例子。并且,在得到的反射电子图像上划出长度10μm的任意条数(例如四条)的直线。然后,对于每条直线,根据位于直线上的结晶颗粒的数量n,利用式子d=10/(n+1)求出结晶粒径d,能够将针对各条直线求出的结晶粒径d的平均值作为镍镀层13的表面部分的平均结晶粒径。

另外,在本实施方式中,对于热处理后的镍层14的表面硬度而言,以利用10gf的载荷测量出的维氏硬度(hv)计,下限优选大于220,更优选为250以上。上限因镀镍厚度的不同而不同,优选为310以下。通过使热处理后的镍层14的表面硬度在上述范围内,能够进一步提高在将得到的镀镍热处理钢板1加工成电池容器时的加工性,且还能够进一步提高在成型加工为电池容器时抑制相对于模具的粘着的效果。

在本实施方式中,对于镀镍热处理钢板1,作为将铁-镍扩散层12的厚度以及在铁-镍扩散层和镍层中含有的镍的总量分别控制在上述范围内的方法,可举出以上述条件来进行热处理的方法。即,可举出在钢板11上形成镍镀层13之后以热处理温度为350℃以上且小于450℃、热处理时间为30秒~2分钟的条件来进行热处理的方法。

此外,存在热处理中的热处理温度越高和热处理时间越长,铁-镍扩散层12的厚度越厚的倾向。因此,通过控制热处理的热处理温度和热处理时间,能够调整铁-镍扩散层12的厚度和(铁-镍扩散层12的厚度/镍层14的厚度)的比。但是,由于在热处理温度为300℃以下时难以形成铁-镍扩散层,因此,从将铁-镍扩散层12的厚度和(铁-镍扩散层12的厚度/镍层14的厚度)的比控制在上述范围内的观点考虑,优选以350℃以上的温度进行热处理。

本实施方式的镀镍热处理钢板1是通过以上方式构成的。

本实施方式的镀镍热处理钢板1用于利用深拉加工法、拉深减薄加工法(di加工法)、拉深伸长加工法(dtr加工法)、或在拉深加工后并用伸长加工和减薄加工的加工法等成型加工为图1、图2所示的碱性电池2的正极罐21、其他电池的电池容器等。

(镀镍热处理钢板1的制造方法)

接着,说明本实施方式的镀镍热处理钢板1的制造方法。

首先,准备钢板11,通过如上述那样对钢板11实施镀镍,从而在钢板11的成为电池容器内表面的面形成镍镀层13。此外,优选的是,镍镀层13不仅形成于钢板11的成为电池容器内表面的面,还形成于与该面相反的面。在使镍镀层13形成于钢板11的两个面时,可以使用不同的组成的镀浴,在钢板11中的成为电池容器的内表面的面和成为电池容器的外表面的面分别形成组成、表面粗糙度等不同的镍镀层13,但从提高制造效率的观点来看,优选使用相同的镀浴并由一个工序在钢板11的两个面形成镍镀层13。

接着,通过以上述条件对形成有镍镀层13的钢板11进行热处理,从而使构成钢板11的铁和构成镍镀层13的镍进行热扩散,形成铁-镍扩散层12和镍层14。由此,能够得到图3所示那样的镀镍热处理钢板1。

此外,在本实施方式中,也可以对得到的镀镍热处理钢板1进行调质轧制。由此,能够调整镀镍热处理钢板1的成为电池容器的内表面的面的表面粗糙度,在将镀镍热处理钢板1用作电池容器时,能够增大电池容器与正极合剂之间的接触面积,使电池的内部电阻降低,从而能够提高电池特性。

通过上述的方式,能够制造本实施方式的镀镍热处理钢板1。

在本实施方式的镀镍热处理钢板1中,如上述那样,使铁-镍扩散层12的厚度大于0μm且小于0.04μm而比较薄,且将在铁-镍扩散层和镍层中含有的镍的总量控制在4.4g/m2~26.7g/m2的范围内,由此,对于使用该镀镍热处理钢板1制造的碱性电池2,通过镍层14的作用实现的效果变得更显著,即,在将镀镍热处理钢板1成型加工为电池容器时的应力的作用下,镀镍热处理钢板1的最表层的镍层14被拉长,镍覆盖在镀镍热处理钢板1的表面暴露的铁而提高耐腐蚀性的效果变得更显著,由此,即使在长期地保管以及使用的情况下,也能够有效地防止气体产生,由此能够防止因产生气体而导致电池内部的内压上升。并且,通过如上述那样优选使镍层14的厚度大于0.5μm,从而进一步提高在将镀镍热处理钢板1用于电池容器时的耐腐蚀性,能够更有效地防止上述这样的电池内部的气体产生和由此引起的内压的上升。因而,本实施方式的镀镍热处理钢板1能够较佳地用作例如碱性电池、镍氢电池等使用碱性的电解液的电池、锂离子电池等的电池容器。

实施例

下面,举出实施例,更具体地说明本发明,但本发明并不限定于这些实施例。

(实施例1)

作为原板,准备了对具有以下所示的化学组成的低碳铝镇静钢的冷轧板(厚度0.25mm)进行退火而得到的钢板11。

c:0.045重量%、mn:0.23重量%、si:0.02重量%、p:0.012重量%、s:0.009重量%、al:0.063重量%、n:0.0036重量%、剩余部分:fe和不可避免的杂质

然后,对于所准备的钢板11,在进行碱电解脱脂、浸渍硫酸的酸洗之后,以下述条件进行电解镀敷,在钢板11上,以厚度成为2μm的方式形成了镍镀层13。此外,对于镍镀层13的厚度,通过x射线荧光测量来求出其附着量,利用求出的附着量计算出镍镀层13的厚度。将结果表示在表1中。

浴组成:硫酸镍250g/l、氯化镍45g/l、硼酸45g/l

ph:3.5~4.5

浴温:60℃

电流密度:20a/dm2

通电时间:32秒

接着,利用连续退火,在热处理温度为350℃、热处理时间为30秒、还原气氛的条件下对形成有镍镀层13的钢板11进行热处理,由此,形成了铁-镍扩散层12和镍层14,从而得到了镀镍热处理钢板1。

接着,在伸长率为1%的条件下对得到的镀镍热处理钢板1进行了调质轧制。

然后,使用调质轧制后的镀镍热处理钢板1,按照下述方法对铁-镍扩散层12和镍层14的厚度进行了测量。

(铁-镍扩散层12和镍层14的厚度的测量)

对于镀镍热处理钢板1,使用高频辉光放电发射光谱分析装置,沿自最外表面起朝向钢板11去的深度方向连续地测量fe强度和ni强度的变化,计算出以fe强度为其饱和值的10%的强度的时刻为起点到ni强度在显示出其极大值之后为极大值的10%的强度的时刻为止的测量时间,能够根据计算出的测量时间求出铁-镍扩散层12的厚度。此外,在求得铁-镍扩散层12的厚度时,首先,关于对后述的未进行热处理的镀镍钢板(比较例2)进行的高频辉光放电发射光谱分析的结果,在作为铁-镍扩散层测得的厚度量中,将以fe强度为其饱和值的10%的强度的时刻为起点到ni强度在显示出其极大值之后为极大值的10%的强度的时刻为止的测量时间换算为厚度后的值作为基准厚度进行了测量。此外,基准厚度为0.55μm。然后,通过将自实施例1的镀镍热处理钢板1的铁-镍扩散层12部分的厚度(将以fe强度为其饱和值的10%的强度的时刻为起点到ni强度在显示出其极大值之后为极大值的10%的强度的时刻为止的测量时间换算为厚度后的值)减去该基准厚度量,从而求出了实施例1中的、实际的铁-镍扩散层12的厚度。此外,在实施例1中,由于铁-镍扩散层12的厚度为能够利用高频辉光放电发射光谱分析装置进行检测的区域(0.04μm)以下,因此将铁-镍扩散层12的厚度视为大于0μm且小于0.04μm(对于后述的实施例2~实施例4、比较例3也是同样的)。另外,对于镍层14,计算出以利用高频辉光放电发射光谱分析装置开始测量镀镍热处理钢板1的表面的时刻为起点到fe强度为其饱和值的10%的强度的时刻为止的测量时间,根据计算出的测量时间求出了镍层14的厚度。并且,根据测得的结果,求出了铁-镍扩散层12的厚度相对于镍层14的厚度的比(铁-镍扩散层12的厚度/镍层14的厚度)。将结果表示在表1中。此外,在表1中,将(铁-镍扩散层12的厚度/镍层14的厚度)的比记载为“厚度比率fe-ni/ni”。在实施例1中,将铁-镍扩散层12的厚度视为大于0μm且小于0.04μm,因此,在表1中,使“厚度比率fe-ni/ni”为“0<”(对于后述的实施例2~实施例7也是同样的)。

此外,在高频辉光放电发射光谱分析装置的测量中,随着镍镀层的厚度的增加,通过镍镀层的测量而计算出的基准厚度变厚,因此,期望的是,在求得铁-镍扩散层时,在各个镀敷附着量中确认基准厚度,或者利用镀敷附着量不同的两种以上的、进行热处理前的样品来测量基准厚度,求得镀敷附着量与基准厚度之间的关系式来进行计算。

此外,在后述的实施例5~实施例7、比较例5~比较例7中,在计算铁-镍扩散层时使用的基准厚度,使用了通过后述的比较例1计算出的基准厚度。

(实施例2~实施例7)

如表1所示那样变更了镍镀层13的镀敷附着量、针对形成有镍镀层13的钢板11的连续退火的条件(热处理条件),除此以外,与实施例1同样地,得到镀镍热处理钢板1,并同样地进行了测量。将结果表示在表1中。

(比较例1)

将镍镀层13的目标镀敷附着量由17.8g/m2变更为8.9g/m2,另外,在形成镍镀层13之后未进行连续退火和调质轧制这两者,除此以外,以与实施例1相同的条件制造了镀镍钢板。对于制成的镀镍钢板,求出了镍镀层13的厚度而作为镍层14的厚度。将结果表示在表1中。

(比较例2)

在形成镍镀层13之后未进行连续退火和调质轧制这两者,除此以外,以与实施例1相同的条件制造了镀镍钢板。对于制成的镀镍钢板,求出了镍镀层13的厚度而作为镍层14的厚度。将结果表示在表1中。

(比较例3~比较例7)

如表1所示那样变更了镍镀层13的厚度和针对形成有镍镀层13的钢板11的连续退火的条件(热处理条件),除此以外,与实施例1同样地,得到镀镍热处理钢板1,并同样地进行了测量。将结果表示在表1中。

(参考例1)

将镍镀层13的目标镀敷附着量由17.8g/m2变更为10.7g/m2,另外,在形成镍镀层13之后未进行连续退火和调质轧制这两者,除此以外,以与实施例1相同的条件制造了镀镍钢板。然后,对于制成的镀镍钢板,如上述那样,利用高频辉光放电发射光谱分析进行测量,得到图5的(b)所示的测量结果,将作为铁-镍扩散层测得的厚度量(在图5的(b)中,将以fe强度为其饱和值的10%的强度的时刻为起点到ni强度在显示出其极大值之后为极大值的10%的强度的时刻为止的测量时间换算为厚度后的值)作为基准厚度。将结果表示在表1和图5的(b)中。

(表1)

表1

接着,对于实施例2、3、5、7和比较例4~比较例7的镀镍热处理钢板1、以及比较例1、2的镀镍钢板,按照下述方法,进行了成型为电池容器时的、电池容器的耐腐蚀性的评价和表面硬度的测量。

(耐腐蚀性评价)

通过利用冲压机将镀镍热处理钢板1冲切成预定形状而制成毛坯,并以镍层14成为内表面侧的方式以下述条件进行拉深加工,由此制造了电池容器。即,通过使用拉深减薄机和冲头对毛坯进行拉深减薄加工而得到筒状体,将得到的筒状体的开口部附近的边缘部切断,由此得到了电池容器,该拉深减薄机是通过配置6级具有预定间隙的拉深模或减薄模而构成的。

接着,对于得到的电池容器,填充10mol/l的氢氧化钾的溶液并密封,以60℃、480小时的条件进行保持之后,利用高频电感耦合等离子体发射光谱分析法(icp)(岛津制作所制造的icpe-9000)对自电池容器的内表面溶出到溶液中的fe离子的溶出量进行测量,并基于以下的基准进行了评价。在以下的基准中,若评价为a或b,则判断为充分地抑制了铁自电池容器的内表面溶出。将结果表示在表2、3中。

a:fe离子的溶出量为30mg/l以下

b:fe离子的溶出量大于30mg/l且为35mg/l以下

c:fe离子的溶出量大于35mg/l

(表面硬度的测量)

对于镀镍热处理钢板1的镍层14(或者镀镍钢板的镍镀层13),利用显微硬度计(明石制作所公司制造,型号:mvk-g2)并使用金刚石压头,在载荷为10gf、保持时间为10秒的条件下测量维氏硬度(hv),从而进行表面硬度的测量,并基于以下的基准进行了评价。在以下的基准中,若评价为a+、a或b,则判断为具有充分的硬度且在加工为电池容器时的加工性(在成型加工为电池容器时能够使电池容器内表面适度地产生微细的裂纹)和抑制相对于模具的粘着的抑制效果优异。将结果表示在表2、3中。

a+:280以上

a:大于250且小于280

b:大于220且250以下

c:220以下

(表2)

劳2

(表3)

表3

如表2所示,结果是,实施例2、3均耐腐蚀性优异,在实施例2、3中,铁-镍扩散层12的厚度大于0μm且小于0.04μm,且铁-镍扩散层和镍层所含有的镍的总量为4.4g/m2~26.7g/m2。并且,能够认为,由于实施例2、3均具有充分的硬度,因此,在将得到的镀镍热处理钢板1加工为电池容器时的、加工性和抑制相对于模具的粘着的抑制效果均优异。

另一方面,如表2所示,结果是,未进行热处理的比较例1、2是耐腐蚀性较差,并且,能够认为,因未进行热处理而未形成有铁-镍扩散层12,因此钢板11与镍镀层13之间的密合性较差。

另外,即使在进行了热处理的情况下,在因过量的热处理而使铁-镍扩散层12的厚度过厚时,如比较例4、7那样,虽然耐腐蚀性的结果优异,但硬度过低,由此,能够认为,在将得到的镀镍热处理钢板1加工为电池容器时的、加工性和抑制相对于模具的粘着的抑制效果较差。

另外,如表3所示,结果是,实施例5、7均耐腐蚀性优异,在实施例5、7中,铁-镍扩散层12的厚度大于0μm且小于0.04μm,且铁-镍扩散层和镍层所含有的镍的总量为4.4g/m2~26.7g/m2。并且,能够认为,由于实施例5、7均具有充分的硬度,因此,在将得到的镀镍热处理钢板1加工为电池容器时的、加工性和抑制相对于模具的粘着的抑制效果均优异。

另一方面,如表3所示,结果是,未进行热处理的比较例1、2是耐腐蚀性较差,并且,能够认为,因未进行热处理而未形成有铁-镍扩散层12,因此钢板11与镍镀层13之间的密合性较差。

另外,即使在进行了热处理的情况下,在因过量的热处理而使铁-镍扩散层12的厚度过厚时,如比较例5、6那样,虽然耐腐蚀性的结果优异,但硬度过低,由此,能够认为,在将得到的镀镍热处理钢板1加工为电池容器时的、加工性和抑制相对于模具的粘着的抑制效果较差。

附图标记说明

1、表面处理钢板;11、钢板;12、铁-镍扩散层;13、镍镀层;14、镍层;2、碱性电池;21、正极罐;211、正极端子;22、负极端子;23、正极合剂;24、负极合剂;25、分隔件;26、集电体;27、垫片;28、绝缘环;29、外壳。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1