一种制备低温相锰铋合金的电镀液及其电沉积方法与流程

文档序号:16314874发布日期:2018-12-19 05:25阅读:231来源:国知局
一种制备低温相锰铋合金的电镀液及其电沉积方法与流程
本发明属于电镀
技术领域
,具体涉及一种制备低温相锰铋合金的电镀液及其电沉积方法。
背景技术
具有高矫顽力和高磁能积的稀土永磁材料被广泛应用于家电、汽车、能源、轨道交通、航空航天、军事武器等各个领域。但稀土材料是不可再生资源,尤其是重稀土元素如镝、铽更是相对紧缺。目前很多国家将稀土材料作为重要的战略资源进行了保护。鉴于稀土资源的有限性和使用成本的大幅度提高,开发低成本高性能的新型低稀土或无稀土永磁材料逐渐成为各国研究者关注的焦点。如2010年美国能源部立项的新材料课题中将非稀土永磁材料作为重点研究对象之一。十分珍视资源的日本在2013年组织启动超级计算机“京”,研究利用储量丰富并能稳定开采的天然资源代替稀土。2015年欧盟第七框架协议集中了欧洲多个国家的高校和科研院所,集中开展低稀土或无稀土新材料的研发工作,以缓减稀土供给的压力,降低社会发展对稀土材料的依赖性。在诸多新开发的永磁候选材料中,不包含稀土和贵金属元素的mnbi合金具有优异的磁学性能。mnbi合金有多种晶相,其中低温相mnbi(ltp-mnbi)合金具有大的磁晶各向异性,为其作为无稀土永磁材料提供了前提条件。更重要的是,低温相mnbi合金具有正的矫顽力-温度系数,即在室温到一定高温范围内,温度越高,矫顽力越大,高温时mnbi合金的矫顽力比目前最常用的ndfeb基永磁材料的矫顽力还大,这是mnbi合金独有的异于其他候选材料的性能,也是最引人注意、颇受研究者追捧的特殊之处。通常,mnbi合金的制备方法有旋涂法、研磨法、溅射法或蒸发法等物理方法。与物理方法制备mnbi合金相比,电沉积法制备mnbi合金具有工艺简单、成本低廉等优点。关于电沉积方法制备mnbi合金已有少量研究,如b.benfedda课题组在氯化盐溶液中铜基片上沉积锰铋合金,通过cv图研究了锰和铋的还原电位,以及采用不同电压沉积制备的mnbi合金的形貌。同一溶液中,锰和铋的还原电位相差很大,分别是-0.2v和-1.4v,相差1.2v。沉积所得样品退火后矫顽力仅为300-400oe之间,原因是退火后没有形成低温相的mnbi合金,而是出现bicumn三相合金。申请人在研究过程中发现,电沉积法制备锰铋合金主要存在两个问题,一是锰的标准还原电位为-1.185v,铋的标准还原电位为0.32v,两者还原电位相差很大,在沉积锰时会有大量铋生成,两者比例不易控制;同时由于锰的还原电位较负,接近水的还原电位,电解过程中会伴随着水的分解和氢气的生成,使mnbi合金的电沉积过程变得更加复杂;二是电沉积法制备的mnbi合金退火后不具有低温相。鉴于上述电沉积法制备mnbi合金中锰铋还原电位差较大、锰铋比例不易控制且退火后不会出现低温相等问题,寻找一种制备低温相mnbi合金的电镀液及其电沉积方法具有非常重要的意义。技术实现要素:因此,本发明要解决的技术问题在于克服现有技术中的电沉积方法制备锰铋合金中锰铋还原电位差较大、锰铋比例不易控制且退火后不会出现低温相等问题,从而提供一种制备低温相锰铋合金的电镀液及其电沉积方法。为解决上述技术问题,本发明采取的技术方案为:本发明提供了一种制备低温相锰铋合金的电镀液,所述电镀液包括以下组分,所述铋盐为水合硝酸铋,氯化铋或硫酸铋中的至少一种;优选的,所述铋盐为水合硝酸铋。所述可溶性锰盐为水合硫酸锰,水合氯化锰或水合硝酸锰中的至少一种;优选的,所述可溶性锰盐为水合硫酸锰。所述可溶性铵盐为硫酸铵,氯化铵或硝酸铵中的至少一种;优选的,所述可溶性铵盐为硫酸铵。所述电镀液的配制过程为,将铋盐和edta二钠在稀硝酸溶液中搅拌1-4小时,得到溶液a;用去离子水溶解锰盐,再加入铵盐得到溶液b;将a和b溶液混合,定容,调节ph,得到所述电镀液。本发明提供了一种制备低温相锰铋合金的电沉积方法,包括以下步骤:电沉积步骤:以铜片为工作电极,ag/agcl为参比电极,pt丝电极为对电极,采用上述电镀液进行电沉积;退火步骤:将电沉积后的铜片进行退火,得到低温相锰铋合金。所述电沉积步骤的具体条件为:沉积电位为-1.5v—-1.1v,沉积温度为20℃-30℃,沉积时间为300s-500s;优选的,沉积温度为26℃。所述退火步骤的条件为:退火本底真空为(1-2)*10-4pa,退火温度为370℃-410℃,退火时间为2h-3h。本发明技术方案,具有如下优点:本发明提供的制备低温相锰铋合金的电镀液,电镀液包括不同物质的量浓度的铋盐、edta二钠、可溶性锰盐、可溶性铵盐和硝酸。本发明通过对电镀液组分进行调整,借助edta二钠的络合作用,缩小了锰和铋的还原电位差,使合金中铋的含量可以控制,同时可以避免高电位沉积锰时水分解产生氢气,有利于共沉积生成锰铋合金。本发明提供的制备低温相锰铋合金电沉积方法,通过对电镀液组分、沉积参数和退火后处理工艺的选择,首次用电沉积方法制备得到低温相锰铋合金,其矫顽力最高可以达到1465oe,可有望在对矫顽力大小要求较低而工作温度较高的条件下使用。附图说明为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。图1左图为对比例1电解液cv图;右图为实施例1电解液cv图;图2实施例2中沉积后锰铋薄膜的sem图;图3图2中沉积后锰铋薄膜a区域和b区域的eds图;图4实施例2中退火前后锰铋薄膜的xrd图;图5实施例3中退火前后锰铋薄膜的xrd图;图6实施例3中退火后锰铋薄膜的sem图;图7实施例3中退火后锰铋薄膜磁滞回线;图8对比例2中退火前后锰铋薄膜的xrd图。具体实施方式提供下述实施例是为了更好地进一步理解本发明,并不局限于所述最佳实施方式,不对本发明的内容和保护范围构成限制,任何人在本发明的启示下或是将本发明与其他现有技术的特征进行组合而得出的任何与本发明相同或相近似的产品,均落在本发明的保护范围之内。实施例1本实施例提供一种制备低温相锰铋合金的电镀液,包括如下步骤:电镀液组分:5mmol/lbi(no3)3·5h2o;5mmol/ledta二钠;1mol/lmnso4·h2o;1mol/l(nh4)2so4;0.15mol/lhno3;称取1.21gbi(no3)3·5h2o加入到25ml的17vol%稀硝酸中,完全溶解后加入0.93gedta二钠,搅拌2h;取200ml去离子水,先加84.51gmnso4·h2o,搅拌溶解后再加入66.07g(nh4)2so4,完全溶解后为浅粉色;将两种溶液混合后加去离子水至500ml,用5mol/l的氨水调节ph至2.0。用砂纸将铜片打磨平整,依次用丙酮,无水乙醇超声清洗后,并在1mol/l的稀盐酸中浸泡三分钟。而后以此铜片为工作电极,ag/agcl为参比电极,pt丝电极为对电极,对电镀液进行cv扫描,从0v开始负向扫描至截止电压,此负向截止电压会因还原电势位置不同而不同,而后正向扫描至0v,扫描速率50mv/s。cv图见图1右图,-0.50v(vsag/agcl)和-1.10v(vsag/agcl)分别对应bi和mn的还原峰,锰铋还原电位差为0.60v。锰铋的标准还原电位差为1.505v,对比例1电镀液中锰铋还原电位差为0.87v,实施例1电镀液中锰铋还原电位差为0.60v。实施例1与对比例1锰铋还原电位差相比,锰铋还原电位差缩小了0.27v,说明edta有助于缩小锰铋还原电位差。实施例2本实施例提供了一种制备低温相锰铋合金的电沉积方法,包括以下步骤:电镀液组分:5mmol/lbi(no3)3·5h2o;5mmol/ledta二钠;1mol/lmnso4·h2o;1mol/l(nh4)2so4;0.15mol/lhno3;沉积条件:沉积电压-1.3v,沉积温度26℃,沉积时间400s;退火条件:本底真空达到1.0×10-4pa,退火温度380℃,退火时间3h;称取1.21gbi(no3)3·5h2o加入25ml的17vol%稀硝酸中,完全溶解后加入0.93gedta二钠,搅拌2h;取200ml去离子水,先加84.51gmnso4·h2o,搅拌溶解后再加入66.07g(nh4)2so4,完全溶解后为浅粉色;将两种溶液混合后加去离子水至500ml,用5mol/l的氨水调节ph至2.0。用砂纸将铜片打磨平整,依次用丙酮,无水乙醇超声清洗后,并在1mol/l的稀盐酸中浸泡三分钟。而后以此铜片为工作电极,ag/agcl为参比电极,pt丝电极为对电极进行沉积。沉积前通高纯氮气30min,沉积过程中继续通高纯氮气进行保护,防止样品氧化,并不断对溶液进行磁力搅拌,沉积模式为脉冲沉积,沉积电位采用-1.30v(vsag/agcl),总沉积时间为400s,温度为26℃。沉积结束后将铜片取出,去离子水冲去表面附着物后真空储藏。将沉积了mnbi的铜片放置于真空退火炉中,本底真空达到1.0×10-4pa时开始退火,经2h温度升到380℃,退火时间为3h。图2是沉积后锰铋薄膜的sem图;图3是沉积后锰铋薄膜的eds图,通过能谱定量分析得到表1,从表1中可知,总体上mn和bi的原子比例为1:1;对比例2中mn和bi的原子比例为0.12:1;实施例2和对比例2对比,可知,加入edta后有利于锰的沉积以及调控锰铋含量。图4是退火前后锰铋薄膜的xrd图,29.60处的衍射峰对应ltp-mnbi相(002)的衍射峰,说明采用电化学沉积法制备的mnbi合金在退火后可以出现ltp-mnbi相。表1全图扫描elementweigh%weigh%atomi%ck8.852.4022.33ok27.241.3751.63sk7.630.417.22mnk6.800.393.57cuk23.750.9711.34bim25.721.273.73totals100.00实施例3本实施例提供了一种制备低温相锰铋合金的电沉积方法,包括以下步骤:电镀液组分:5mmol/lbi(no3)3·5h2o;5mmol/ledta二钠;1mol/lmnso4·h2o;1mol/l(nh4)2so4;0.15mol/lhno3;沉积条件:沉积电压-1.36v,沉积温度26℃,沉积时间400s;退火条件:本底真空达到1.0×10-4pa,退火温度380℃,退火时间3h;称取1.21gbi(no3)3·5h2o加入到25ml的17vol%稀硝酸中,完全溶解后加入0.93gedta二钠,搅拌2h;取200ml去离子水,先加入84.51gmnso4·h2o,搅拌溶解后再加入66.07g(nh4)2so4,完全溶解后为浅粉色;将两种溶液混合后加去离子水至500ml,用5mol/l的氨水调节ph至2.0。用砂纸将铜片打磨平整,依次用丙酮,无水乙醇超声清洗后,并在1mol/l的稀盐酸中浸泡三分钟。而后以此铜片为工作电极,ag/agcl为参比电极,pt丝电极为对电极,对电镀液进行沉积。沉积前通高纯氮气30min,沉积过程中继续通高纯氮气进行保护,防止样品氧化,并不断对溶液进行磁力搅拌,沉积模式为恒电位脉冲沉积,沉积电位采用-1.36v(vsag/agcl),总沉积时间为400s,温度为26℃。沉积结束后将铜片取出,去离子水冲去表面附着物后真空储藏。将沉积了mnbi的铜片放置于真空退火炉中,本底真空达到1.0×10-4pa时开始退火,2h温度升到380℃,退火时间为3h。图5是本实施例退火前后锰铋薄膜的xrd图,29.60处的衍射峰对应ltp-mnbi相(002)的衍射峰,说明mnbi合金在退火后可以出现ltp-mnbi相。图6是本实施例退火后锰铋薄膜的sem图,从图中可以看出锰铋元素均匀分布;图7是退火后锰铋薄膜磁滞回线,其矫顽力达到1465oe,是目前报道的采用电化学沉积制备低温相锰铋合金的最大值。实施例4本实施例提供了一种制备低温相锰铋合金的电沉积方法,包括以下步骤:电镀液组分:5mmol/lbi(no3)3·5h2o;5mmol/ledta二钠;1mol/lmnso4·h2o;1mol/l(nh4)2so4;0.15mol/lhno3;沉积条件:沉积电压-1.38v,沉积温度26℃,沉积时间400s;退火条件:本底真空达到1.0×10-4pa,退火温度380℃,退火时间3h;称取1.21gbi(no3)3·5h2o加入到25ml的17vol%稀硝酸中,完全溶解后加入0.93gedta二钠,搅拌2h;取200ml去离子水,先加84.51gmnso4·h2o,搅拌溶解后再加入66.07g(nh4)2so4,完全溶解后为浅粉色;将两种溶液混合后加去离子水至500ml,用5mol/l的氨水调节ph至2.0。用砂纸将铜片打磨平整,依次用丙酮,无水乙醇超声清洗后,并在1mol/l的稀盐酸中浸泡三分钟。而后以此铜片为工作电极,ag/agcl为参比电极,pt丝电极为对电极,对电镀液进行沉积。沉积前通高纯氮气30min,沉积过程中继续通高纯氮气进行保护,防止样品氧化,并不断对溶液进行磁力搅拌,沉积模式为恒电位脉冲沉积,沉积电位采用-1.38v(vsag/agcl),总沉积时间为400s,温度为26℃。沉积结束后将铜片取出,去离子水冲去表面附着物后真空储藏。将沉积了mnbi的铜片放置于真空退火炉中,本底真空达到1.0×10-4pa时开始退火,2h温度升到380℃,退火时间为3h。经测试,退火后锰铋合金出现低温相,矫顽力为800oe。实施例5本实施例提供了一种制备低温相锰铋合金的电沉积方法,包括以下步骤:电镀液组分:10mmol/lbi(no3)3·5h2o;10mmol/ledta二钠;2.5mol/lmnso4·h2o;1mol/l(nh4)2so4;0.30mol/lhno3;沉积条件:沉积电压-1.2v,沉积温度26℃,沉积时间400s;退火条件:本底真空达到1.0×10-4pa,退火温度410℃,退火时间2h;称取2.43gbi(no3)3·5h2o加入到50ml的17vol%稀硝酸中,完全溶解后加入1.86gedta二钠,搅拌2h;取200ml去离子水,先加211.28gmnso4·h2o,搅拌溶解后再加入66.07g(nh4)2so4,完全溶解后为浅粉色;将两种溶液混合后加去离子水至500ml,用5mol/l的氨水调节ph至2.0。用砂纸将铜片打磨平整,依次用丙酮,无水乙醇超声清洗后,并在1mol/l的稀盐酸中浸泡三分钟。而后以此铜片为工作电极,ag/agcl为参比电极,pt丝电极为对电极,对电镀液进行沉积。沉积前通高纯氮气30min,沉积过程中继续通高纯氮气进行保护,防止样品氧化,并不断对溶液进行磁力搅拌,沉积模式为恒电位脉冲沉积,沉积电位采用-1.20v(vsag/agcl),总沉积时间为400s,温度为26℃。沉积结束后将铜片取出,去离子水冲去表面附着物后真空储藏。将沉积了mnbi的铜片放置于真空退火炉中,本底真空达到1.0×10-4pa时开始退火,2h温度升到410℃,退火时间为2h。经测试,退火后锰铋合金出现低温相,矫顽力为360oe。实施例6本实施例提供了一种制备低温相锰铋合金的电沉积方法,包括以下步骤:电镀液组分:4mmol/lbi(no3)3·5h2o;2mmol/ledta二钠;0.5mol/lmnso4·h2o;0.5mol/l(nh4)2so4;0.12mol/lhno3;沉积条件:沉积电压-1.45v,沉积温度26℃,沉积时间350s;退火条件:本底真空达到1.0×10-4pa,退火温度370℃,退火时间3h;称取0.97gbi(no3)3·5h2o加入到20ml的17vol%稀硝酸中,完全溶解后加入0.37gedta二钠,搅拌2h;取200ml去离子水,先加进去42.26gmnso4·h2o,搅拌溶解后再加入33.04g(nh4)2so4,完全溶解后为浅粉色;将两种溶液混合后加去离子水至500ml,用5mol/l的氨水调节ph至3.0。用砂纸将铜片打磨平整,依次用丙酮,无水乙醇超声清洗后,并在1mol/l的稀盐酸中浸泡三分钟。而后以此铜片为工作电极,ag/agcl为参比电极,pt丝电极为对电极,对电镀液进行沉积。沉积前通高纯氮气30min,沉积过程中继续通高纯氮气进行保护,防止样品氧化,并不断对溶液进行磁力搅拌,沉积模式为恒电位脉冲沉积,沉积电位采用-1.45v(vsag/agcl),总沉积时间为350s,温度为26℃。沉积结束后将铜片取出,去离子水冲去表面附着物后真空储藏。将沉积了mnbi的铜片放置于真空退火炉中,本底真空达到1.0×10-4pa时开始退火,2h温度升到370℃,退火时间为3h。经测试,退火后锰铋合金出现低温相,矫顽力为320oe。实施例7本实施例提供了一种制备低温相锰铋合金的电沉积方法,包括以下步骤:电镀液组分:1mmol/lbi(no3)3·5h2o;2mmol/ledta二钠;2mol/lmnso4·h2o;2.5mol/l(nh4)2so4;0.03mol/lhno3;沉积条件:沉积电压-1.45v,沉积温度26℃,沉积时间350s;退火条件:本底真空达到1.0×10-4pa,退火温度370℃,退火时间3h;称取0.24gbi(no3)3·5h2o加入到5ml的17vol%稀硝酸中,完全溶解后加入0.37gedta二钠,搅拌2h;取200ml去离子水,先加进去169.02gmnso4·h2o,搅拌溶解后再加入165.18g(nh4)2so4,完全溶解后为浅粉色;将两种溶液混合后加去离子水至500ml,用5mol/l的氨水调节ph至3.0。用砂纸将铜片打磨平整,依次用丙酮,无水乙醇超声清洗后,并在1mol/l的稀盐酸中浸泡三分钟。而后以此铜片为工作电极,ag/agcl为参比电极,pt丝电极为对电极,对电镀液进行沉积。沉积前通高纯氮气30min,沉积过程中继续通高纯氮气进行保护,防止样品氧化,并不断对溶液进行磁力搅拌,沉积模式为恒电位脉冲沉积,沉积电位采用-1.45v(vsag/agcl),总沉积时间为350s,温度为26℃。沉积结束后将铜片取出,去离子水冲去表面附着物后真空储藏。将沉积了mnbi的铜片放置于真空退火炉中,本底真空达到1.0×10-4pa时开始退火,2h温度升到370℃,退火时间为3h。经测试,退火后锰铋合金出现低温相,矫顽力为253oe。对比例1本对比例提供一种制备锰铋合金的电镀液,包括如下步骤:电镀液组分:5mmol/lbi(no3)3·5h2o;1mol/lmnso4·h2o;1mol/l(nh4)2so4;0.15mol/lhno3称取1.21gbi(no3)3·5h2o加入到25ml的17vol%稀硝酸中,完全溶解;取200ml去离子水,先加84.51gmnso4·h2o,搅拌溶解后再加入66.07g(nh4)2so4,完全溶解后为浅粉色;将两种溶液混合后加去离子水至500ml,用5mol/l的氨水调节ph至2.0,得到电镀液。用砂纸将铜片打磨平整,依次用丙酮,无水乙醇超声清洗后,在1mol/l的稀盐酸中浸泡三分钟。以此铜片为工作电极,ag/agcl为参比电极,pt丝电极为对电极,对电镀液进行cv扫描,从0v开始负向扫描至截止电压,此负向截止电压会因还原电势位置不同而不同,而后正向扫描至0v,扫描速率50mv/s。cv图见图1左侧图,bi的还原峰在-0.51v附近,而-1.38v处开始电流明显增大,对应着mn和水的还原,锰铋还原电位差为0.87v。对比例2本对比例提供了一种制备锰铋合金的电沉积方法,包括以下步骤:电镀液组分:5mmol/lbi(no3)3·5h2o;1mol/lmnso4·h2o;1mol/l(nh4)2so4;0.15mol/lhno3;沉积条件:沉积电压-1.3v,沉积温度26℃,沉积时间400s;退火条件:本底真空1.0×10-4pa,退火380℃,退火时间3h;称取1.21gbi(no3)3·5h2o加入到25ml的17vol%稀硝酸中,完全溶解;取200ml去离子水,先加84.51gmnso4·h2o,搅拌溶解后再加入66.07g(nh4)2so4,完全溶解后为浅粉色;将两种溶液混合后加去离子水至500ml,用5mol/l的氨水调节ph至2.0,得到电镀液。用砂纸将铜片打磨平整,依次用丙酮,无水乙醇超声清洗后,并在1mol/l的稀盐酸中浸泡三分钟。而后以此铜片为工作电极,ag/agcl为参比电极,pt丝电极为对电极,对电镀液进行沉积。沉积前通高纯氮气30min,沉积过程中继续通高纯氮气进行保护,防止样品氧化,并不断对溶液进行磁力搅拌,沉积模式为脉冲沉积,沉积电位采用-1.30v,总沉积时间为400s,温度为26℃。沉积结束后将铜片取出,去离子水冲去表面附着物后真空储藏。将沉积了mnbi的铜片放置于真空退火炉中,本底真空达到1.0×10-4pa时开始退火,2h温度升到380℃,退火时间为3h。经测试,mn和bi原子比例为0.12:1,图8为本对比例退火前后锰铋薄膜的xrd图,没有显示低温相锰铋的衍射峰,说明退火后的锰铋合金没有低温相,没有矫顽力。显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1