膨胀机一体型压缩机的制作方法

文档序号:5463819阅读:160来源:国知局
专利名称:膨胀机一体型压缩机的制作方法
技术领域
本发明涉及一种具有压缩流体的压缩机构和使流体膨胀的膨胀机构的膨胀机一 体型压缩机。
背景技术
从以往开始,作为具有压缩机构和膨胀机构的流体设备已知有膨胀机一体型压缩 机。图9是在日本特开2005-299632号公报中所述的膨胀机一体型压缩机的纵剖视图。膨胀机一体型压缩机103具有密闭容器120、压缩机构121、电动机122及膨胀机 构123。电动机122、压缩机构121及膨胀机构123通过轴124连结。膨胀机构123从膨胀 的工作流体(例如制冷剂)回收动力,并将回收的动力赋予轴124。由此,驱动压缩机构121 的电动机122的消耗电力降低,使用了膨胀机一体型压缩机103的系统的效率系数提高。利用密闭容器120的底部125作为贮油部。为了将贮存在底部125的油向密闭容 器120的上方汲取,在轴124的下端设置有油泵126。通过油泵126汲取的油经由轴124内 的供油路127,供给到压缩机构121及膨胀机构123。由此,能够确保压缩机构121的滑动 部分及膨胀机构123的滑动部分的润滑性和密封性。在膨胀机构123的上部设置有油返回路径128。油返回路径128的一端与轴124 的供油路127连接,另一端朝向膨胀机构123的下方开口。一般来说,为了确保膨胀机构 123的可靠性,过量供给油。剩余的油经由油返回路径128向膨胀机构123的下方排出。通常在压缩机构121和膨胀机构123中,混入工作流体中的油的量不同。因此,在 压缩机构121与膨胀机构123收容在不同的密闭容器内时,必须具有用于调整两个密闭容 器内的油量的机构,从而不会产生油量的过与不足。与此相对地,由于压缩机构121及膨胀 机构123收容在同一密闭容器120内,因此在图9所示的膨胀机一体型压缩机103中,在本 质上不存在油量的过与不足的问题。在上述的膨胀机一体型压缩机103中,从底部125汲取的油由于通过高温的压缩 机构121,因此被压缩机构121加热。被压缩机构121加热后的油被电动机122进一步加热 而到达膨胀机构123。到达膨胀机构123的油在低温的膨胀机构123中被冷却后,经由油返 回路径128向膨胀机构123的下方排出。从膨胀机构123排出的油在通过电动机122的侧 面时被加热,在通过压缩机构121的侧面时进一步被加热,然后返回到密闭容器120的底部 125。如上所述,由于油在压缩机构和膨胀机构中循环,因此由油引起从压缩机构向膨 胀机构的热移动。像这样的热移动会招致从压缩机构排出的工作流体的温度下降和从膨胀 机构排出的工作流体的温度上升,妨碍使用了膨胀机一体型压缩机的系统的效率系数的提
高ο

发明内容
本发明是鉴于上述方面而提出的,其目的在于,在膨胀机一体型压缩机中,抑制从压缩机构向膨胀机构的热移动。
为达成上述的目的,在先行于本申请的国际申请PCT/JP2007/058871(申请日 2007年4月24日,优先权日2006年5月17日)中,本发明者提出一种膨胀机一体型压缩 机,其中,其具有底部作为贮油部利用的密闭容器;压缩机构,其以位于比贮存在贮油部的油的油面更靠上方或下方的方式配置在密 闭容器内;膨胀机构,其以相对于油面的位置关系与压缩机构上下相反的方式配置在密闭容 器内;将压缩机构与膨胀机构连结的轴;油泵,其配置在压缩机构与膨胀机构之间,将充满压缩机构或膨胀机构的周围的 油供给到位于比油面更靠上方的压缩机构或膨胀机构。在上述膨胀机一体型压缩机中,考虑到在轴上设置压缩机构或膨胀机构用的上偏 心部、油泵用的中间偏心部及膨胀机构或压缩机构用的下偏心部。为了不使压缩机构或膨 胀机构、偏心部晃动,通常情况下具有支承轴中的比偏心部靠内侧部分的轴承构件。由此, 在如上所述设置偏心部的情况下,从使轴插入上侧机构的轴承构件中的观点来看,例如也 可以在中间偏心部的上侧将轴一分为二。在下部轴残存中间偏心部与下偏心部,但为了使 下部轴插入下侧机构的轴承构件中,例如考虑到进而将下部轴一分为二的对策,以能够后 安装中间偏心部。不过,这样的对策会导致构件数量的增加且造成成本上升。因此,本发明 者思考出能够将具有中间偏心部及下偏心部的下部轴直接插入轴承构件中的结构。S卩,本发明提供一种膨胀机一体型压缩机,其中,其具有底部作为贮油部利用的密闭容器;压缩机构,其以位于比贮存在所述贮油部的油的油面更靠上方或下方的方式配置 在所述密闭容器内;膨胀机构,其以相对于所述油面的位置关系与所述压缩机构上下相反的方式配置 在所述密闭容器内;油泵,其配置在所述压缩机构与所述膨胀机构之间,将贮存在所述贮油部的油向 所述压缩机构及所述膨胀机构中的位于比所述油面更靠上方的机构供给;轴,其为连结所述压缩机构、所述油泵及所述膨胀机构的轴,且具有所述油泵用的 中间偏心部、位于比所述油面更靠上方的所述压缩机构或所述膨胀机构用的上偏心部、浸 入在所述贮油部贮存的油中的所述膨胀机构或所述压缩机构用的下偏心部;所述轴包括设有所述中间偏心部及所述下偏心部的下部轴;与该下部轴连结且 设有所述上偏心部的上部轴,浸入在所述贮油部贮存的油中的所述膨胀机构或所述压缩机构具有支承所述下 部轴中的比所述下偏心部更靠上侧的部分的轴承构件,所述中间偏心部的直径被设定在所述下部轴中的由所述轴承构件支承的部分的
直径以下。在此,所谓“中间偏心部的直径在下部轴中的由轴承构件支承的部分的直径以下” 是指通过除了公差以外的设计值进行比较时的情况,虽然由于公差使中间偏心部的直径比下部轴中的由轴承构件支承的部分的直径稍大,但只要这些设计值相同则均包含在“中间 偏心部的直径在下部轴中的由轴承构件支承的部分的直径以下”内。根据上述的结构,由于油泵配置在压缩机构和膨胀机构之间,因此被油泵吸入的 油能够不经由位于下方的机构地供给到位于上方的机构。其结果是,能够抑制由油引起的 从压缩机构向膨胀机构的热移动。进而,在本发明的结构中,下部轴的中间偏心部的直径被设定在由轴承构件支承 的部分的直径以下,即使在下部轴存在中间偏心部的状态下也能够将该下部轴直接插入轴 承构件中。因而,能够在下部轴上一体设置中间偏心部及下偏心部,并且无需对下部轴进行 分割,故能够防止构件数量的增加且抑制成本。


图1是本发明的一实施方式的膨胀机一体型压缩机的纵剖视图。图2A是图1所示的膨胀机一体型压缩机的IIA-IIA横剖视图。图2B是图1所示的膨胀机一体型压缩机的IIB-IIB横剖视图。图3是图1的局部放大图。图4是图3的IV-IV线对应的油泵的俯视图。图5是表示形成于下部轴的外周面的供油用的槽的示意图。图6是配置有间隔件的部分的剖视图。图7是下部轴的侧视图。图8是使用了膨胀机一体型压缩机的热泵的结构图。图9是现有的膨胀机一体型压缩机的剖视图。
具体实施例方式以下,参照

本发明的实施方式。图1是本发明的一实施方式所涉及的膨胀机一体型压缩机的纵剖视图。图2A是 图1所示的膨胀机一体型压缩机的IIA-IIA横剖视图。图2B是图1所示的膨胀机一体型 压缩机的IIB-IIB横剖视图。图3是图1的局部放大图。如图1所示,膨胀机一体型压缩机200具有密闭容器1 ;配置在密闭容器1内的 上部的涡旋式压缩机构2 ;配置在密闭容器1内的下部的两级回转式膨胀机构3 ;配置在压 缩机构2与膨胀机构3之间的电动机4 ;配置在电动机4与膨胀机构3之间的油泵6 ;连结 压缩机构2、电动机4、油泵6及膨胀机构3的轴5 ;配置在膨胀机构3与油泵6之间的分 隔构件31。通过电动机4驱动轴5,压缩机构2工作。膨胀机构3从膨胀的工作流体回收 动力并赋予轴5,从而辅助电动机4来驱动轴5。工作流体例如为二氧化碳或氢氟碳化物 (Hydrofluorocarbon)等制冷剂。在本说明书中,将轴5的轴向定义为上下方向,将配置压缩机构2的一侧定义为上 侧,将配置膨胀机构3的一侧定义为下侧。进而,虽然在本实施方式中采用了涡旋式的压缩 机构2和回转式的膨胀机构3,但压缩机构2及膨胀机构3的类型不局限于此,也可以采用 其他的容积式。例如,可以压缩机构和膨胀机构两者都采用回转式或涡旋式。如图1所示,将密闭容器1的底部作为贮油部25利用,其上侧的内部空间24被工作流体充满。为了确保压缩机构2及膨胀机构3的滑动部分的润滑性和密封性而使用油。 在密闭容器1竖立的状态下,即在以轴5的轴向成与铅直方向平行的方式确定密闭容器1 的姿态的状态下,贮留在贮油部25的油量被调整为油面SL(参考图3)位于油泵6的油吸 入口 62q之上且电动机4之下的位置。换言之,以使油的油面位于油泵6的油吸入口 62q 与电动机4之间的方式来确定油泵6和电动机4的位置以及用于收容上述要件的密闭容器 1的形状及大小。贮油部25包括油泵6的油吸入口 62q所处的上槽25a、膨胀机构3所处的下槽 25b。上槽25a和下槽25b通过分隔构件31而被隔开。油泵6的周围被上槽25a的油充满, 膨胀机构3浸入下槽25b的油中。上槽25a的油主要为了压缩机构2而使用,下槽25b的 油主要为了膨胀机构3而使用。油泵6以贮存在上槽25a中的油的油面位于油吸入口 62q的上方的方式配置在轴 5的轴向上的压缩机构2与膨胀机构3之间。在电动机4与油泵6之间配置有支承板75。 支承板75固定于密闭容器1中,油泵6、分隔构件31及膨胀机构3通过该支承板75固定 于密闭容器1中。在支承板75的外周部设置有多个贯通孔75a,以使结束润滑压缩机构2 的油及从密闭容器1的内部空间24排出的工作流体中分离的油返回上槽25a。贯通孔75a 的数量也可以为1个。上槽25a的油被油泵6吸入而供给到压缩机构2的滑动部分。在润滑压缩机构2 后通过支承板75的贯通孔75a而返回上槽25a的油由于受到来自压缩机构2及电动机4的 加热作用,因此为相对高温。返回上槽25a的油再次被油泵6吸入。另一方面,下槽25b的 油被供给到膨胀机构3的滑动部分。润滑了膨胀机构3的滑动部分的油直接返回下槽25b。 贮存在下槽25b的油由于受到来自膨胀机构3的冷却作用,因此变为相对低温。通过在压 缩机构2与膨胀机构3之间配置油泵6,利用该油泵6进行对压缩机构2的供油,从而能够 使润滑压缩机构2的高温的油的循环路径远离膨胀机构3。换言之,能够将润滑压缩机构2 的高温的油的循环路径与润滑膨胀机构3的低温的油的循环路径分开。由此,能够抑制因 油所引起的从压缩机构2向膨胀机构3的热移动。仅通过位于压缩机构2与膨胀机构3之间的油泵6也能够得到抑制热移动的效 果,但通过追加分隔构件31能够将该效果大幅度地提高。在膨胀机一体型压缩机200工作时,贮存在贮油部25的油在上槽25a中为相对高 温,而在下槽25b的膨胀机构3的周围变为相对低温。分隔构件31通过限制上槽25a与下 槽25b之间的油的流通,从而维持在上槽25a中贮存高温的油而在下槽25b中贮存低温的 油的状态。进而,由于存在包含分隔构件31的后述的隔热结构30,因此油泵6与膨胀机构 3的轴向的距离变长,由此也能够降低从充满油泵6的周围的油中向膨胀机构3的热移动 量。上槽25a与下槽25b之间的油的流通被分隔构件31限制,但并不是被禁止。可以进行 从上槽25a向下槽25b、或向反方向的油的流通以使油量平衡。 在本实施方式中,分隔构件31形成为比密闭容器1的内部空间24的横截面小一 圈的圆盘状,通过形成于分隔构件31的端面与密闭容器1的内周面之间的间隙31a(参照 图3)而稍微允许油量的流通。并且,在分隔构件31的中央部设置有用于使轴5通过的贯 通孔31b (参照图3)。另外,作为分隔构件31,只要能够分隔上槽25a和下槽25b且限制上槽25a与下槽25b之间的油的流通即可,其形状及结构可以适当选定。例如,也可以使分隔构件31的 直径与密闭容器1的内径一致,并在分隔构件31上设置允许油的流通的贯通孔或自端面的 切口。或者,分隔构件31也可以由多个构件形成为中空状(例如,辊卷状),在其之中将油 暂时保持。在分隔构件 31与膨胀机构3之间配置有作为支柱而发挥功能的多个(例如3个) 间隔件33和轴套32。并且,由间隔件33和分隔构件31构成隔热结构30。间隔件33在分 隔构件31与膨胀机构3之间形成被下槽25b的油充满的空间。充满由间隔件33确保的空 间的油自身作为隔热材料作用,在轴向上形成温度分层。更详细而言,间隔件33以围绕轴套32的方式等角度间隔配置在同一圆周上。如 图6所示,各间隔件33形成圆形筒状,且在其中通过有将分隔构件31与膨胀机构3固定的 螺栓B。优选的是螺栓B与间隔件33由相同的原材料(例如铁、不锈钢等)构成。这样,在 螺栓B与间隔件33上热膨胀的程度相同,能够防止因温度变化使分隔构件31产生弯曲的 情况。轴套32形成为在由间隔件33确保的空间内覆盖轴5的圆筒状。该轴套32的长 度设定为比间隔件33稍长。另一方面,在分隔构件31的下表面形成有轴套32的上端部能 够嵌合的上嵌合凹部31b,在膨胀机构3的后述的上轴承构件45的上表面形成有轴套32 的下端部能够嵌合的下嵌合凹部45b。并且,通过轴套32与上嵌合凹部31b及下嵌合凹部 45b嵌合,轴套32以与轴5同心的状态保持,并且限定分隔构件31与膨胀机构3的相对位 置。S卩,轴套32兼为对分隔构件31与膨胀机构3的相对位置进行定位的定位构件。接下来,说明压缩机构2及膨胀机构3。在轴5中,在其上端部具有压缩机构3用的上偏心部5a,在比下端稍靠上侧的位置 具有膨胀机构3用的上下一对下偏心部5d、5c,在它们之间具有油泵6用的中间偏心部5e。 更具体而言,轴5在中间偏心部5e的稍上侧被一分为二,由设有上偏心部5a的上部轴5s 与设有中间偏心部5e及下偏心部5d、5c的下部轴5t构成。上部轴5s与下部轴5t以由膨 胀机构3回收的动力能够传递到压缩机构2的方式通过连结器63连结。但是,也可以不使 用连结器63而使上部轴5s和下部轴5t直接嵌合而连结。涡旋式的压缩机构2具有回旋涡盘7、固定涡盘8、欧式环11、轴承构件10、消声 器16。在固定涡盘8上连接有从密闭容器1的外部向内部延伸的吸入管13。轴承构件10 旋转自如地支承上部轴5s中的上偏心部5a的稍稍下侧部分。与上部轴5s的上偏心轴5a 嵌合且被欧式环11限制自转运动的回旋涡盘7通过在螺旋形状的卷板7a与固定涡盘8的 卷板8a啮合的同时,随着轴5的旋转而进行回旋运动,且在形成于卷板7a、8a之间的月牙 形状的工作室12从外侧向内侧移动的同时容积缩小,从而将从吸入管13吸入的工作流体 压缩。被压缩的工作流体按顺序经由设置于固定涡盘8的中央部的排出孔Sb、消声器16的 内部空间16a、贯通固定涡盘8及轴承构件10的流路17而向密闭容器1的内部空间24排 出。通过轴5的供油路29而到达该压缩机构2的油对回旋涡盘7与上偏心轴5a的滑动面、 回旋涡盘7与固定涡盘8的滑动面进行润滑。排出到密闭容器1的内部空间24的工作流 体在滞留于内部空间24期间,由于重力和离心力而与油分离,然后,从设置于密闭容器1的 上部的排出管15朝向气体冷却器排出。通过轴5(准确而言为上部轴5s)驱动压缩机构2的电动机4具有固定于密闭容器1的定子21和固定于上部轴5s的转子22。从配置于密闭容器1的上部的端子(未图 示)对电动机4提供电力。电动机4为同步式电机及感应式电机中的任一者均可,通过从 压缩机构2排出的工作流体及混入工作流体的油而被冷却。在轴5的内部,与压缩机构2的滑动部分连通的供油路29以沿轴向延伸的方式横 跨上部轴5s及下部轴5t地形成。另外,在下部轴5t的比油泵6稍靠上方的位置设置有将 油导入供油路29的导入口 29p(参照图3)。并且,从油泵6向上方排出的油通过后述的导 入路73及导入口 29p而被送入供油路29中。送入供油路29的油不经由膨胀机构3而供 给到压缩机构2的各滑动部分。这样,由于朝向压缩机构2的油不会在膨胀机构3中被冷 却,因此能够有效地抑制油所引起的从压缩机构2向膨胀机构3的热移动。此外,若在轴5 的内部形成供油路29,则由于不会产生新的、构件数量的增加或设计方面的问题因而优选。膨胀机构3具有第一工作缸42、比第一工作缸42厚的第二工作缸44、分隔这些 工作缸42、44的中板43。第一工作缸42与第二工作缸44配置为彼此呈同心状。膨胀机构 3还具有第一活塞46,其与下部轴5t的下侧的下偏心部5c嵌合且在第一工作缸42中进 行偏心旋转运动;第一叶片48,其往复移动自如地保持于第一工作缸42的叶片槽42a (参 照图2A)且一个端部与第一活塞46相接;第一弹簧50,其与第一叶片48的另一个端部相 接且对第一叶片48向第一活塞46施力;第二活塞47,其与下部轴5t的上侧的下偏心部5d 嵌合且在第二工作缸44中进行偏心旋转运动;第二叶片49,其往复移动自如地保持于第二 工作缸44的叶片槽44a(参照图2B)且一个端部与第二活塞47相接;第二弹簧51,其与第 二叶片49的另一个端部相接,对第二叶片49向第二活塞47施力。下部轴5t的下侧的下 偏心部5c及上侧的下偏心部5d如图2A及图2B所示向相同方向偏心。膨胀机构3还具有以夹持第一工作缸42、第二工作缸44及中板43的方式配置的 上轴承构件45及下轴承构件41。上轴承构件45旋转自如地支承下部轴5t中的上侧的下 偏心部5d的正上侧部分,下轴承构件41旋转自如地支承下部轴5t中的下侧的下偏心部5c 的正下侧部分。上轴承构件45具有沿上下方向延伸的圆柱状的形状,在其中央设有与下部 轴5t嵌合的轴孔45c。下轴承构件41具有中央部向下方突出的盘状的形状,在其中央设 有与下部轴5t嵌合的轴孔。并且,下轴承构件41及中板43从上下夹持第一工作缸42,中 板43及上轴承构件45从上下夹持第二工作缸44。通过上轴承构件45、中板43及下轴承 构件41的夹持,在第一工作缸42及第二工作缸44内形成有基于活塞46、47的旋转而容积 变化的工作室。并且,在上轴承构件45上连接有从密闭容器1的外部向内部延伸的吸入管 52和从密闭容器1的内部向外部延伸的排出管53。 如图2A所示,在第一工作缸42的内侧形成有通过第一活塞46及第一叶片48而划 分的、吸入侧的工作室55a(第一吸入侧空间)及排出侧的工作室55b (第一排出侧空间)。 如图2B所示,在第二工作缸44的内侧形成有通过第二活塞47及第二叶片49而划分的、吸 入侧的工作室56a (第二吸入侧空间)及排出侧的工作室56b (第二排出侧空间)。在第二 工作缸44的两个工作室56a、56b的合计容积比第一工作缸42的两个工作室55a、55b的合 计容积大。第一工作缸42的排出侧的工作室55b与第二工作缸44的吸入侧的工作室56a 通过设置于中板43的贯通孔43a连接,作为一个工作室(膨胀室)而发挥功能。高压的工 作流体从吸入管52通过在第二工作缸44、中板43、第一工作缸42及下轴承构件41中贯 通的吸入路径54以及设置于下轴承构件41的吸入孔41a而流入第一工作缸42的工作室
955a。流入第一工作缸42的工作室55a的工作流体在由工作室55b和工作室56a构成的膨 胀室中使轴5旋转,同时膨胀而成为低压。低压的工作流体通过设置于上轴承构件45的排 出孔45a而向排出管53排出。像这样,膨胀机构3为具有工作缸42、44 ;以与轴5的下偏心部5c、5d嵌合的方 式配置在工作缸42、44内的活塞46、47 ;闭塞工作缸42、44且与工作缸42、44及活塞46、47 共同形成膨胀室的轴承构件41、45(闭塞构件)的回转式膨胀机构。在回转式的流体机构 中,在其结构上,将工作缸内的空间分隔成两部分的叶片的润滑是不可缺少的。在机构整体 浸入油中的情况下,通过使配置有叶片的叶片槽的后端在密闭容器1内露出的极为简单的 方法,从而能够将叶片润滑。在本实施方式中,利用像这样的方法进行叶片48、49的润滑。如图5所示,向其他的部分(例如轴承构件41、45)的供油例如通过在下部轴5t的 外周面上形成槽5k而进行,其中该槽5k从下部轴5t的下端朝向膨胀机构3的工作缸42、 44延伸。贮存在贮油部25的油承受的压力大于将工作缸42、44和活塞46、47润滑中的油 承受的压力。由此,即使不借助油泵,油也能够在下部轴5t的外周面的槽5k中传递而供给 到膨胀机构3的滑动部分。接下来,详细地说明油泵6及其周围的结构。如图3所示,油泵6构成为通过工作室的容积伴随轴5的旋转而增减从而将油压 送的容积式泵。在油泵6的上侧依次配置有导入构件74及中继构件71,轴5贯通在导入构 件74、中继构件71的中央部中,油泵6通过这些构件74、71而固定在支承板75上。中继构件71具有收容连结器73的内部空间70h和支承轴5 (上部轴5s)的轴承 部76。换言之,中继构件71承担作为连结器73的壳体的作用和作为轴5的轴承的作用。 另外,也可以支承板75具有相当于轴承部76的部分。进而,支承板75和中继构件71也可 以由单一构件构成。导入构件74呈在上下方向上扁平的板状的形状。在导入构件74设有将油泵6的 排出口与轴5的导入口 29p连通的导入路73。该导入路73包括通过在该导入构件74的 下表面的规定区域凹陷而形成包围轴5的圆形的环状部73a、从该环状部73a延伸到与油泵 6的排出口对应的位置的引导部73b。并且,轴5的导入口 29p设置在轴5的面向导入路73 的环状部73a的部分,并横向开口。另外,导入路73的形状及其路径不需要像上述那样,可 以适当选定。并且,导入口 29p的数量也不需要为一个,也可以为多个。图4为油泵6的俯视图。油泵6具有与下部轴5t的中间偏心部5e嵌合而进行偏 心运动的活塞61、收容该活塞61的壳体62 (工作缸)。在活塞61与壳体62之间形成有月 牙状的工作室64。即,在油泵6中采用回转式的流体机构。另外,在本实施方式中,如图4 所示地采用了活塞61不能自转的结构的油泵6,作为油泵6只要为回转式的容积式泵即可, 可以为具有滑动叶片且活塞61能够自转的油泵。在壳体62中形成有吸入路62a和排出部62b,其中吸入路62a连接贮油部25的 上槽25a和工作室64,排出部62b从工作室64将油放出。吸入路62a形成为沿着壳体62 的上表面在直线上延伸,排出路62b形成为从壳体62的内周面向径向外侧后退的槽状。并 且,由吸入路62a的外侧的开口构成吸入口 62q,由排出路62b的上侧的开口构成排出口。 而且,排出路62b的下侧的开口由分隔构件31闭塞。伴随下部轴5t的旋转活塞61在壳体 62内偏心运动时,由此工作室64的容积增减,进行从吸入口 62q的油的吸入及从排出口向上方的油的排出。像这样的机构由于无需将下部轴5t的旋转运动通过凸轮机构等变换为 其他运动而直接利用在将油压送的运动中,因此具有机械损失小的优点。此外,由于通过比 较简单的结构进行,因此可靠性较高。如图3所示,导入构件74以该导入构件74的下表面与壳体62的上表面相接的方 式与壳体62邻接配置,分隔构件31以该分隔构件31的上表面与壳体62的下表面相接的 方式与壳体62邻接配置。因此,工作室64从上方被引导构件63闭塞且从下方被分隔构件 31闭塞,活塞61成为在分隔构件31上滑动的状态。优选的是,壳体62与分隔构件31形成 为一体。其原因在于,这样通过轴套32决定分隔构件31相对于膨胀机构3的相对位置,故 如果壳体62与分隔构件31形成一体,则无需进行对壳体62进行定位的作业。并且,也可 以使壳体62与导入构件74形成一体。接着,参考图1及图7对下部轴5t进一步进行详细地说明。下部轴5t的直径被设定为在由膨胀机构3的上轴承构件45支承的部分(以下, 称为“被支承部”)5f的上侧,小于该被支承部5f的直径D1。由此,与在分隔构件31与膨 胀机构3之间确保空间的间隔件33对应的区域,下部轴5t比被支承部5f细。由此,能够 将通过了下部轴5t的从上槽25a向下槽25b的热移动抑制得很小。而且。上部轴5s的直 径在从下端到由中继构件71支承的部分的中途,与下部轴5t的上侧部分的直径大致相同。另外,中间偏心部5e的直径D2被设定在被支承部5f的直径以下。由此,能够从 中间偏心部5e —侧将下部轴5t插入膨胀机构3的上轴承构件45的轴孔45c中。进而,分 隔构件31的贯通孔31c的直径及轴套32的内径被设定为与上轴承构件45的轴孔45c的 直径相同程度,也能够从中间偏心部5e —侧将下部轴5t插入这些轴套32及分隔构件31 的贯通孔31c中。轴套32通过与嵌合凹部31b、45b嵌合而以与轴5(下部轴5t)同心的状 态保持,因此,在下部轴5t与轴套32之间形成有被油充满的圆形筒状的隔热层。并且,通 过该隔热层,可将通过下部轴5t的从上槽25a向下槽25b的热移动抑制得较小。进而,如图7所示,中间偏心部5e相对于下部轴5t的轴心C向与下偏心部5d、5c 相反的方向偏心。优选中间偏心部5e的偏心方向与下偏心部5d、5c的偏心方向构成180° 的方向,但也可以从该角度在士 10°左右的范围内偏摆。如以上所说明,在本实施方式的膨胀机一体型压缩机200中,下部轴5t的中间偏 心部5e的直径D2被设定在由膨胀机构3的上轴承构件45支承的被支承部5f的直径以 下,即使在下部轴5t存在中间偏心部5e的状态下也能够将该下部轴5t直接插入上轴承构 件45的轴孔45c中。因而,能够在下部轴5t上一体设置中间偏心部5e及下偏心部5d、5c, 并且无需对下部轴5t进行分割,故能够防止构件数量的增加且抑制成本。进而,中间偏心部5e向与下偏心部5d、5c相反的方向偏心,因此,中间偏心部5e 作为平衡重发挥作用,在轴旋转时能够减小下偏心部5d、5c受到的基于离心力的影响。而且,在上述实施方式中,压缩机构2配置在上侧,膨胀机构3配置在下侧,但也可 以是压缩机构2与膨胀机构3的位置与本实施方式相反。即,也可以是压缩机构2位于比 贮存在贮油部25的油的油面SL更靠下方的位置,膨胀机构3位于比油面SL更靠上方的位 置。在这种情况下,通过下部轴5t具有油泵6用的中间偏心部5e与压缩机构2用的下偏 心部,可由压缩机构2的轴承构件10来支承这些偏心部之间的部分。另外,贮存在贮油部 25的油通过油泵6可向位于油面SL的上方的位置的膨胀机构3供给。
11
工业上的可利用性本发明的膨胀机一体型压缩机能够在例如用于空气调和装置、供给热水装置、干 燥机或冷冻冷藏箱的热泵中适当地采用。如图8所示,热泵110具有膨胀机一体型压缩机 200、使由压缩机构2压缩后的制冷剂散热的散热器112、使由膨胀机构3膨胀后的制冷剂蒸 发的蒸发器114。压缩机构2、散热器112、膨胀机构3及蒸发器114通过配管连接,形成制 冷剂回路。膨胀机一体型压缩机200也可以替换为其他的实施方式的装置。例如,在热泵110适用于空气调和装置中时,通过抑制从压缩机构2向膨胀机构3 的热移动,从而能够防止在供暖运行时的压缩机构2的排出温度的下降而引起的供暖能力 的下降、在制冷运行时的膨胀机构3的排出温度的上升而引起的制冷能力的下降。作为结 果是,空气调和装置的效率系数提高。
权利要求
一种膨胀机一体型压缩机,其中,其具有底部作为贮油部利用的密闭容器;压缩机构,其以位于比贮存在所述贮油部的油的油面更靠上方或下方的方式配置在所述密闭容器内;膨胀机构,其以相对于所述油面的位置关系与所述压缩机构上下相反的方式配置在所述密闭容器内;油泵,其配置在所述压缩机构与所述膨胀机构之间,将贮存在所述贮油部的油向所述压缩机构及所述膨胀机构中的位于比所述油面更靠上方的机构供给;轴,其为连结所述压缩机构、所述油泵及所述膨胀机构的轴,且具有所述油泵用的中间偏心部、位于比所述油面更靠上方的所述压缩机构或所述膨胀机构用的上偏心部、浸入在所述贮油部贮存的油中的所述膨胀机构或所述压缩机构用的下偏心部;所述轴包括设有所述中间偏心部及所述下偏心部的下部轴;与该下部轴连结且设有所述上偏心部的上部轴,浸入在所述贮油部贮存的油中的所述膨胀机构或所述压缩机构具有支承所述下部轴中的比所述下偏心部更靠上侧的部分的轴承构件,所述中间偏心部的直径被设定在所述下部轴中的由所述轴承构件支承的部分的直径以下。
2.根据权利要求1所述的膨胀机一体型压缩机,其中,所述膨胀机一体型压缩机还具有电动机,其配置在所述压缩机构及所述膨胀机构中的 位于比所述油面更靠上方的机构与所述油泵之间, 所述电动机具有固定于所述上部轴的转子。
3.根据权利要求1所述的膨胀机一体型压缩机,其中,所述中间偏心部相对于所述下部轴的轴心向与所述下偏心部相反的方向偏心。
4.根据权利要求1所述的膨胀机一体型压缩机,其中,所述压缩机构位于比所述油面更靠上方的位置,所述膨胀机构位于比所述油面更靠下 方的位置。
5.根据权利要求4所述的膨胀机一体型压缩机,其中, 所述压缩机构为旋涡式,所述膨胀机构为回转式。
6.根据权利要求4所述的膨胀机一体型压缩机,其中,所述膨胀机一体型压缩机还具有分隔构件,其配置在所述油泵与所述膨胀机构之间, 将所述贮油部分隔为所述油泵的吸入口所处的上槽与所述膨胀机构所处的下槽,并且对所 述上槽与所述下槽之间的油的流通进行限制。
7.根据权利要求6所述的膨胀机一体型压缩机,其中,所述膨胀机一体型压缩机还具有间隔件,其配置在所述分隔构件与所述膨胀机构之 间,并在所述分隔构件与所述膨胀机构之间确保空间。
8.根据权利要求7所述的膨胀机一体型压缩机,其中,所述间隔件配置多个,各所述间隔件呈筒状,在各所述间隔件中通过有将所述膨胀机 构与所述分隔构件固定的螺栓,所述间隔件与所述螺栓由同样的原材料构成。
9.根据权利要求7所述的膨胀机一体型压缩机,其中,所述下部轴在与所述间隔件对应的区域比由所述轴承构件支承的部分细。
10.根据权利要求7所述的膨胀机一体型压缩机,其中,所述膨胀机一体型压缩机还具有轴套,其在由所述间隔件确保的空间内覆盖所述下部轴,所述轴套兼为对所述分隔构件与所述膨胀机构的相对位置进行定位的定位构件。
11.根据权利要求10所述的膨胀机一体型压缩机,其中,所述油泵具有与所述中间偏心部嵌合的活塞;收容该活塞的壳体, 所述活塞与所述分隔构件构成一体。
全文摘要
本发明提供一种膨胀机一体型压缩机。膨胀机一体型压缩机(200)具有密闭容器(1)、压缩机构(2)、膨胀机构(3)、轴(5)及油泵(6)。轴(5)包括设有压缩机构(2)用的上偏心部(5a)的上部轴(5s);设有膨胀机构(3)用的下偏心部(5d、5c)及油泵(6)用的中间偏心部(5e)的下部轴(5t)。膨胀机构(3)具有支承下部轴(5t)中的下偏心部(5d)的正上侧的被支承部(5f)的上轴承构件(45)。中间偏心部(5e)的直径被设定在被支承部(5f)的直径以下。
文档编号F04C18/32GK101868597SQ20088011723
公开日2010年10月20日 申请日期2008年10月29日 优先权日2007年11月21日
发明者和田贤宣, 大八木信吾, 尾形雄司, 盐谷优, 高桥康文 申请人:松下电器产业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1