电子控制的假肢膝关节的制作方法

文档序号:5739558阅读:413来源:国知局
专利名称:电子控制的假肢膝关节的制作方法
技术领域
一般而言,本发明涉及假肢关节;更具体地说,涉及假肢膝关节的可控制动系统。
背景技术
已有技术假肢膝关节通常采用三种变矩制动器(1)干摩擦制动器,使一种材料表面以变力摩擦另一个表面;(2)粘性扭矩制动器,应用经可变尺寸的喷口或节流板喷出的液压流体;和(3)磁流变(MR)制动器或缓冲器,应用经由固定的喷口或节流板喷出的含有细小悬浮铁粒的MR流体,其黏度可随着外加磁场产生变化。假肢中采用的上述现有技术都有不足之处。
尽管干摩擦制动器可提供不同的扭距范围,但对它们难于进行控制。摩擦面材料在长期使用中会受到磨损,从而改变制动器的摩擦特性和降低其对扭矩指令的响应。这将引起制动性能的不稳定,对被截肢者的步态产生负面影响并使使用者产生不舒适感。因此,干摩擦制动器需要经常进行维护及更换配件,从而增加成本和使用费用。
在高负荷情况下,粘性扭矩制动器需要产生较高的压力,从而容易引起液压流体的泄漏和产生其他的危险。制动装置过负荷后将不可能回复到正常状态,即将导致出现不可逆状况。因此,应用这种粘性扭矩制动的假肢可能出现事故性失效,危及使用者的安全。
在磁流变制动器中,术语“阀门模式”表示应用与流体流向垂直的可变磁场来控制由喷口流出的MR流体,用其代替传统的粘性扭矩制动器中阀门的作用。但当MR制动器工作在“阀门模式”下时,它也会造成内部液体压力的升高和引发上述因过高压力而导致的失效,从而使应用者处于一定风险之中。

发明内容
正是为克服现有技术的上述某些缺陷而进行了本项发明,本发明的首要目的是提供一种变矩磁流变驱动的假肢膝,其中应用一些交错配置的转子和定子来剪切位于它们之间间隙中的磁流变流体。通过使制动器工作在“剪切模式”下,将不会产生流体压力和压力的变化或产生的压力和压力变化可忽略不计。此外,多重MR流体间隙或流通介面可在低速或站停时产生较大的扭矩而不必采用附加的传动装置,同时可提供的动态扭矩范围也较宽,从而拓宽了本发明的适用性。在本发明的一个最佳实施例中,转子和定子之间的间隙可以闭合形成摩擦扭矩,从而形成一种可综合提供黏度扭矩和摩擦扭矩的“混合式”制动系统。
按本发明的一个最佳实施例,对所提供的磁流变驱动假肢膝的下肢运动可进行迅速和精确的控制。所述假肢膝包括一个芯体和一对侧板,一些交错配置的由易磁化和消磁的软磁材料制作的转子和定子,一个配置在芯体和转子和定子之间的电磁铁,以及一对轴承。芯体和侧板由易磁化和消磁的软磁材料制成并构成磁路。转子和定子的配置使得在它们之间形成有许多间隙。在这些间隙间充有在膝部运动时受到剪切作用的磁流变流体。电磁铁响应电流信号可产生可变磁场,以控制磁流变流体的黏度。轴承与转子和下肢的胫骨部分相连,以将转动的阻尼扭矩由假肢膝传送到胫骨部分。
按本发明的另一实施例,所提供的假肢膝可控磁流变制动器用于阻尼膝关节的转动。所述假肢膝包括一些间隔和交错配置的软磁转子和定子,磁流变流体以及一个磁铁。转子和定子相对于假肢膝的转动轴同心配置。磁流变流体驻留在转子和定子之间的间隙中。磁铁响应外施电压产生可变磁场,所述磁场的磁力线穿过转子、定子和磁流变流体。对转子和定子间磁流变流体的剪切可产生准确控制假肢膝转动的可变扭矩输出。
按本发明的又一个实施例,所提供的电子控制的假肢膝可产生较宽范围的动态扭矩。所述假肢膝包括一些转子和定子,以及可响应外施磁场产生流变的流体。转子由铁磁材料制成,它们相对于假肢膝的纵向转轴可进行转动并在横向可以移动。定子也由铁磁材料制成,定子与转子交替间隔配置,从而在它们之间形成间隙。定子相对于假肢膝的转动轴可横向移动。所述流体驻留在转子和定子之间的间隙中。在假肢膝转动的过程中,磁场的驱动将产生对膝转动的可变阻尼扭矩。
按本发明的再一个实施例,为被截肢者提供了一种可转动的假肢膝。所述假肢膝包括一个可转动的内键槽,一些与内键槽相互啮合的转子,一些与转子交错配置的定子,一个与定子相互啮合的外键槽,以及驻留在转子和定子间一些密封间隙中的磁控介质。所述磁控介质响应外施磁场可产生可控的松密度变化,从而使剪切磁控介质的转子转动受到准确控制,从而使假肢膝的转动阻尼受到可变控制,这样就可使被截肢者的步态更为自然。
按本发明的一个实施例,为假肢膝提供了可变扭矩的磁流变制动器。所述制动器包括一个芯体,一个与芯体第一端相连的第一侧板,一个与芯体第二端部相连的第二侧板,以及位于第一和第二侧板间的可转动和可横向移动的叶片。所述制动器进一步包括驻留在叶片与侧板之间一对狭隙中的磁流变流体,以及一个可产生磁路通过芯体、第一侧板、第二侧板、叶片和磁流变流体的磁场的磁铁。所述狭隙的尺寸应尽量小,使叶片与侧板之间在磁场为零时没有摩擦接触,从而使假肢膝可灵活摆动并可提供较宽的动态阻尼范围。
按本发明的另一实施例,为假肢膝提供了一种可控的转动阻尼器。所述阻尼器包括一些交错配置的内侧转片和外侧转片,一些磁流变流体膜,一对侧板和一个电磁铁。内侧转片和外侧转片相对于假肢膝的纵轴同心配置。磁流变流体膜驻留在内侧转片和外侧转片间的一些间隙之中。所述一对侧板将内侧转子和外侧转子夹在中间,至少有一个侧板沿假肢膝的纵轴是可以移动的。所述电磁铁可建立一个通过内侧转子、外侧转子、磁流变流体和侧板的磁场。内侧转子与外侧转子间的相对转动和至少一个侧板的横向运动将产生控制假肢膝转动的可变阻尼扭矩。
按本发明的再一个实施例,提供了迅速和准确控制假肢膝转动的方法。所述假肢膝包括一些交错配置的由易磁化和消磁的软磁材料制成的转子和定子,以及驻留在所述转子和定子之间一些间隙中的磁流变流体。所述方法包括建立一个磁场使转子和定子间具有相互吸引力,使相邻转子和定子形成摩擦接触,从而对假肢膝的转动产生摩擦阻尼。在转子和定子间隙中的磁流变流体受到剪切作用,从而产生对假肢膝转动的黏度阻尼。对磁场进行调节可迅速和准确地改变磁流变流体的黏度及相邻转子和定子间的吸引力。这样就提供了可以控制假肢膝屈曲和伸展的可变转动扭矩。
为概述本发明及其相对于现有技术的优点,以上说明了本发明的一些特点和目标。当然,应当理解,本发明的某一个具体实施例不一定能够体现本发明的所有特色和优点。因此,具有本领域专门知识和技能的人们可以以某种方式来实施本发明,使本发明所述的某一或某些特色和优点得以实现或突出,而不一定同时强调实现本发明的其他目标和优点。
上述实施例均在本发明的范围之内。以下将结合附图祥述本发明的最佳实施例,熟悉本领域的人们由此会更明晰本发明的上述及其它可能的实施状况,但本发明并不仅仅局限于在此公开的具体实施例。


以上对本发明的性质、特色和优点进行了概述,以下结合附图的祥述将使熟悉本领域技术的人们更清楚地了解本发明的最佳实施例及对其可能进行的修改。附图包括图1为正常人步行周期的示意图,表明下肢在站立相和摆动相中的各种位置和姿态;图2为具有本发明一个最佳实施例所述特色和优点的、包括电子控制假肢膝的下肢假肢的结构图;图3结构简图表明本发明假肢膝一个最佳实施例的总体结构;图4为一详细的部件分解透视图,表明具有本发明一个最佳实施例所述特色和优点的、磁流变驱动的假肢膝结构;图5为图4假肢膝的剖视图;图6为具有本发明一个最佳实施例所述特色和优点的图4中芯体的透视图;图7为图6芯体的侧视图;图8为为图6芯体的端部视图;
图9为具有本发明一个最佳实施例所述特色和优点的图4中芯体侧板的前视图;图10为图9芯体侧板的后视图;图11为沿图9中11-11线的截面剖视图;图12为图11中12-12部分的局部放大视图;图13为具有本发明一个最佳实施例所述特色和优点的芯体与侧板组装后的前视图;图14为沿图13中14-14线的截面剖视图;图15为具有本发明一个最佳实施例所述特色和优点的图4中内键槽的端面视图;图16为沿图15中16-16线的截面剖视图;图17为图16中17-17部分的局部放大视图;图18为具有本发明一个最佳实施例所述特色和优点的图4中一个转子的前视图;图19为图18转子的侧视图;图20为具有本发明一个最佳实施例所述特色和优点的图4中一个定子的前视图;图21为图20定子的侧视图;图22为具有本发明一个最佳实施例所述特色和优点的图4中外键槽的透视图;图23为图22外键槽的端部视图;图24为图22外键槽的俯视图;图25为沿图23中25-25线的截面剖视图;图26为具有本发明一个最佳实施例所述特色和优点的芯体透视图;图27为图26芯体的侧视图;图28为图26芯体的端部视图;图29为具有本发明一个最佳实施例所述特色和优点的芯体侧板的透视图;图30为图29芯体侧板的前视图;图31为图29芯体侧板的后视图;
图32为沿图31中32-32线的截面剖视图;图33为图32中33部分的局部放大视图;图34为具有本发明一个最佳实施例所述特色和优点的第二芯体侧板的透视图;图35为图34芯体侧板的后视图;图36为沿图35中36-36线的截面剖视图;图37为具有本发明一个最佳实施例所述特色和优点的磁铁线圈的透视图;图38为图37磁铁线圈的端部视图;图39为沿图38中39-39线的截面剖视图;图40为具有本发明一个最佳实施例所述特色和优点的内键槽的透视图;图41为图40内键槽的端部视图;图42为图40内键槽的侧视图;图43为图41中43-43部分的局部放大视图;图44为图42中44-44部分的局部放大视图;图45为具有本发明一个最佳实施例所述特色和优点的一个转子的前视图;图46为图45转子的侧视图;图47为图45中47-47部分的局部放大视图;图48为具有本发明一个最佳实施例所述特色和优点的一个定子的透视图;图49为图48定子的侧视图;图50为图48中50-50部分的局部放大视图;以及图51为本发明磁流变驱动假肢膝另一个最佳实施例的结构剖视图,其中磁路通过假肢膝的外部。
具体实施例方式
了解正常人的行走/跑动过程是设计和开发有效的下肢假肢的基础,以便能借助假肢实现人体的可控运动。正常人的行走步态可被描述为导致人体重心不断向前移动的下肢和躯体的一系列有节奏的交替运动。
如图1所示,由一个下肢10的脚踵触地到所述下肢10脚踵的下一次触地之间发生的一系列运动构成了一个典型的步行周期。下肢10包括脚部12和通过膝或膝关节18相连的大腿16和小腿14。在一个步行周期中,下肢要经历一个站立相20和一个摆动相22。
站立相20始于脚踵触地24,即脚踵接触地板或支撑地面,同时站立相膝关节开始产生轻微弯曲。膝关节的弯曲有益于吸收冲击和使人体重心在站立相基本保持垂直。
紧接着脚踵触地24之后的是全足放平阶段26,此时脚底开始保持与地面的接触。站立相膝关节在经历其最大弯曲后再次伸展,直至达到站立相中期28时的最大伸展程度,此时,人体体重刚好转到支撑下肢的垂直方向并有以脚为轴继续向前转动的趋势。
在脚踝之上人体继续向前转动时,脚踵在脚踵离地阶段30中开始离开地面。此后,人体在腓肠肌的推力作用下被推动向前(蹬离期)。这种推动力一直保持到全脚离开地面的脚趾离地阶段32。
在站立相后期,支撑腿的膝关节开始弯曲,以便腿脚离开地面进入摆动相阶段。在文献中一般将其称为“膝关节屈曲”。此时另一脚开始触地,人体处于“双腿支撑模式”,即体重由两条腿进行支撑。
在脚趾离地期32,随着髋关节的弯曲和膝关节在膝关节屈曲过程中弯曲到一定角度,脚部离开地面,膝关节进一步弯曲进入摆动相。在摆动中期34达到最大弯曲后,膝关节开始伸展,进入摆动加速期。在膝关节达到完全伸展后,又进入下一个脚踵触地期24,脚部再次触地,进入下一个步行周期。
一般而言,直立态为解剖位,因此,屈曲为人体某一部位离开伸展态或站立相或解剖位的运动。这样,膝关节的弯曲是一种膝屈曲。而伸展是下肢向解剖位的运动,因此,膝关节的伸展是一种在“伸直”方向上的膝关节运动。
在平面上的典型步行行进中,最大屈曲角αF约为70-80度角,最大伸展角αE接近180度。也就是说在平地步行中,正常人膝关节要转动70-80度角,由站立相初期和中期的完全伸展位转到脚趾离地之后的屈曲70-80度角。在其它状态下,例如在取坐位时,最大屈曲角αF约为140-150度。
系统概述图2为按本发明一个实施例的假肢100的结构图,所述假肢100包括电子控制的转动膝关节,具有本发明的特色和优点。如以下将要详细描述的,所述转动假肢膝包括一个变矩磁流变制动系统110,可在被截肢者进行步行或运动时提供适当阻力以模拟天然膝关节的体位和运动。仿真膝110的一端在机械上与一个残留肢套102相连,所述残留肢套102用于同被截肢者的残留肢或股骨104进行配合;仿真膝110的另一端在机械上与一个悬杆或胫骨部件106相连,后者再与假肢足或仿真足108相连。
本发明假肢膝关节110的优点在于可使被截肢者适应各种环境,在较广泛的环境条件下进行舒适和安全的运动,例如进行行走、跑动、坐下等动作,或适应环境条件的变化进行一些更为激烈和精巧的动作-如提起手提箱和走下斜坡等。
在下肢承重时,仿真膝关节110可提供站立相控制,减少发生弯折的可能性。同时,假肢膝110还可提供空中摆动控制,使膝关节在脚踵触地的瞬间或之前平稳和自然地达到完全伸展状态。此外,通过适当调节阻尼扭矩的范围和幅度,假肢膝110可适用于具有不同体重、身高和活动要求的广泛患者。
本发明仿真膝110最好用于膝上(A/N)被截肢者。或者,考虑到实现本发明的一个或多个优点和提供一种具有自然感受和安全的假肢,本发明仿真膝110在期望和需要时也可用于在膝关节处进行截肢的膝部(K/D)被截肢者。
图3为一个简化的结构图,表明按本发明一个实施例的转动假肢膝或磁流变(MR)制动系统110。所述假肢膝110包括一个被电磁铁或磁铁线圈114包围的芯体112,它在机械上与一对侧板116和118相连。通过控制流过电磁铁114的电流,可以产生可变磁场。芯体112及侧板116和118最好采用铁磁类材料制造,采用具有高饱和磁通密度的易磁化和消磁的软磁材料进行制造则更好。
假肢膝110进一步包括一些与内键槽122相连的内侧叶片120。内键槽122环绕或包围电磁铁114并在机械上与侧板116和118相连。内侧叶片120最好相对于转动制动轴124做同心配置。内键槽122最好可绕膝关节转动轴124进行转动,从而使内侧叶片或转子120及侧板116和118也可绕其转动。内键槽122的转动相应于小腿(膝下部分)的转动或运动。
假肢膝110还包括一些与外键槽132相连的外侧叶片130。外键槽132环绕或包围内键槽122。外侧叶片130最好相对于转动制动轴124同心配置。外键槽132最好可绕膝关节转动轴124转动,从而使外侧叶片或定子130也可绕其进行转动。外键槽132的转动相应于大腿(膝上部分)的转动或运动。外键槽或外罩132包括有便于假肢膝关节110与适当残留肢套互相连接的结构。外键槽132及定子130最好相对于残留肢或残留肢套是不可转动的或非可转与其相连。
一些转子120和定子130交错配置,它们之间的间隙充有磁流变流体134,即磁流变流体134驻留在内键槽122和外键槽132之间形成的通路或腔槽中。在一个最佳实施例中,位于相邻转子120和定子130之间的磁流变流体134构成相邻转子120和定子130间的液膜。处于侧板116和118及相邻定子130之间的磁流变流体切变也可起到对膝关节转动进行阻尼的作用。
在膝关节转动时,转子120和定子130一些间隙中的磁流变流体受到剪切和出现切变,从而产生阻尼扭矩以控制肢体的转动。叶片120和130最好由铁磁材料制作,用具有高饱和磁通的易磁化和消磁的软磁材料制作则更好,因其具有更大的机械上的适用性。
膝关节110进一步包括一对分别与相应侧板116和118相连的滚珠轴承126和128,滚珠轴承126和128进一步与相应的侧板或安装支架136和138相连。这样,在内键槽122与安装支架136和138之间就建立起了转动连接。安装支架136和138与外键槽132共同构成膝关节110的主要外壳。侧板或安装支架136和138最好包括有便于假肢膝关节同悬杆或胫骨互相连接的结构,其具体说明如下。
芯体112和电磁铁114也最好能随着内键槽122、转子120、侧板116和118以及安装支架136和138的转动而转动。定子130随着外键槽132的转动而转动。
转子120固定在内键槽122上并可随其一起转动,定子130固定在外键槽132上并可随其一起转动。在膝关节转动或行进的不同阶段,转子120可能绕膝关节转动轴124转动而定子130相对静止,或者定子130转动而转子120静止,或者二者都进行转动或均相对静止。在此使用“转子”和“定子”这两个术语是为了区分内侧叶片120和外侧叶片130,虽然它们都是可能转动的,也是为了说明在转子120和定子130之间可产生相对转动(在相邻转子120和定子130之间的间隙将产生磁流变流体的切变)。因此,也可将叶片120称之为“内侧转子”,将叶片130称之为“外侧转子”。
为激励磁铁114以产生磁场,需要在膝关节110中配置磁通回路140。在一个最佳实施例中,磁场140依次通过芯体112,通过侧板118向外辐射,侧向通过交错配置的转子120和定子130及磁流变流体134,然后通过侧板116向内敛聚。通常将穿过芯体112及侧板116和118的这部分磁场140定义为磁通回路,而将穿过转子120、定子130和磁流变流体134的磁场定义为有效磁场或功能磁场。
依据外施磁场强度的变化,磁流变流体134将产生流变学或黏度变化。这种流体黏度的变化又进一步决定了所产生的切变力/应力、扭矩或转动阻尼的大小,从而决定了假肢膝所提供的阻尼程度。这样,通过控制磁场强度就可控制假肢的运动,例如控制摆动相和站立相期间的屈曲和伸展程度,从而使被截肢者能够更自然和安全地行动。
在一个最佳实施例中,转子120和定子130在侧向142的方向上可进行移动,相邻转子120和定子130在磁场的作用下可产生彼此间的接触摩擦,摩擦力取决于磁场强度,这样可形成磁流变与摩擦阻尼相“混合”的制动系统。在另外一个实施例中,转子120和定子130相对内键槽122和外键槽132的侧向位置是固定的,在这种情况下,制动靠的是磁流变或黏度的作用。或者,在期望和需要时可使一些转子120和定子130侧向固定而使另一些转子120和定子130可侧向移动,以实现本发明的一个或多个特色与优点和提供具有自然感和安全的假肢。在一个实施例中,侧板116和118也可侧向移动,由于同相邻定子130的接触摩擦而起到摩擦阻尼的作用。
通过采用剪切模式进行工作,本发明磁流变假肢膝内不会产生流体压力或产生的压力可忽略不计。这样,可以消除或减少出现液体泄漏和假肢膝损坏的可能性,从而提高器具的安全性。
如最佳实施例所述,本发明所提供的多重切变面或流通介面具有扭矩倍增器的作用,可使黏度扭矩逐步增加到预期的最大值,而无须采用额外的变速传动或辅助部件。例如,如果两个流通介面可产生的最大阻尼扭矩为1牛顿/米,那么40个介面将产生40牛顿/米的黏度阻尼扭矩。与此比较,如果采用40∶1的变速传动部件来增加黏度扭矩,则不仅会使系统的惯量增加近1600倍,而且系统的重量、尺寸和复杂性也将大大增加。
本发明实施例假肢膝中提供的多重切变面或介面还可用于产生较宽的动态扭矩范围,从而可为患者提供更为自然和安全的假肢器具。同时本发明实施例所示磁流变假肢膝还可提供迅速和精确的反应,从而使患者可进行更自然和安全的行动。
磁流变驱动的假肢膝图4和图5表明一个具有本发明一个实施例所述特色和优点的可控转动假肢膝关节210。假肢膝210可产生所需的相对于假肢膝转轴224的耗散力或阻尼扭矩。
可进行电子控制的假肢膝210包括一个在机械上与一对可转动侧板216和218相连的芯体212,电磁铁214,一些同可转内键槽222机械相连的转子220,一些同可转外键槽232机械相连的定子230,以及一对用于向一对侧板或叉状结构236和238进行转动传动的滚珠轴承226和228。所述转动是绕假肢膝转轴224进行的。
所述的一些转子220和230交错配置,相邻的转子220和定子230之间的间隙或狭隙间驻留有磁流变流体的润滑膜,即驻留在内键槽222和外键槽232之间形成的腔槽中。通过剪切处于相邻转子220和定子230之间多个间隙或流通介面中的磁流变流体,本实施例提供了一种具有较宽动态扭矩范围的可控和可靠的假肢膝关节。
在假肢膝210中,采用端部具有螺纹的螺杆248和螺帽250使假肢膝的部件相互连接,这样既可便于组装和拆卸又能减少所用的连接件。或者在期望和需要时,考虑实现本发明文件所述的一个或多个特色和优点以及能够保证部件间的有效连接,也可采用螺栓、销钉、楔榫、夹紧螺钉等其它各种形式的连接件。
芯体及与其配合的侧板(磁通回路)芯体212及侧板216和218最好由具有高饱和磁通密度和高导磁率的易磁化和消磁的软磁材料制作。这样,当电磁铁被激励产生磁场时,在假肢膝210内可建立起磁通回路。在一个最佳实施例中,磁场在纵向(平行于转轴224)穿过芯体212,以辐射状通过侧板218,侧向(平行于侧向242)通过交错配置的转子220和定子230及磁流变(MR)流体,以辐射状通过侧板216。
电磁铁214的取向或定位及流过它的电流方向决定了磁场的极性,并从而决定了磁场通过侧板218或216是向外辐射还是向内敛聚。磁场通过芯体212及侧板216和218的部分一般被定义为磁回路,而磁场通过转子220、定子230以及在它们之间驻留的MR流体的部分通常被定义为有效磁场或功能磁场。
图6-8表明假肢膝210芯体212的一个实施例。芯体212最好为圆柱形,它包括两个圆柱体252和254,圆柱体252的直径大于圆柱体254的直径。圆柱体252的尺寸和结构使其能够同侧板216的腔槽紧密配合,圆柱体254的尺寸和结构使其能够同侧板218的腔槽紧密配合。这样,芯体212就可随侧板216和218的转动而转动。在其它的最佳实施例中,在期望和需要时,芯体212也可采用其它有效的形状和尺寸,只要能够提供结构紧凑、重量小和可靠耐用的假肢膝和实现本发明文件所述的一个或多个特色和优点。
芯体212最好用具有高饱和磁通密度、高导磁率和低矫顽磁力的材料进行制造。这样,有利于使假肢膝或制动器结构紧凑、重量小和坚固可靠。在一个最佳实施例中,芯体212为一个综合整体。在另一个最佳实施例中,芯体212由薄片迭层构成,以减少涡流损失。
芯体212最好由具有高饱和磁通密度的铁钴合金制作。在一个最佳实施例中,芯体212由德国Hanau的Vacuumschmelze生产的Vacoflux 50进行制造。在另一个最佳实施例中,芯体212由高饱和磁通铁钴合金ASTM A-801-1型合金制造。在又一个实施例中,芯体212采用了德国Hanau Vacuumschmelze的Vacoflux 17进行制造。在再一个实施例中,芯体212采用Hiperco Alloy 50进行制造。在其它最佳实施例中,当期望或需要时,芯体212也可采用其它的具有高饱和磁通、高导磁率和低矫顽磁力的材料进行制造,只要能够使所提供的假肢膝结构紧凑、重量轻和坚固可靠以及能够实现本发明文件所述的一个或多个特色和优点。
在一个最佳实施例中,芯体212制造材料的饱和磁通密度约为2.2T(泰斯拉)。需要材料具有如此之高的饱和磁通密度,因为它可使所设计的产品重量轻和结构紧凑。例如,如果采用具有较低饱和磁通密度的材料,为达到同样的最大扭矩和最大的动态扭矩范围,就必须加大芯体212在外施磁场穿过方向上的截面面积。在其它最佳实施例中,在期望和需要时,也可采用饱和磁通密度较高或较低的材料,只要能够使所提供的假肢膝结构紧凑、重量轻和坚固可靠以及能够实现本发明文件所述的一个或多个特色和优点。
为获得良好的磁学性能,芯体212在机械加工后最好在氢气气氛中进行热处理。在其它的最佳实施例中,当期望或需要时,芯体212也可采用铸造、锻造、模压、层压等方法进行制造,只要能够使所提供的假肢膝结构紧凑、重量轻和坚固可靠以及能够实现本发明文件所述的一个或多个特色和优点。
在一个最佳实施例中,参阅图7,芯体212的结构尺寸为长度L71约为3.076厘米(1.211英寸),长度L72约为0.61厘米(0.240英寸),直径D71约为1.728厘米(0.6805英寸),直径D72约为1.424厘米(0.5605英寸)。在另一个最佳实施例中,直径D71和D72约为1.9l厘米(0.750英寸)。在其它的最佳实施例中,当期望或需要时,芯体212也可采用其它的结构尺寸,只要能够使所提供的假肢膝结构紧凑、重量轻和坚固可靠以及能够实现本发明文件所述的一个或多个特色和优点。
图9-12表明假肢膝210芯体侧板216的一个最佳实施例。侧板216最好为圆环形,中央有一个圆形的腔槽或通孔256,用于同芯体圆柱体252的自由端进行紧密的配合和连接。这种配合和连接最好通过压配合进行。在期望和需要时,侧板216和腔槽256也可采用其它有效的形状和结构。
在一个实施例中,另一个侧板218的形状、结构和尺寸与图9-12所示的侧板216大体相同,只是其圆形腔槽的形状和尺寸要与芯体圆柱体部分254进行紧密的配合和连接-最好通过压配合予以实现。因此,可以理解,对芯体侧板216的详细描述在很大程度上足以体现侧板218的相应特征,在此不再赘述以使本公开文件更为简要和清晰。
侧板216包括一些等距环形排列的通孔258,用于接受端部带螺纹的螺杆或螺帽等连接件,以便将假肢膝的各种部件组装起来。在一个最佳实施例中,侧板216上有5个通孔258;在另一个实施例中,侧板216包括有3个通孔258。在期望和需要时,也可采用其它形式排列的或多或少的通孔258。
芯体侧板216最好包括一个环形槽260,用于接受环形密封圈(垫)262,为可转动的侧板216和可转动的外键槽232的内表面之间提供动态密封,以防止假肢膝210中的MR流体泄漏。另一个侧板218也有用于接受环形密封圈(垫)262的同样结构(图4),以提供动态密封。在其它一个最佳实施例中,为在芯体侧板216和218及外键槽232之间提供动态密封,在外键槽232的内面上配置了两个沟槽或法兰。
环形密封圈(垫)262由适当的橡胶类材料-例如采用氟化橡胶、聚四氟乙烯和聚氯丁橡胶等进行制作。在一个最佳实施例中,环形密封圈(垫)262的内径约为50毫米,宽度约为1.5毫米。在其它的最佳实施例中,当期望或需要时,也可采用其它结构和尺寸的有效动态密封手段,只要能够提供可靠的密封和实现本发明文件所述的一个或多个特色和优点。
侧板216的内面最好有一个环形的凸肩或台阶264(图4),用于同内键槽222的定位配合。侧板216的外表面最好有一个环形的凸肩或台阶266(图4),用于同外侧叉状结构236(图4)的定位配合。台阶266最好包括一个用于通过导线的切口268。在中央腔槽256的周围还开有可通过导线的一些其它孔。芯体侧板216的外表面包括一个锥形结构270,以便减轻重量、节约材料和为组装留出便利空间。
芯体侧板216最好采用具有高饱和磁通密度、高导磁率和低矫顽力的材料制作,以有利于制造重量轻、结构紧凑和坚固可靠的假肢膝。在一个最佳实施例中,侧板216为一个综合的整体结构;在另一个最佳实施例中,侧板216为可减少涡流损失的薄片迭合结构。
芯体侧板216最好由具有高饱和磁通密度的铁钴合金制作。在一个最佳实施例中,芯体侧板216由德国Hanau Vacuumschmelze的Vacoflux 50进行制造。在另一个实施例中,芯体侧板216采用高饱和磁通铁钴合金ASTM A-801-1型合金制造。在又一个实施例中,芯体侧板216采用德国Hanau Vacuumschmelze的Vacoflux 17进行制造。在再一个实施例中,芯体侧板216由Hiperco Alloy 50进行制造。在其它最佳实施例中,当期望或需要时,芯体侧板216也可采用其它的具有高饱和磁通、高导磁率和低矫顽磁力的材料进行制造,只要能够使所提供的假肢膝结构紧凑、重量轻和坚固可靠和实现本发明文件所述的一个或多个特色和优点。
在一个最佳实施例中,芯体侧板216制造材料的饱和磁通密度约为2.2T(泰斯拉)。需要材料具有如此之高的饱和磁通密度,因为它可使所设计的产品重量轻和结构紧凑。例如,如果采用具有较低饱和磁通密度的材料,为达到同样的最大扭矩和最大的动态扭矩范围,就必须加大芯体侧板216在外施磁场穿过方向上的截面面积。在其它最佳实施例中,在期望和需要时,也可采用饱和磁通密度较高或较低的材料,只要能够使所提供的假肢膝结构紧凑、重量轻和坚固可靠以及能够实现本发明文件所述的一个或多个特色和优点。
为获得良好的磁学性能,芯体侧板216在机械加工后最好在氢气气氛中进行热处理。在其它的最佳实施例中,当期望或需要时,侧板216也可采用铸造、锻造、模压、层压等方法进行制造,只要能够使所提供的假肢膝结构紧凑、重量轻和坚固可靠以及能够实现本发明文件所述的一个或多个特色和优点。
在一个最佳实施例中,参阅图9,芯体侧板216的结构尺寸为主直径D91约为5.240厘米(2.063英寸),端部直径D92约为2.845厘米(1.120英寸),直径D93约为1.727厘米(0.680英寸),直径D94约为2.82毫米(0.111英寸)。直径D93的尺寸应能为芯体圆柱体252的自由端与侧板216的中央腔槽256间提供紧密的压配合。在另一个最佳实施例中,中央腔槽256的直径D93约为1.91厘米(0.750英寸)。另一个侧板218相应腔槽的直径应能同芯体圆柱体254的自由端进行压配合的紧密连接。在其它的最佳实施例中,当期望或需要时,芯体侧板216和218也可采用其它的结构尺寸,只要能够使所提供的假肢膝结构紧凑、重量轻和坚固可靠以及能够实现本发明文件所述的一个或多个特色和优点。
在一个最佳实施例中,参阅图10,芯体侧板216的结构尺寸为直径D101约为2.43厘米(0.958英寸),直径D102约为2.29厘米(0.900英寸),宽度W101约为3.3毫米(0.13英寸)。在其它的最佳实施例中,当期望或需要时,芯体侧板216也可采用其它的结构尺寸,只要能够使所提供的假肢膝结构紧凑、重量轻和坚固可靠以及能够实现本发明文件所述的一个或多个特色和优点。
在一个最佳实施例中,参阅图11,芯体侧板216的结构尺寸为直径D111约为5.011厘米(1.973英寸),直径D112约为4.801厘米(1.890英寸),直径D113约为2.461厘米(0.969英寸),直径D114约为3.56厘米(1.40英寸),宽度W111约为5.59毫米(0.220英寸),宽度W112约为0.508毫米(0.020英寸),宽度W113约为1.27毫米(0.050英寸),角度θ111约为135度角。在其它的最佳实施例中,当期望或需要时,芯体侧板216也可采用其它的结构尺寸,只要能够使所提供的假肢膝结构紧凑、重量轻和坚固可靠以及能够实现本发明文件所述的一个或多个特色和优点。
在一个最佳实施例中,参阅图12,芯体侧板216的结构尺寸为长度121约为1.14毫米(0.045英寸),宽度W121约为2.79毫米(0.110英寸),宽度W122约为1.52毫米(0.060英寸),宽度W123约为0.64毫米(0.025英寸),宽度W124约为0.97毫米(0.038英寸),圆角半径R121约为0.254毫米(0.010英寸)到0.127毫米(0.005英寸,圆角半径R122约为3.81毫米(0.15英寸)。在其它的最佳实施例中,当期望或需要时,芯体侧板216也可采用其它的结构尺寸,只要能够使所提供的假肢膝结构紧凑、重量轻和坚固可靠以及能够实现本发明文件所述的一个或多个特色和优点。
芯体侧板216和218在机械上与相应轴承226和228相连(图4),可将转动由内键槽222(及转子220)传到相应的外侧叉状支架236和238,后者在机械上与假肢胫骨相连。轴承可采用现有的各种适用轴承。在一个最佳实施例中,采用了Torrington Company of Torrington,Connecticut公司的AST P/N B544DDXA滚珠轴承。
电磁铁或电磁线圈214(图4)包围着芯体212,它在机械上与芯体212和/或芯体侧板216和218相连,因此它将同芯体212和/或侧板216和218一起转动。芯体212也包括一个绕有线圈的绕线管或线圈。应对线圈的匝数进行优化。在一个最佳实施例中,线圈的匝数为340圈。在其它的最佳实施例中,当期望或需要时,线圈匝数也可采用比上述匝数多一些或少一些,只要能够使性能优化以及可实现本发明文件所述的一个或多个特色和优点。
电磁铁214的线圈导线采用AWG 30标准尺寸的电磁铜线绕制。在其它的最佳实施例中,当期望或需要时,也可采用其它型号的导线进行绕制,只要能够优化磁铁性能和能够实现本发明文件所述的一个或多个特色和优点。
图13-14表明本发明MR驱动假肢膝中芯体212与侧板218制成一体的一个最佳实施例。当期望或需要时,可将两个侧板都与芯体212制成一个整体。图13-14所示实施例具有上述的一些性质和优点,在此不再赘述以使公开文件清晰和简要,以下仅对其结构特点做一些补充说明。
侧板218具有一对通孔272,用于使导线通过。芯体侧板218的端部具有一个便于同另一侧板216进行压配合的锥形结构274。
在一个最佳实施例中,参阅图13,芯体212和芯体侧板218的结构尺寸为主直径D131约为5.240厘米(2.063英寸),端面直径D132约为2.845厘米(1.120英寸),直径D133约为2.46厘米(0.969英寸),直径D134约为2.82毫米(0.111英寸),直径D135约为1.78毫米(0.070英寸),长度L131约为11.2毫米(0.440英寸),长度L132约为0.98毫米(0.385英寸)。在其它的最佳实施例中,当期望或需要时,芯体212和芯体侧板218也可采用其它的结构尺寸,只要能够使所提供的假肢膝结构紧凑、重量轻和坚固可靠以及能够实现本发明文件所述的一个或多个特色和优点。
在另一个最佳实施例中,参阅图14,芯体212和芯体侧板218的结构尺寸为直径D141约为4.801厘米(1.890英寸),直径D142约为2.461厘米(0.969英寸),直径D143约为1.728厘米(0.6805英寸),直径D144约为3.56厘米(1.40英寸),直径D145约为2.43厘米(0.958英寸),直径D146约为2.16厘米(0.849英寸),宽度W141约为5.59毫米(0.220英寸),宽度W142约为0.508毫米(0.020英寸),宽度W143约为1.27毫米(0.050英寸),宽度W144约为2.52厘米(0.991英寸),角度θ141约为135度角,锥形结构274的长度约为0.508毫米(0.02英寸),其锥度约为45度。在另一个最佳实施例中,直径D143约为1.91厘米(0.750英寸)。在其它的最佳实施例中,当期望或需要时,芯体212和芯体侧板218也可采用其它的结构尺寸,只要能够使所提供的假肢膝结构紧凑、重量轻和坚固可靠以及能够实现本发明文件所述的一个或多个特色和优点。
内键槽图15-17表明假肢膝210内键槽222的一个最佳实施例。内键槽222最好为圆筒形,中央有一个圆形的腔槽或通孔276,用于同电磁铁或电磁线圈276进行配合(图4)。或者在期望和需要时,也可采用其它适当结构形式的内键槽222和腔槽或通孔276。
内键槽222最好包括总体排列成圆环形、彼此等距配置的一些纵向通孔278,用于接受螺杆和螺帽等连接件,以便将侧板216、218和内键槽222等假肢膝部件连接起来。通孔278与芯体侧板216和218上的相应孔应相互对齐。在一个最佳实施例中,内键槽包括5个通孔278;在另一个最佳实施例中,内键槽222包括有三个通孔278。当期望或需要时,也可采用以其它形式配置的或多或少的通孔278。
内键槽222通常包括一个用于放置环形密封圈(垫)282的环形沟槽260(图4),以便为内键槽222与侧板216和218间提供静态密封和防止MR流体从假肢膝210中泄漏,因为这些部件在假肢膝转动时会一起转动。在另一个实施例中,在一个或两个侧板216和218的内面也配置了用于接受环形密封圈的相应沟槽,以提供静态密封。
环形圈282由合适的橡胶类材料制作,例如采用氟化橡胶、聚四氟乙烯或聚氯丁橡胶等。在一个最佳实施例中,环形圈的内径约为30.5毫米(1.201英寸),宽度约为0.76毫米(0.03英寸)。在其它实施例中,当期望或需要时,也可采用其他形式的静态密封结构,只要能够提供有效的密封以及可以实现本发明文件所述的一个或多个特色和优点。
内键槽222的外表面有一些等距间隔配置的沟槽284,用于同转子220的轮齿相互啮合。在一个最佳实施例中,沟槽284为半圆形;在另一个实施例中,沟槽284为带圆角的矩形或方形。在其它实施例中,当期望或需要时,沟槽284也可采用其他的结构和形式,只要能够提供由转子220到内键槽222的有效传动以及可以实现本发明文件所述的一个或多个特色和优点。
内键槽222由钛或钛合金制作,采用6AI4V钛合金进行制作则更好。采用钛或钛合金的好处是可提供近似于零的导磁率,同时在与转子进行啮合和传动时又能提供重量轻、具有相当强度和硬度的接触面。另外一个优点是可减少因感生涡流产生的能量损失,因为钛和钛合金材料具有较高的电阻率。在其它实施例中,当期望或需要时,内键槽222也可采用其他金属、合金、塑料、陶瓷等材料进行制作,只要能使内键槽222具有接近为零的导磁率、能够使所提供的假肢膝重量轻、结构紧凑和坚固耐用、以及可以实现本发明文件所述的一个或多个特色和优点。
内键槽222一般通过机械加工进行制造。在其它实施例中,当期望或需要时,内键槽222也可采用铸造、锻造或冲压等方法进行制造,只要能够使所提供的假肢膝重量轻、结构紧凑和坚固耐用以及可以实现本发明文件所述的一个或多个特色和优点。
在一个最佳实施例中,参阅图15,内键槽222的结构参数为主直径D151约为3.673厘米(1.446英寸),直径D152约为3.119厘米(1.228英寸),端头直径D153约为2.845厘米(1.120英寸),孔径D154约为2.49毫米(0.098英寸),沟槽曲率半径D155约为3.18毫米(0.125英寸),角θ151的典型值约为15度,角θ152的典型值约为7.5度。在其它实施例中,当期望或需要时,内键槽222也可采用其他的结构和尺寸,只要能够使所提供的假肢膝重量轻、结构紧凑和坚固耐用,以及可以实现本发明文件所述的一个或多个特色和优点。
在另一个最佳实施例中,参阅图16和图17,内键槽222的结构参数为主直径D161约为3.632厘米(1.430英寸),直径D162约为2.464厘米(0.970英寸),长度L163约为1.96厘米(0.771英寸),深度DT171约为0.51毫米(0.020英寸),宽度W171约为1.02毫米(0.040英寸),曲率半径R171为0.127-0.254毫米(0.005-0.010英寸)。在其它实施例中,当期望或需要时,内键槽222也可采用其他的结构和尺寸,只要能够使所提供的假肢膝重量轻、结构紧凑和坚固耐用,以及可以实现本发明文件所述的一个或多个特色和优点。
转子与定子图18-19表明假肢膝210的一个转子或内侧叶片220的一个最佳实施例。转子220与内键槽222一起转动。最好为圆形薄片的转子220包括一个具有向内凸出轮齿288的中央腔槽或通孔286,用于同内键槽的沟槽284进行啮合(图15)。当期望或需要时,转子220也可采用其它有效的结构形式。
在一个最佳实施例中,轮齿288为半圆形;在另一个实施例中,轮齿288为有圆角的矩形或方形。在其它实施例中,当期望或需要时,轮齿288也可采用其他有效的结构形式,只要能够提供由转子220到内键槽222间的可靠传动以及可以实现本发明文件所述的一个或多个特色和优点。
转子220用具有适当硬度的软磁材料制作,这样可以减少磨损和提高耐用性。在一个最佳实施例中,转子220采用蓝退火硬碳钢进行制作;在另一个实施例中,转子220采用无晶粒取向的硅钢(电工钢)进行制作。在其它实施例中,当期望或需要时,转子220也可采用其他的软磁材料进行制作,只要能够提供坚固耐用的转子以及可以实现本发明文件所述的一个或多个特色和优点。
转子220的制造材料应具有适当的导磁率和较低的或接近为零的矫顽力,其饱和磁通密度应大于磁流变流体134(图3)的饱和磁通密度。这样,可使设计的电磁铁214重量轻、结构紧凑和耗能小。
在一个最佳实施例中,转子220通过电火花机床进行制造。这样可使加工精度较高,从而避免或减少引起使用者不适的转子220与内键槽222之间的齿隙、游移和冲击。在另一个最佳实施例中,转子220采用冲压法制作。在其它实施例中,当期望或需要时,转子220也可采用其他有效技术进行制造,只要能够为使用者提供自然和安全的步行以及可以实现本发明文件所述的一个或多个特色和优点。
在本发明的一个实施例中,转子220相对于内键槽222侧向固定,即不能在纵轴224(图4)的方向上移动。在这一实施例中,通过在轮齿啮合部注入树脂或胶水、激光焊接、热配合、夹紧连接等手段使转子220固定在内键槽222上。这样,也有助于避免或减少引起使用者不适的转子220与内键槽222之间的齿隙、游移和冲击。
在一个最佳实施例中,参阅图18-19,转子220的结构参数为主直径D181约为4.80厘米(1.890英寸),端部直径D182约为3.678厘米(1.448英寸),直径D183约为3.678厘米(1.448英寸),轮齿曲率半径R181约为1.57毫米(0.062英寸),角θ181约为15度,转子厚度T191约为0.203毫米(0.008英寸)。在其它实施例中,当期望或需要时,转子220也可采用其他的结构和尺寸,只要能够使所提供的假肢膝重量轻、结构紧凑和坚固耐用,以及可以实现本发明文件所述的一个或多个特色和优点。
图20-21表明假肢膝210的一个定子或外侧叶片230的一个最佳实施例。定子230与外键槽232一起转动。最好为圆形薄片的定子230包括一个用于同内键槽222进行非接触配合的中心腔槽或通孔290和一些由周边向外凸出、用于同外键槽的沟槽进行啮合的轮齿292。或者,当期望或需要时,定子230也可采用其它有效的结构形式。
在一个最佳实施例中,轮齿292为半圆形;在另一个实施例中,轮齿292为有圆角的矩形或方形。在其它实施例中,当期望或需要时,轮齿292也可采用其他有效的结构形式,只要能够提供由定子230到外键槽232间的可靠传动以及可以实现本发明文件所述的一个或多个特色和优点。
定子230用具有适当硬度的软磁材料制作,这样可以减少磨损和提高耐用性。在一个最佳实施例中,定子230采用蓝退火硬碳钢进行制作;在另一个实施例中,定子230采用无晶粒取向的硅钢(电工钢)进行制作。在其它实施例中,当期望或需要时,定子230也可采用其他的软磁材料进行制作,只要能够提供坚固耐用的定子以及可以实现本发明文件所述的一个或多个特色和优点。
定子230的制造材料应具有适当的导磁率和较低的或接近为零的矫顽力,其饱和磁通密度应大于磁流变流体134(图3)的饱和磁通密度。这样,可使设计的电磁铁214重量轻、结构紧凑和耗能小。
在一个最佳实施例中,定子230通过电火花机床进行制造。这样可使加工精度较高,从而避免或减少引起使用者不适的定子230与外键槽232之间的齿隙、游移和冲击。在另一个最佳实施例中,定子230采用冲压法制作。在其它实施例中,当期望或需要时,定子230也可采用其他有效技术进行制造,只要能够为使用者提供自然和安全的步行以及可以实现本发明文件所述的一个或多个特色和优点。
在本发明的一个实施例中,定子230相对于外键槽232侧向固定,即不能在纵轴224(图4)的方向上移动。在这一实施例中,通过在轮齿啮合部注入树脂或胶水、激光焊接、热配合、夹紧连接等手段使定子230固定在外键槽232上。这样,也有助于避免或减少引起使用者不适的定子230与外键槽232之间的齿隙、游移和冲击。
在一个最佳实施例中,参阅图20-21,定子230的结构参数为主直径D201约为4.811厘米(1.894英寸),端部直径D202约为4.811厘米(1.894英寸),直径D203约为3.683厘米(1.450英寸),轮齿曲率直径D204约为0.318毫米(0.125英寸),角θ201约为15度,定子厚度T211约为0.203毫米(0.008英寸)。在其它实施例中,当期望或需要时,定子230也可采用其他的结构和尺寸,只要能够使所提供的假肢膝重量轻、结构紧凑和坚固耐用,以及可以实现本发明文件所述的一个或多个特色和优点。
在一个最佳实施例中,转子220和定子230可在假肢膝纵轴224的侧向242(图4)方向上进行滑动或移动。这样,当磁场在垂直于转子和定子叶面的方向上穿过转子220和定子230时,将会产生响应外加磁场的MR阻尼和摩擦阻尼。摩擦阻尼的产生是相邻转子和定子表面接触和摩擦的结果。摩擦阻尼随磁场强度的增加而增加,因为被磁化的转子220和定子230相互吸引,从而增加了相邻转子220和定子230之间的正向压力(在纵轴224的方向上)。这样,本发明假肢膝工作在磁流变(粘性)和摩擦阻尼“混合”的制动模式下。
在一个实施例中,转子和定子间的摩擦阻尼在整个假肢膝的阻尼扭矩中占10%或10%以下。在其它实施例中,当期望或需要时,摩擦阻尼在整个假肢膝阻尼扭矩中所占的比例可大于或小于上述比例,只要能够提供较宽的动态扭矩范围和可以实现本发明文件所述的一个或多个特色和优点。
在本发明假肢膝的一个最佳实施例中,一个或两个侧板216和218可在假肢膝纵轴224的侧向242的方向上进行滑动或移动,从而也可产生摩擦阻尼。每个侧板216或218所产生的摩擦阻尼扭矩在整个阻尼扭矩中所占的比例约为20%或20%以下。在其它实施例中,当期望或需要时,摩擦阻尼在整个假肢膝阻尼扭矩中所占的比例可大于或小于上述比例,只要能够提供较宽的动态扭矩范围和可以实现本发明文件所述的一个或多个特色和优点。
在一个最佳实施例中,转子220和定子230相对于键槽222和232进行侧向(在242的方向上)固定,仅由磁流变流体的粘性发挥制动效应。在磁场强度增加时,相邻转子和定子表面之间的正向压力仍然保持为零或接近为零,在假肢膝的整个阻尼扭矩中不包括摩擦阻尼部分。这种结构的优点在于可提高产品的疲劳寿命,因为由于摩擦残生的磨损得到避免或减少。
或者,在期望和需要时,使某些转子220和定子230侧向固定而使另一些转子220和定子230可做侧向运动,只要能够使所提供的假肢膝自然和安全以及可以实现本发明文件所述的一个或多个特色和优点。
在一个最佳实施例中,本发明假肢膝210中包括交错配置的40个转子220和41个定子230,从而具有80个MR流体可以驻留的流通介面或流体间隙。在另一个最佳实施例中,转子220的数目为10-100,定子230的数目为11-101,磁场存在时可产生制动效应的MR流体介面数为定子数的两倍。在又一个实施例中,转子220的数目为1-100;在再一个实施例中,定子230的数目为1-100。在其它实施例中,当期望或需要时,也可选择和采用其它数量的转子220和定子230或流通介面,只要能够提供较宽的动态扭矩和可以实现本发明文件所述的一个或多个特色和优点。
在这种情况下,感生应力或粘性扭矩正比于一对转子和定子间的交迭面积乘以2倍的转子数(即磁场存在时可产生制动扭矩的MR流体相对于转子的流面)。这样,通过选择或预定转子220和定子230的数目或调节相邻转子220和定子230之间的配合面或交迭面面积,就可使粘性扭矩或感生应力得到预期的升高或降低。带来的另一个好处是可控制MR驱动假肢膝210的整体尺寸-其径向尺寸和侧向尺寸。例如,通过适当选择液流介面数和剪切面的交迭面积,在提供同样粘性扭矩的前提下,可将假肢膝在径向上做得更大一些和在侧向上做得更纤细一些。
希望相邻转子220和定子230间的MR流体间隙越小越好,因为饱和整个MR流体间隙所需的功率与间隙尺寸强相关。因此,间隙尺寸的减少会使MR驱动的制动器210的效率提高和功耗减小。
MR流体间隙的选择还要考虑使相邻转子220和定子230之间在零磁场下不会产生摩擦扭矩,即在没有外加磁场时,在相邻转子和定子间只存在因剪切MR流体而产生的粘性扭矩。
这样,在一个最佳实施例中,通过MR流体间隙的最小化而降低了饱和MR流体所需的功率,同时还提高了假肢膝的动态扭矩范围。在这一实施例中,间隙没有减小到一定程度,相邻转子和定子的表面间在零磁场下存在正向压力进而存在摩擦。转子和定子间没有摩擦使膝关节可自由摆动,从而可提供较宽的动态范围。在此应提起注意,零磁场下的粘性阻尼并不随着流体间隙的减小而急剧增加,因为MR流体具有一种剪切率稀薄化的性质,即其黏度随着剪切率的提高而降低。
在一个最佳实施例中,相邻转子220和定子230间的MR流体间隙的尺寸或宽度约为40微米或更小;在另一个实施例中,相邻转子220和定子230间的MR流体间隙宽度约为10-100微米。在其他实施例中,当期望或需要时,也可使MR流体间隙具有其它宽度或尺寸,只要能使所提供的假肢膝具有较高的能源效率和较宽的动态扭矩范围,以及可实现本发明文件所述的一个或多个特色和优点。
在一个最佳实施例中,本发明假肢膝只包括一个与外键槽相连的定子230,没有配置转子220。这样,在定子230和芯体侧板216和218间建立了两个MR流体间隙。如上所述,MR流体间隙越小越好。
按本发明的另一个实施例,由管状的转子和定子取代了叶片形的转子和定子。所述管状转子和定子包括一些同心交错配置的由软磁材料制成的薄壁圆筒管。管间间隙中驻留有假肢膝转动时受到剪切的磁流变流体。激励MR流体的磁通向外辐射。磁回路通过软磁材料制成的外罩和中心芯体闭合。这种器件产生的粘性扭矩为各对管状转子和定子所产生粘性扭矩的总合。为减少重量、体积和能耗,在制造成本和磁流变流体剪切强度允许的范围内,管状转子和定子做得越薄越好。最好有一个或多个管状转子和定子在径向是可以移动的,从而可为假肢膝提供摩擦扭矩成分。
磁流变流体如前所述,磁流变流体中包含悬浮的铁磁材料颗粒。响应外施磁场,这些悬浮的颗粒构成扭矩生成链。依据外施磁场的强度,磁流变(MR)流体产生流变或黏度变化。这样,一定体量流体中产生的黏度变化决定了所产生的扭矩或剪切应力的大小,进而决定了假肢膝210提供的阻尼或制动程度。MR流体的体量黏度一般随外加磁场强度的增加而增加。通过控制磁场的强度,可迅速和准确地控制假肢的转动,例如控制其在站立相和摆动相的屈曲和伸展,从而为被截肢使用者提供更自然和安全的步态。
在本发明假肢膝的最佳实施例中,可采用市场上可见的任何磁流变流体或磁控介质作为MR流体。所述MR流体最好具有高磁通量、低磁阻和低黏度,同时要具有较大的磁感剪切应力,从而可为本发明假肢膝提供较宽的动态扭矩范围。
位于转子和定子表面之间的MR流体包含载流流体和尺度在微米量级的铁磁材料颗粒。载流流体最好具有剪切率稀薄化性质,即载流流体的黏度随着剪切率的上升而降低。这样,可减少零磁场(即在电磁铁未通电时)下剪切每对转子和定子间MR流体所产生的粘性扭矩,从而可提供较宽的工作扭矩范围。适合于采用作为载流流体的材料包括硅油、碳氢化合油和水基流体等。
外键槽和叉状支架图22-25表明假肢膝210外键槽232的一个最佳实施例。外键槽232最好为圆筒形并包括一个用于同定子230、侧板216和218以及轴承226和228配合的中心圆筒形腔槽或通孔284。当期望或需要时,也可采用其它有效形式的外键槽230及其中心腔槽294。
在腔槽294的中央表面有一些等距配置的纵向沟槽296,用于同定子230的相应轮齿相互啮合。在一个最佳实施例中,沟槽296为半圆形;在另一个实施例中,沟槽296为带有圆角的矩形或方形。在其它实施例中,当期望或需要时,沟槽296也可采用其它的形式,只要能使定子230与外键槽232进行良好的啮合和可实现本发明文件所述的一个或多个特色和优点。
外键槽的腔槽294在其沟槽296的两侧最好有一对环形的凸肩或台阶298,分别用于同芯体侧板216和218进行相互配合。在一个最佳实施例中,在腔槽294内配置了两个用于接受和放置环形密封圈的环形沟槽,以便在转动的外键槽232与可转动的侧板216和218之间提供动态密封。外键槽的腔槽294进一步包括一对位于其凸肩298两端的环形的凸肩或台阶300,用于接受相应的轴承226和228并与其配合。
在一个最佳实施例中,外键槽在其顶端304有一个锥销或连接件302,以便于假肢膝210同被截肢者残肢套的连接。锥销连接件302最好在残肢套与外键槽232和定子230之间提供无转动连接。或者在期望和需要时,也可采用其它形式的连接件,只要能为假肢膝与被截肢者的残肢之间提供可靠的连接以及可实现本发明文件所述的一个或多个特色和优点。
在一个最佳实施例中,锥销302由钛或钛合金制作,外键槽232的其余部分由7075-T6铝合金制作。这样,经阳极化处理的铝合金表面的硬度较高,可防止外键槽的沟槽296的表面磨损,从而可避免或减少齿隙游移和冲击。在另一个实施例中,外键槽232采用钛或钛合金进行制造;在又一个实施例中,外键槽232由竟阳极化处理的7075-T6铝合金进行制造。在其它实施例中,当期望或需要时,外键槽232也可采用其它金属、合金、塑料、陶瓷等磁疗进行制造,只要能提供具有足够强度、重量轻、耐用和非磁性的外键槽232和可实现本发明文件所述的一个或多个特色和优点。
外键槽232通过机械加工制作。在一个最佳实施例中,将带螺纹的钛块拧入外键槽232顶端304带螺纹的腔槽中,二者固定后用机械加工的方法形成锥销302制造。在其它实施例中,当期望或需要时,外键槽232也可采用铸造、锻造、模压等其它工艺进行制造,只要能使所提供的假肢膝重量轻、结构紧凑、坚固耐用,以及可实现本发明文件所述的一个或多个特色和优点。
在一个最佳实施例中,参阅图23,外键槽232的结构参数为主直径D231约为5.994厘米(2.360英寸),直径D232约为4.813厘米(1.895英寸),直径D233约为4.811厘米(1.894英寸),沟槽曲率直径D234约为3.20毫米(0.126英寸),长度L231约为8毫米(0.315英寸),角θ231约为33.7度,角θ232约为15度,角θ233约为15度,曲率半径R231约为2.40厘米(0.945英寸),曲率半径R232约为0.762毫米(0.030英寸)。在其它实施例中,当期望或需要时,外键槽232也可采用其它的结构参数,只要能使所提供的假肢膝重量轻、结构紧凑和坚固耐用,以及可实现本发明文件所述的一个或多个特色和优点。
在另一个最佳实施例中,参阅图24-25,外键槽232的结构参数为直径D241约为4.00厘米(1.575英寸),直径D251约为5.715厘米(2.250英寸),直径D252约为5.398厘米(2.125英寸),长度L251约为7.861厘米(3.095英寸),长度L252约为1.067厘米(0.420英寸),宽度W251约为4.171厘米(1.642英寸),宽度W252约为1.958厘米(0.771英寸),宽度W253约为6.35毫米(0.250英寸),宽度W254约为4.72毫米(0.186英寸),曲率半径R251约为3.05毫米(0.120英寸)。在其它实施例中,当期望或需要时,外键槽232也可采用其它的结构参数,只要能使所提供的假肢膝重量轻、结构紧凑和坚固耐用,以及可实现本发明文件所述的一个或多个特色和优点。
磁流变驱动的假肢膝210的叉状支架236和238(图4)在机械上分别与轴承226和228相连,可将转动传到假肢的胫骨部分。采用螺纹或其他连接件或固紧件306将叉状支架236和238与被截肢者的假肢胫骨部分连接起来。
安装支架236和238最好采用经阳极化处理的7075-T6铝合金进行制作。在其它实施例中,当期望或需要时,安装支架236和238也可采用其它金属、合金、塑料、陶瓷等材料进行制造,只要能提供具有相当强度、重量轻、坚固耐用和无磁性的叉状安装支架,以及可实现本发明文件所述的一个或多个特色和优点。
在一个最佳实施例中,叉状安装支架236和238通过机械加工进行制造。在其它的实施例中,安装支架236和238也可采用铸造、锻造、模压等工艺进行制造,只要能使所提供的假肢膝重量轻、结构紧凑和坚固耐用,以及可实现本发明文件所述的一个或多个特色和优点。
在一个最佳实施例中,如图4所示,假肢膝进一步包括一个弯曲缓冲限动系统或部件246。通过在物理上限制外侧支架236和238与外键槽232之间的转动,弯曲限动系统可控制允许的最大屈曲角度,从而可控制假肢膝关节的转动。
弯曲限动系统246(图4)包括一些条带型限动结构312、314和316。限动结构312和314采用螺钉等固定在外键槽232成一定角度的外侧表面308上(图23),限动结构316通过螺钉等固定在侧面叉状支架成一定角度的外侧表面333和334上。
当假肢膝210转动到预定的最大弯曲角度时,限动结构316与314相互接触,从而防止或限制了膝关节的继续转动。限动结构314最好采用弹性材料制作,以提供冲击吸收和缓冲作用。在期望和需要时,本发明实施例中的假肢膝还可包括冲击吸收式的伸展限动结构。
在一个最佳实施例中,本发明弯曲限动结构允许的最大弯曲角度约为140度;在另一个实施例中,本发明限动结构允许的最大弯曲角度约为125-150度。在其它实施例中,允许的最大弯曲角度可有所变化,取决于环境条件、所进行的活动和活动的激烈程度等因素。
在一个最佳实施例中,限动结构314由橡胶制作,限动结构312和316由钛或钛合金制作。在其它实施例中,当期望或需要时,限动结构312、314和316也可采用其它材料进行制作,只要能提供具有适当强度、耐用、重量轻和有缓冲作用的弯曲限动以及可实现本发明文件所述的一个或多个特色和优点。
在一个最佳实施例中,限动结构312、314和316的长度约为6.0厘米(2.263英寸),宽度约为5.99毫米(0.236英寸)。在其它实施例中,当期望或需要时,限动结构312、314和316也可采用其它的结构尺寸,只要能使所提供的假肢膝重量轻、结构紧凑和坚固耐用,以及可实现本发明文件所述的一个或多个特色和优点。
在一个最佳实施例中,假肢膝包括一个转角传感电位器322(图4)。电位器322与一个安装板326和一个杆件324相连。安装板326通过螺钉328和垫片330与叉状安装支架238相连。杆件324的一端332通过适当的螺钉等连接件连接到支架238成一定角度的外表面334。
在本发明的一个最佳实施例中,假肢膝210进一步包括一个有助于大腿伸直的伸展助动器,通过施加控制扭矩(力)促进大腿的伸展。在本发明的假肢膝中,可采用任何本领域已知的伸展助动器件,例如弹簧偏置的助动器件等。
在本发明的最佳实施例中,最好提供一个反馈控制系统来控制和监测假肢膝的操作。所述控制系统包括一个中央控制器或微处理器,一个存储器,一个或多个有关力、扭矩和角度的传感器,一个电源(例如电池等)以及其它相关的硬件和软件。还应采用一个适当的外罩或外壳来保护控制系统和假肢膝的各个部件。在外壳或外罩的外面应进行适当的美化包装。
运行特性和优点本发明最佳实施例提供了一种电子控制的磁流变驱动的假肢膝,它可对膝关节的运动作出迅速反应和进行适时控制,坚固耐用,其价格在经济上也是使用者可以承担的。本发明最佳实施例所提供的优点包括提高假肢的稳定性,改善步态平衡,提高使用者的能量效率,能够模拟和基本恢复天然膝关节的动力学机制等。
在假肢膝工作的过程中,通过选择或预定的电流或电压信号使电磁铁或电磁线圈214产生一个可变磁场,所述磁场垂直通过一些转子220和定子230的叶面以及相邻转子和定子间的MR流体或液膜,从而产生可精确控制假肢膝210转动的可变阻尼扭矩(或转动阻力)。如前所述,在一个实施例中,阻尼扭矩中包括摩擦阻尼部分。
最佳实施例中的假肢膝可提供迅速和准确的反应。MR流体中的颗粒材料可在几个微秒内对外加磁场作出反应,从而可对流体切变和假肢膝的运动进行实时控制。这样,就可使被截肢者能够以更自然的步态安全行走。
本发明的优点是通过剪切MR流体产生粘性阻尼扭矩,因此在本发明假肢膝中不会建立起压力及压力变化或产生的压力可以忽略不计。这样就消除或减少了出现流体泄漏和失效的可能性,增加了安全性。同时,也不需要配置压力轴承等较复杂和昂贵的部件来保证可靠的密封。
另外一个优点是,相邻转子220和定子230之间的一些剪切面或流通介面起着扭矩倍增器的作用,不用配置另外的传动和辅助部件就可使粘性扭矩(和摩擦扭矩)逐步增加到预期的最大值。此外,通过灵活调节相邻转子220和定子230之间的交迭面面积,也可使最大粘性扭矩(和摩擦扭矩)得到上升或降低。这样,当期望或需要时,就可提供预期的较宽扭矩或转动阻尼范围,从而在不增加系统尺寸、重量和复杂性的情况下提高了本发明的适用性。
在一个最佳实施例中,本发明假肢膝提供的最大动态扭矩约为40牛顿-米;在另一个实施例中,本发明假肢膝提供的动态扭矩约为0.5-40牛顿-米;在又一个实施例中,本发明假肢膝提供的动态扭矩约为1-50牛顿-米。在其它的实施例中,当期望或需要时,本发明假肢膝也可有效地提供其它的动态扭矩范围,实现本发明文件所述的一个或多个特色和优点。
在一个最佳实施例中,本发明假肢膝可在完全伸展到弯曲约140度的范围内精确控制膝关节在伸展和弯曲中的转动;在另一个实施例中,本发明假肢膝可在完全伸展到弯曲角约为125-150度的范围内精确控制膝关节在伸展和弯曲中的转动。在其它实施例中,当期望或需要时,本发明假肢膝也可为膝关节的转动有效提供其它的角度范围,实现本发明所述的一个或都个特色和优点。
本发明的再一个优点是,相邻转子220和定子230之间MR流体间隙的细小化可提供较高的最大扭矩、较宽的动态扭矩范围和较少的能耗-约为10瓦或10瓦以下。这增加了本发明MR驱动假肢膝的有效性和实用性,同时由于可采用较低功率和较简单的电源而可节省费用。
其它实施例图26-51表明具有本发明特色和优点的几个最佳实施例。为简明起见,以下仅对这些实施例的某些特性和优点进行说明,从其结构图和以上实施例的说明可以了解它们的其他特色和优点。
图26-28表明本发明磁流变驱动假肢膝中心芯体412的一个实施例。芯体412包括锥面336和位于其芯体部分452和454端部的凸肩或台阶338,以便同芯体侧板416和418进行机械连接和配合(如图29-34所示)。这样,芯体412随侧板416和418一起转动。
芯体412最好由具有高饱和磁通的铁钴合金材料制作。在一个最佳实施例中,芯体412采用德国Hanau Vacuumschmelze生产的Vacoflux 50进行制造。
芯体412最好通过机械加工制造,然后在干燥的氢气气氛中进行热处理以得到良好的磁性能。在干燥的氢气气氛中,使芯体412在820摄式度下退火5小时然后在干燥的氢气气氛中,使芯体412在150摄式度下冷却1小时,使其温度达到200摄式度。在热处理过程中,应注意避免受到污染,采用丙酮或其他适当的清洁剂将油污、指印等清除干净。在热处理中,芯体412最好先与芯体侧板416和418分开,以免出现部件间焊在一起的情形。
在一个最佳实施例中,参阅图27-28,芯体412的结构参数为长度L271约为2.517厘米(0.991英寸),长度L272约为5.56毫米(0.220英寸),长度L273约为0.51毫米(0.020英寸),长度L274约为0.51毫米(0.020英寸),直径D271约为1.424厘米(0.5605英寸),直径D272约为1.415厘米(0.557英寸),角θ271约为10度,直径D281约为1,88厘米(0.740英寸)。在其它实施例中,当期望或需要时,芯体412也可采用其它有效的结构参数,只要能使所提供的假肢膝重量轻、结构紧凑和坚固耐用,以及可实现本发明文件所述的一个或多个特色和优点。
图29-33表明本发明磁流变驱动假肢膝芯体侧板416的一个最佳实施例。芯体侧板416具有一个用于同芯体端部452压配合的中央腔槽或通孔456(图26-28)和三个等距环形配置的通孔458,用于接受螺钉等连接件以便将假肢膝的各个有关部件组装起来。芯体侧板416进一步包括一个环型槽356,用于同电磁铁414的法兰进行连接和配合(图37-39)。这样,电磁铁或电磁线圈414便会随芯体侧板416一同转动。
在芯体侧板416的内面和外面上最好有一个相应的锥面部分470和471,这样可以减少重量、节省材料和提供便于装配的余隙。采用配置在外键槽沟槽中的环形密封圈,使转动的芯体侧板416和外键槽间形成动态密封。
芯体侧板416由具有高饱和磁通铁钴合金制作。在一个最佳实施例中,芯体侧板416采用德国Hanau Vacuumschmelze生产的Vacoflux 50进行制造。
芯体侧板416最好通过机械加工制造,然后在干燥的氢气气氛中进行热处理以得到良好的磁性能。在干燥的氢气气氛中,使芯体侧板416在820摄式度下退火5小时;然后在干燥的氢气气氛中,使芯体侧板416在150摄式度下冷却1小时,使其温度达到200摄式度。在热处理过程中,应注意避免受到污染,采用丙酮或其他适当的清洁剂将油污、指印等清除干净。在热处理中,芯体侧板416最好先与芯体412分开,以免出现部件间焊在一起的情形。
在一个最佳实施例中,参阅图30-33,芯体侧板416的结构参数为直径D301约为3.353厘米(1.320英寸),直径D302约为2.461厘米(0.969英寸),直径D311约为2.845厘米(1.120英寸),直径D312约为2.43厘米(0.958英寸),直径D313约为2.29厘米(0.900英寸),孔径D314约为2.95毫米(0.116英寸),角θ311的典型值约为120度,直径D321约为4.80厘米(1.890英寸),直径D322约为3.30厘米(1.300英寸),直径D323约为1.88厘米(0.740英寸),宽度W321约为5.59毫米(0.220英寸),宽度W322约为1.27毫米(0.050英寸),宽度W331约为2.54毫米(0.100英寸),宽度W332约为0.508毫米(0.020英寸),宽度W333约为1.52毫米(0.060英寸),曲率半径R331约为6.35毫米(0.250英寸),曲率半径R332约为0.254毫米(0.010英寸),角θ331约为30度,角θ332约为10度。在其它实施例中,当期望或需要时,芯体侧板416也可采用其它有效的结构参数,只要能使所提供的假肢膝重量轻、结构紧凑和坚固耐用,以及可实现本发明文件所述的一个或多个特色和优点。
图34-36表明本发明磁流变驱动假肢膝第二芯体侧板418的一个最佳实施例。侧板418基本与侧板416相同,只是其中央腔槽或通孔457适合于同芯体端部454(图26-28)进行连接与压配合,它包括的一对通孔472用于通过导线以便连接本发明假肢膝的磁场线圈414(图37-39)。
在一个最佳实施例中,参阅图35-36,芯体侧板418的结构参数为长度L351约为1.14厘米(0.448英寸),长度L352约为1.05厘米(0.413英寸),孔径D355约为1.78毫米(0.070英寸),直径D363约为1.42厘米(0.560英寸)。侧板418的其它尺寸D351、D352、D353、D354、θ351、D361、D362、W361和W362与芯体侧板416的相应参数D311、D312、D313、D314、θ311、D321、D322、W321和W322相同,如图31和32所示和如上所述。在其它实施例中,当期望或需要时,芯体侧板418也可采用其它有效的结构尺寸,只要能使所提供的假肢膝重量轻、结构紧凑和坚固耐用,以及可实现本发明文件所述的一个或多个特色和优点。
图37-39表明本发明磁流变驱动假肢膝电磁铁或电磁线圈414的一个最佳实施例。磁场线圈414包括一个两端带法兰342和344的绕线管340,与引线352相连的导线350绕在绕线管340上。连接电池或其它电源的引线352从绕线管法兰344中的一对通孔346和348中通过。
电磁线圈414为圆筒形,其中央圆筒形的腔槽358适合于同芯体412进行配合(图26-28),从而在机械上将电磁线圈414和芯体412连接起来。法兰342和344可与相应芯体侧板416和418的沟槽相互配合(图29-36),从而在机械上将电磁线圈414与侧板416和418连接起来。这样,电磁线圈414和芯体412会随芯体侧板416和418一起转动。
绕线管440最好采用聚苯撑硫化物制作,其温度范围约为200摄式度。线圈采用具有8.03欧姆电阻的30AWG铜线卷绕340圈,所用直流电源的功率13.7瓦、电压10.5伏。线圈绝缘采用温度范围为155摄式度的适当绝缘材料。引线352为24AWG标准导线,外敷聚四氟乙烯绝缘层,长约8英寸,内芯镀锡、截面约0.25英寸。
在一个最佳实施例中,参阅图38-39,电磁线圈的结构参数为长度L381约为1.138厘米(0.448英寸),长度L382约为1.05厘米(0.413英寸),宽度W381约为0.762毫米(0.030英寸),曲率半径R381约为0.381毫米(0.015英寸),直径D381约为0.762毫米(0.030英寸),直径D391约为2.45厘米(0.965英寸),直径D392约为1.89厘米(0.745英寸),直径D393约为2.02厘米(0.795英寸),长度L391约为1.95厘米(0.766英寸),长度L392约为1.74厘米(0.686英寸),长度L393约为1.02毫米(0.040英寸),长度L394约为1.02毫米(0.040英寸),厚度T391约为0.635毫米(0.025英寸).在其它实施例中,当期望或需要时,电磁线圈414也可采用其它有效的结构尺寸,只要能使所提供的假肢膝重量轻、结构紧凑和坚固耐用,以及可实现本发明文件所述的一个或多个特色和优点。
图40-44表明本发明磁流变驱动假肢膝内键槽422的一个最佳实施例。内键槽422包括一些便于同转子420相应轮齿啮合的纵向齿槽484(图45-47)和一个便于同电磁线圈414(图37-39)连接配合的中央腔槽476。最好,内键槽422包括9个等距间隔配置的带圆角的矩形或方形齿槽484。
内键槽的腔槽476最好包括三个与芯体侧板416和418相应螺钉孔对准配合的纵向通道478(图31-35),用于接受螺帽等连接件和将内键槽422与芯体侧板416和418连接起来。内键槽的腔槽476进一步包括一些纵向的凹进部分360,以便减少内键槽422的重量,从而减少假肢膝的重量。
内键槽的端部具有用于接受环形密封圈的法兰480,以便为可转动的内键槽422和侧板416及418间提供静态密封。在端部与其相邻处还提供了一个台阶、凸肩或法兰362,以便在假肢膝组装时将环形密封圈装在内键槽422上。
内键槽422最好采用电火花机床进行制造。内键槽422最好由钛或钛合金制作,以便能够提供非铁磁性的具有适当强度、硬度和重量轻的啮合面,以便与转子420啮合和进行传动。内键槽422采用6AI-4V钛合金进行制作则更好。
在一个最佳实施例中,参阅图41-44,内键槽422的结构参数为直径D411约为2.85厘米(1.120英寸),直径D412约为2.46厘米(0.970英寸),通道直径D413约为2.95毫米(0.116英寸),角θ411的典型值约为120度,角θ412的典型值约为40度,长度L421约为2.24厘米(0.881英寸),长度L422约为1.96厘米(0.771英寸),曲线长度L433约为1.88毫米(0.074英寸),曲线长度L434约为8.92毫米(0.351英寸),直径D431约为1.43英寸,直径D432约为1.350英寸,直径D433约为1.140英寸,余隙宽度W431约为0.0254毫米(0.001英寸),曲率半径R431、R432、R433、R434、R435分别约为1.27毫米(0.015英寸)、1.27毫米(0.015英寸)、0.762毫米(0.030英寸)、0.381毫米(0.015英寸)和0.381毫米(0.015英寸),角θ431约为20度,长度L441约为0.055英寸,长度L442约为0.381毫米(0.015英寸),长度L443约为0.127毫米(0.005英寸),长度L444约为0.127毫米(0.005英寸),直径D441约为3.345厘米(1.317英寸),直径D442约为3.226厘米(1.270英寸),曲率半径R441约为0.20毫米(0.008英寸),曲率半径R442约为0.51毫米(0.020英寸)。在其它实施例中,当期望或需要时,内键槽422也可采用其它有效的结构尺寸,只要能使所提供的假肢膝重量轻、结构紧凑和坚固耐用,以及可实现本发明文件所述的一个或多个特色和优点。
图45-47表明本发明磁流变驱动假肢膝转子或内侧叶片420的一个最佳实施例。转子420为圆环形薄片,其中央腔槽或通孔486具有一些便于同内键槽的齿槽484(图41)啮合的向内凸出的轮齿488。最好,转子420包括等距间隔配置的9个带圆角的矩形或方形轮齿488。
转子420最好由具有高饱和磁通密度和硬度较高的软磁材料制作,例如采用兰退火碳钢。转子420最好采用电火花机床进行制造。这样,可保证具有较高的加工精度,避免或减少在转子420和内键槽422之间出现可能引起使用者不适的齿隙、游移和冲击。
在一个最佳实施例中,参阅图45-47,转子420的结构参数为外径D451约为4.851厘米(1.910英寸),厚度T461约为0.203毫米(0.008英寸),曲线长度L471约为9.12毫米(0.359英寸),曲线长度L472约为1.73毫米(0.068英寸),最大内径D471约为3.642厘米(1.434英寸),最小内径D472约为3.439厘米(1.354英寸),余隙宽度W471约为0.0254毫米(0.001英寸),曲率半径R471约为0.508毫米(0.020英寸),曲率半径R472约为0.254毫米(0.010英寸),角θ471约为40度。在其它实施例中,当期望或需要时,转子420也可采用其它有效的结构尺寸,只要能使所提供的假肢膝重量轻、结构紧凑和坚固耐用,以及可实现本发明文件所述的一个或多个特色和优点。
在一个最佳实施例中,转子最大外径D451与其最大内径D471之比为1.3;在另一个实施例中,这一比例为1.2-5;在又一个实施例中,这一比例为1.1-10.在其它实施例中,当期望或需要时,转子外径与内径的比例也可采用其它值,只要能使所提供的假肢膝重量轻、结构紧凑和坚固耐用,以及可实现本发明文件所述的一个或多个特色和优点。
图48-50表明本发明磁流变驱动假肢膝定子或外侧叶片430的一个最佳实施例。定子430为圆环形薄片,其中央腔槽或通孔490适合于非接触式接受内键槽422并具有一些由其周边向外凸出的轮齿492,所述轮齿492适合于同假肢膝可转外键槽的齿槽相啮合。最好,定子430包括等距间隔配置的9个带圆角的矩形或方形轮齿492。
定子430最好由具有高饱和磁通密度和硬度较高的软磁材料制作,例如采用兰退火碳钢。定子430最好采用电火花机床进行制造。这样,可保证具有较高的加工精度,避免或减少在定子430和外键槽之间出现可能引起使用者不适的齿隙、游移和冲击。
在一个最佳实施例中,参阅图48-50,定子430的结构参数为最大内径D481约为3.658厘米(1.440英寸),厚度T491约为0.203毫米(0.008英寸),曲线长度L501约为1.18厘米(0.464英寸),曲线长度L502约为3.66毫米(0.144英寸),最大外径D501约为5.07厘米(1.996英寸),最小外径D502约为4.867厘米(1.916英寸),余隙宽度W501约为0.0254毫米(0.001英寸),曲率半径R501约为0.508毫米(0.020英寸),曲率半径R502约为0.254毫米(0.010英寸),角θ501约为20度。在其它实施例中,当期望或需要时,定子430也可采用其它有效的结构尺寸,只要能使所提供的假肢膝重量轻、结构紧凑和坚固耐用,以及可实现本发明文件所述的一个或多个特色和优点。
在一个最佳实施例中,定子最小外径D502与其最大内径D481之比为1.3;在另一个实施例中,这一比例为1.2-5;在又一个实施例中,这一比例为1.1-10。在其它实施例中,当期望或需要时,转子外径与内径的比例也可采用其它值,只要能使所提供的假肢重量轻、结构紧凑和坚固耐用,以及可实现本发明文件所述的一个或多个特色和优点。
图51表明具有本发明另一最佳实施例特色和优点的磁流变驱动的假肢膝510。在本实施例中,磁回路通过假肢膝510的外部。这种结构可使所设计的产品重量更轻、结构更为紧凑。当期望或需要时,也可选用或构造其它适当的磁回路形式,只要能实现本发明文件所述的一个或多个特色和优点。
参阅图51,在假肢膝510中,电磁铁或电磁线圈514配置在一些交错配置的转子(内侧叶片)520和定子(外侧叶片)530与软磁外罩(外壳)之间,对其进行激励以产生磁场540。磁场540的有效部分或功能部分通过(在侧向542)转子520、定子530及驻留在它们之间间隙中的磁流变流体。磁场540的磁回路部分通过软磁侧板516向外辐射、侧向通过假肢膝的外部512和通过第二软磁侧板518向内聚敛。
以上,对本发明的部件和所涉及的技术进行了相当程度的祥述,但熟悉本门技术的人们都会了解,在不超出本发明所申明的权利要求的范围和要义下,对上述本发明的具体设计、结构和方法作出增减和修改是可能的。应当理解,本发明不局限于为说明起见而举出的一些实施例,其范围仅能由权利要求所规定。
权利要求
1.一种可迅速和准确控制下肢运动的磁流变驱动假肢膝,包括由软磁材料制作并构成磁回路的一个芯体和一对侧板;一些交错配置的由软磁材料制作的转子和定子,在所述转子和定子间形成的间隙中驻留有假肢膝转动时受到剪切的磁流变流体;一个配置在所述芯体与所述转子和定子间的电磁铁,所述电磁铁响应电信号可产生一个控制所述磁流变流体黏度变化的可变磁场;以及连接所述转子和所述假肢膝胫骨部分的一对轴承,用于将所述假肢膝的阻尼扭矩传动到所述假肢膝的胫骨部分。
2.如权利要求1所述假肢膝,其中至少一个所述转子和定子可在所述假肢膝纵轴的侧向进行移动,从而可使相邻转子和定子产生机械接触。
3.如权利要求1所述假肢膝,其中所述芯体和侧板由具有高饱和磁通的铁钴合金制作。
4.如权利要求1所述假肢膝,其中所述转子和定子由兰退火碳钢制作。
5.如权利要求1所述假肢膝,其中所述转子和定子为环型薄片。
6.如权利要求5所述假肢膝,其中所述转子的外径与内径之比约为1.3。
7.如权利要求5所述假肢膝,其中所述转子的外径与内径之比约为1.1-10。
8.如权利要求5所述假肢膝,其中所述定子的外径与内径之比约为1.3。
9.如权利要求5所述假肢膝,其中所述定子的外径与内径之比约为1.1-10。
10.如权利要求1所述假肢膝,其中所述转子和定子的厚度约为0.2毫米(0.008英寸)。
11.如权利要求1所述假肢膝,其中所述一些转子为40个所述转子。
12.如权利要求1所述假肢膝,其中所述一些定子为41个所述定子。
13.如权利要求1所述假肢膝,其中所述磁流变流体包括悬浮在承载流体中的尺度约为1微米的可极化铁粒。
14.一种用于阻尼假肢膝关节转动的可控磁流变制动器,包括一些相对于所述假肢膝转动纵轴同心配置、彼此交错和有间隔的可磁化转子和定子;驻留在所述转子和定子间形成的一些间隙中的磁流变流体;一个可响应外加电信号产生穿过所述转子、定子和磁流变流体的可变磁场的电磁铁;在上述结构下,剪切驻留在所述转子和定子间所形成的间隙中的所述磁流变流体可产生精确控制所述假肢膝转动的可变扭矩输出。
15.如权利要求14所述磁流变制动器,其中至少一个所述转子和定子可相对于所述纵向转轴进行侧向移动,使所述可变的扭矩输出中包括粘性剪切和摩擦成分。
16.如权利要求14所述磁流变制动器,其中所述转子和定子有硅钢制作。
17.如权利要求14所述磁流变制动器,其中所述转子和定子为圆形薄片。
18.如权利要求14所述磁流变制动器,其中所述转子和定子为圆管形结构。
19.如权利要求14所述磁流变制动器,其中所述一些转子包括1-100个所述转子。
20.如权利要求14所述磁流变制动器,其中所述一些定子包括1-101个所述定子。
21.如权利要求14所述磁流变制动器,其中所述转子和定子间的间隙约为40微米。
22.如权利要求14所述磁流变制动器,其中所述转子和定子间的间隙约为10-100微米。
23.如权利要求14所述磁流变制动器,其中所述转子和定子间的间隙为40个。
24.如权利要求14所述磁流变制动器,其中所述电磁铁包括绕有线圈的绕线筒。
25.如权利要求24所述磁流变制动器,其中所述线圈为340匝铜线。
26.如权利要求14所述磁流变制动器,其中所述可变扭矩输出范围约为0.5-40牛顿米。
27.如权利要求14所述磁流变制动器,其中所述磁流变制动器控制假肢膝转动的角度达125-150度。
28.一种可产生较宽动态扭矩范围的电子控制的假肢膝,包括一些铁磁材料制作的转子,所述转子相对于所述假肢膝的纵向转轴可进行转动和侧向移动;一些与所述转子交替配置并同其形成间隙的铁磁材料定子,所述定子可相对于所述假肢膝的转轴进行侧向移动;驻留在所述转子和定子间所形成的间隙中的流体,所述流体响应外加磁场可产生流变学变化;这样,激励所述磁场可产生对假肢膝转动的可控和可变阻尼扭矩。
29.如权利要求28所述假肢膝,其中所述流体为磁控流体。
30.如权利要求28所述假肢膝,其中所述流体为磁流变流体。
31.如权利要求28所述假肢膝,其中所述假肢膝阻尼扭矩中包括摩擦阻尼成分。
32.如权利要求28所述假肢膝,其中所述摩擦阻尼扭矩成分小于所述假肢膝总阻尼扭矩的10%。
33.一种假肢器具,包括如权利要求28所述假肢膝;一个机械上可与所述假肢膝配合并适合于接受被截肢者残留肢的残留肢套;一个机械上可同所述假肢膝配合的假肢胫骨部分;和一个机械上可与所述假肢胫骨部分配合的假肢足。
34.一种可转动的假肢器具,包括一个可转动的内键槽;一些与所述内键槽相互啮合的转子;一些与所述转子交替配置的定子;一个与所述定子相互啮合的外键槽;以及驻留在所述转子和定子间所形成的密封间隙中的磁控介质,所述介质响应外加磁场可产生可控的流变学变化并使剪切所述介质的所述转子的转动受到精确控制,从而对所述假肢膝的转动产生可变阻尼,使被截肢的假肢使用者具有更自然的步态。
35.如权利要求34所述假肢膝,其中所述转子和定子由磁性材料制作。
36.如权利要求34所述假肢膝,其中所述磁控介质为磁流变流体。
37.如权利要求34所述假肢膝,其中所述内键槽包括一些纵向的齿槽。
38.如权利要求37所述假肢膝,其中所述转子包括一些可与所述内键槽齿槽啮合的轮齿。
39.如权利要求34所述假肢膝,其中所述外键槽包括一些纵向的齿槽。
40.如权利要求39所述假肢膝,其中所述定子包括一些可与所述外键槽齿槽啮合的轮齿。
41.如权利要求34所述假肢膝,其中所述转子和定子之间的间隙约为40微米。
42.如权利要求34所述假肢膝,其中所述内键槽由钛合金制作。
43.如权利要求34所述假肢膝,其中所述外键槽由经阳极化处理的铝合金制作。
44.如权利要求34所述假肢膝,其中所述外键槽包括一个便于所述假肢膝同所述残留肢套连接的锥形结构。
45.如权利要求34所述假肢膝,进一步包括一对用于进行所述假肢膝到所述假肢胫骨部分传动的轴承。
46.如权利要求34所述假肢膝,进一步包括一对可转动的侧面安装支架,以便所述假肢膝与假肢胫骨部分的连接。
47.如权利要求34所述假肢膝,进一步包括彼此相连和由磁性材料制作的一个芯体和一对侧板,以形成所述磁场的磁回路。
48.如权利要求47所述假肢膝,其中所述芯体和侧板通过在机械加工制造,在机械加工后在干燥氢气气氛中进行热处理。
49.如权利要求34所述假肢膝,进一步包括形成所述磁场磁回路的外磁路部分和一对机械相连的磁性材料侧板。
50.如权利要求34所述假肢膝,进一步包括一个控制所述假肢膝最大弯曲程度的缓冲弯曲止动系统。
51.如权利要求34所述假肢膝,进一步包括一个控制所述假肢膝最大伸展程度的伸展缓冲止动系统。
52.如权利要求34所述假肢膝,进一步包括一个有助于所述假肢膝伸展的伸展辅助结构。
53.如权利要求34所述假肢膝,进一步包括一个用于监测和控制所述假肢膝运作的控制器。
54.一种用于假肢膝的磁流变可变扭矩制动器,包括一个中心芯体;与所述芯体一端相连的第一侧板;与所述芯体另一端相连的第二侧板;一个位于所述第一和第二侧板之间可进行转动和侧向移动的叶片;驻留在所述叶片和侧板之间所形成的一对缝隙中的磁流变流体;一个用于产生磁场的电磁铁,所产生磁场的磁路通过所述芯体、所述第一和第二侧板、所述叶片和所述磁流变流体;其中,对所述缝隙的尺寸进行最小化优化,使所述叶片和所述侧板间在所述磁场为零时不存在机械接触和摩擦,从而可使所述假肢膝自由运动和提供较宽的动态转矩范围。
55.如权利要求54所述磁流变制动器,其中所述缝隙的尺寸约为40微米。
56.如权利要求54所述磁流变制动器,其中所述缝隙的尺寸为10-100微米。
57.一种用于假肢膝的可控转动阻尼器,包括一些相对于所述假肢膝的纵轴同心配置和彼此交替配置的内侧转子和外侧转子;一些驻留在所述内侧转子和外侧转子之间所形成的一些间隙中的磁流变流体膜;一对夹持所述内侧转子和外侧转子的侧板,其中至少一个所述侧板在相对于所述假肢膝的纵轴方向上可做侧向移动;一个可产生磁场的电磁铁,所产生的磁场通过所述内侧转子和外侧转子、所述磁流变流体和所述侧板;这样,所述内侧转子和外侧转子间的相对转动以及至少一个所述侧板的侧向移动将产生控制所述假肢膝转动的可变阻尼扭矩。
58.如权利要求57所述阻尼器,其中所述阻尼扭矩包括粘性阻尼和摩擦阻尼成分。
59.如权利要求58所述阻尼器,其中所述摩擦阻尼成分占所述阻尼扭矩的20%。
60.一种迅速和精确控制电子假肢膝转动的方法,所述假肢膝包括一些交错配置的软磁转子和定子以及驻留在转子和定子之间一些间隙中的磁流变流体,所述方法包括以下步骤应用磁场使所述转子和定子间产生相互吸引力和使相邻转子和定子间产生摩擦接触,从而对所述假肢膝的转动产生摩擦阻尼;剪切驻留在所述转子和定子间所形成的间隙中的磁流变流体,,从而对所述假肢膝的转动产生粘性阻尼;以及调节所述磁场,使所述磁流变流体的粘性和所述转子和定子间的吸引力产生迅速和精确的变化,从而产生控制所述假肢膝弯曲和伸展的可变转动阻尼扭矩。
全文摘要
本发明涉及可变扭矩的磁流变驱动的假肢膝(110,210),应用一些交错配置的转子(120,220)和定子(130,230来剪切驻留在它们之间的磁流变流体。优点在于因工作在“剪切模式”下,将不会产生或可忽略流体压力和压力变化。此外,多重MR流体间隙或流通介面可在低速下产生较大的扭矩和提供较宽的动态扭矩范围,无须附加传动机构,从而增加了本发明的适用性。在本发明的一个实施例中,转子(120,220)和定子(130,230)之间的间隙可以闭合以形成摩擦阻尼成分,从而提供了一种包括粘性阻尼和摩擦阻尼的“混合”制动系统。
文档编号F16F9/53GK1498095SQ01805955
公开日2004年5月19日 申请日期2001年1月22日 优先权日2000年1月20日
发明者布鲁斯·W·德芬鲍, 布鲁斯 W 德芬鲍, ぐ6, 休·M·埃尔, A 帕诺特, 吉尔·A·帕诺特, B 威蒂格, 米切尔·B·威蒂格 申请人:麻省理工学院
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1