一种轴向长度可调的密封接头的制作方法

文档序号:29572986发布日期:2022-04-09 04:32阅读:133来源:国知局
一种轴向长度可调的密封接头的制作方法

1.本发明属于管接头技术领域,尤其涉及一种轴向长度可调的密封接头。


背景技术:

2.管接头,是用来连接管路的一种部件;在较高压力的管路系统中,常用的管接头为金属管接头,金属材料通常为不锈钢、铝合金、碳钢等材料。
3.目前在金属管接头技术领域中,常用的金属管接头有金属硬管接头和金属软管接头,金属硬管接头是一种刚性管接头,它的长度一般是固定的,在金属硬管接头安装于管路的过程中,若管路之间的间距过大,则可能出现金属硬管接头无法安装于管路中的情形。
4.金属软管接头是一种柔性管接头,它的内层一般采用具有螺旋形或环形的波纹管制成,与被输送介质接触的表面较为粗糙,而金属硬管接头内与被输送介质接触的表面较为光滑,在相同的管路内径下,与金属软管接头相连的管路介质流通能力显著低于与金属硬管接头相连的管路介质流通能力,因此金属硬管接头的应用效果更好,但需要解决金属硬管接头对于管路之间间距的适应性问题,目前也已存在一些公开专利。
5.例如公开号为cn211779500u的中国实用新型专利,其公开了一种高适应性管道连接头结构,包括插接管、调节圆环、调节件、密封件、管道圆环和连接件,调节圆环与插接管插接配合,插接管穿过调节圆环,两个调节圆环对称设置在插接管的两侧,调节件连接在两个调节圆环之间,调节件为长度可调结构,通过调节件可使得两个调节圆环相对于插接管相互靠近或者相互远离,密封件连接在调节圆环与插接管的插接配合处,密封件对调节圆环与插接管之间的插接配合的间隙起到密封作用。可见该专利的管道连接头可以适配待连接管道之间的距离误差。但是结构复杂,生产成本较高,不利于全面推广。
6.此外,由于接头安装于管路系统中后,管间的间距距离会因管路热胀冷缩现象而变化;而现有具有长度可调结构的接头在安装于管路系统中后,受制于接头自身结构的限制,其难以再次进行长度调整,当管路系统中出现热胀冷缩现象而致使管间的间距距离出现变化时,其难以对管间的间距距离变化进行补偿,进而出现接头损坏或流体泄漏等情况。


技术实现要素:

7.本发明针对现有技术存在的问题,提出了一种轴向长度可调的密封接头,能够适应安装位置和管路之间的间距,还能够补偿热胀冷缩等现象引起的管路间距变化,便于管路连接安装,有利于保证密封效果,有利于减轻管路系统中的应力。
8.本发明是通过以下技术方案得以实现的:一种轴向长度可调的密封接头,包括第一接头、第二接头、限位件;第一接头内设有抵接部,第一接头远离抵接部的一端设有限位件;第二接头外侧设有凸缘部;第二接头的凸缘部插设于第一接头内并受到抵接部的轴向移动限制,凸缘部限制于抵接部和限位件之间,且可在抵接部和限位件之间轴向移动;
凸缘部设有环形凹槽,环形凹槽内设有密封件,密封件将第一接头、第二接头之间的缝隙填充;第一接头内周壁环设有沟槽部,沟槽部与第二接头外周壁相正对,且相互配合以形成迷宫密封。
9.可见,通过凸缘部使得第二接头限制于抵接部和限位件之间,第二接头可以相对于第一接头在轴向方向上移动,实现了接头的轴向长度可调,能够用于补偿长度固定的接头与管路间所存有的间距距离。且直接抽拉第二接头即可实现接头长度的调整,使用方便、灵活,此外,接头结构简单,生产成本低,容易得到更好的推广。
10.迷宫密封的设置提高了密封可靠性并且不至于过多损失第一接头和第二接头的可移动性;密封件以流体介质于接头缝隙中流动的方向而言,其设置于迷宫密封的下游位置,密封件将对迷宫密封中泄漏的流体介质进行密封阻挡;两者增强接头的密封可靠性,更好的满足输送高压介质所需的密封需求。
11.优选地,沟槽部包括多个平行排布的环形沟槽,多个平行排布的环形沟槽与第二接头外周壁相互配合以形成迷宫密封。
12.优选地,密封件采用密封圈。
13.优选地,限位件采用限位螺母,限位螺母与第一接头螺纹连接。
14.优选地,限位螺母由耐压性的金属材料制成。
15.优选地,第一接头上固设有锁定件,锁定件贯穿第一接头管壁,锁定件底部可与凸缘部相抵接或部分插入于凸缘部中,从而实现第一接头和第二接头间的相对固定,增强金属管路系统的可靠性。
16.优选地,锁定件采用与第一接头管壁螺纹连接的锁定螺钉。
17.优选地,第一接头、第二接头均由耐压性的金属材料制成。
18.本发明的有益效果是:通过凸缘部使得第二接头限制于抵接部和限位件之间,第二接头可以相对于第一接头在轴向方向上移动,实现了接头的轴向长度可调,能够用于补偿长度固定的接头与管路间所存有的间距距离。
19.直接抽拉第二接头即可实现接头长度的调整,使用方便、灵活,且接头结构简单,生产成本低,容易得到更好的推广。
20.第一接头内周壁环设有沟槽部,沟槽部与第二接头外周壁相正对,且相互配合以形成迷宫密封,提高了密封可靠性并且不至于过多损失第一接头和第二接头的可移动性。
21.密封件以流体介质于接头缝隙中流动的方向而言,其设置于迷宫密封的下游位置,密封件将对迷宫密封中泄漏的流体介质进行密封阻挡;迷宫密封和密封件的组合密封形式增强了接头的密封可靠性,更好的满足输送高压介质所需的密封需求。
22.通过第一接头和第二接头间的相对运动,能够补偿热胀冷缩等现象引起的管路间距变化,避免出现接头损坏或流体泄漏等情况。
23.通过锁定螺钉实现第一接头和第二接头间的相对固定,增强金属管路系统的可靠性。
附图说明
24.为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
25.图1为实施例一所述一种轴向长度可调的密封接头的内部结构示意图;图2为实施例一所述一种轴向长度可调的密封接头的外观轴测图;图3为实施例一所述一种轴向长度可调的密封接头的内部流路示意图;图4为实施例二所述一种轴向长度可调的密封接头的内部结构示意图;图中:1、第一接头,2、第二接头,3、限位件,4、密封件,11、抵接部,12、沟槽部,22、凸缘部,23、环形凹槽,5、锁定件,6、流体介质。
具体实施方式
26.下面结合附图和实施例对本发明作进一步详细的说明。
27.实施例一:参照图1-图3,本实施例提供了一种轴向长度可调的密封接头,包括第一接头1、第二接头2、限位件3;第一接头1内设有抵接部11,第一接头1远离抵接部11的一端设有限位件3;第二接头2外侧设有凸缘部22;第二接头2的凸缘部22插设于第一接头1内并受到抵接部11的轴向移动限制,凸缘部22限制于抵接部11和限位件3之间,且可在抵接部11和限位件3之间轴向移动,即限位件3至第一接头1抵接部11间的轴向直线距离大于凸缘部22自身轴向长度距离。
28.凸缘部22设有环形凹槽,环形凹槽内设有密封件4,密封件4将第一接头1、第二接头2之间的缝隙填充;第一接头1内周壁环设有沟槽部12,沟槽部12与第二接头2外周壁相正对,且相互配合以形成迷宫密封。
29.本实施例通过凸缘部22使得第二接头2限制于抵接部11和限位件3之间,第二接头2可以相对于第一接头1在轴向方向上移动,实现了接头的轴向长度可调,能够用于补偿长度固定的接头与管路间所存有的间距距离。且直接抽拉第二接头2即可实现接头长度的调整,使用方便、灵活,且接头结构简单,生产成本低,容易得到更好的推广。
30.本实施例中,限位件3采用限位螺母,限位螺母与第一接头1螺纹连接。
31.本实施例中,在凸缘部22中设置有环形凹槽23,环形凹槽23设于凸缘部22的中间区域,环形凹槽23内设置有密封件4,密封件4被第一接头1和第二接头2压紧,以将第一接头1、第二接头2之间的缝隙填充,本实施例中密封件4采用密封圈。当第一接头1和第二接头2中输送流体介质6时,流体介质6会被密封件4所阻挡,使得第一接头1和第二接头2中输送的流体介质6难以从接头中向外泄漏。
32.当第一接头1和第二接头2中输送的流体介质6为高压介质时,单一形式的密封件4难以将接头中的流体介质6完全密封阻挡,可能存在少量的流体介质6完全通过密封件4,出现向接头外侧泄漏的情况。为了避免出现流体介质6向接头外侧泄漏的情况,本发明在第一
接头1内周壁环设有沟槽部12,沟槽部12与第二接头2外周壁相正对,且相互配合以形成迷宫密封。本实施例中,沟槽部12包括多个平行排布的环形沟槽,多个平行排布的环形沟槽与第二接头2外周壁相互配合以形成迷宫密封,通入迷宫密封中的流体介质6会因多个平行排布的环形沟槽而难以穿过迷宫密封,即使可能存有少量的流体介质6完全通过迷宫密封,由于迷宫密封相对设置于密封件4所处位置的上游位置处,密封件4将对迷宫密封中泄漏的流体介质进行密封阻挡,避免流体介质6从接头中向外泄漏。迷宫密封的设置,减小了流至密封件4所处位置的流体流量,降低了流体介质6施加于密封件4上的流体压力,提高了密封可靠性并且不至于过多损失第一接头和第二接头的可移动性,使得本发明轴向长度可调的密封接头适用于高压流体系统的流体介质输送。
33.本实施例中,限位螺母、第一接头1、第二接头2均由高耐压性的金属材料制成,例如不锈钢。
34.下面对本实施例所述一种轴向长度可调的密封接头的使用安装过程进行具体描述:将第二接头2插设于第一接头1内,并将限位螺母与第一接头1螺纹连接,进一步通过调节凸缘部22至抵接部11间的间距距离,使得一侧的金属管路插入于第一接头1中,另一侧的金属管路插入于第二接头2中,接头安装于金属管路后,可通过焊接的方式将两侧的金属管路分别可靠的固定于第一接头1和第二接头2中,即完成了整体安装。
35.本实施例所述轴向长度可调的密封接头安装于金属管路中后,由于第二接头2的凸缘部22仍可在第一接头1的抵接部11和限位件3之间轴向移动,因此,当金属管路中出现热胀冷缩现象而致使管间的间距距离出现变化时,通过第一接头1和第二接头2间的相对运动,自动对管间的间距距离变化进行补偿,避免出现接头损坏或流体泄漏等情况。
36.实施例二:当接头安装于金属管路中后,若第一接头1和第二接头2未进行相对固定,则流体介质6会对一侧的接头施加推力,接头在推力的作用下与另一接头产生相对的轴向移动,使得整个接头被拉长,接头长度的改变会使得一侧的金属管路发生弯曲变形,对金属管路系统的可靠性造成不利影响。
37.因此实施例二与实施例一不同之处在于,第一接头1上固设有锁定件5,锁定件5贯穿第一接头1管壁,锁定件5底部可与凸缘部22相抵接或部分插入于凸缘部22中,且本实施例中锁定件5采用与第一接头1管壁螺纹连接的锁定螺钉。通过锁定螺钉实现第一接头1和第二接头2间的相对固定,通过锁定螺钉5来阻止第一接头1和第二接头2产生相对的轴向移动,使得安装于金属管路中的接头不会被整体拉长,增强金属管路系统的可靠性。
38.以上所述的实施例仅仅是对本发明的优选实施方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案作出的各种变形和改进,均应落入本发明的保护范围内。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1