低功率调节系统与方法

文档序号:6114411阅读:399来源:国知局
专利名称:低功率调节系统与方法
技术领域
本发明一般涉及流量调节器,尤其涉及低功率调节系统,以及有选择地接通与切断所选调节器元件以减少功耗的方法。
背景技术
在控制工业过程的流体如油气管道系统、化学过程等方面,常常要减小和控制流体的压力。调节器一般通过提供可调的流量限制来完成这些任务。在指定应用场合中,调节器可以控制流速或其它过程变量,但作为流量控制功能的副作用,限制作用固有地造成压力减小。
举例来说,一使用调节器的特定应用是输配天然气。天然气分配系统通常包括从天然气油田延伸到一个或多个消费者的管道网。为传送大量天然气,把天然气压缩到某一高压力。随着天然气接近分配管网并最终到达消费者,在减压站降低气压,而减压站通常用调节器降低气压。
天然气分配系统能向消费者提供足量的天然气是重要的。该系统的容量一般取决于系统压力、管道尺寸和调节器,往往用模拟模型来评估。系统模型的精度用各输入点、减压点与输出点的流量数据测定。减压点对配气系统的容量有重要影响,因而对系统模型而言,重要的是精密地模拟诸减压点。但诸减压点均在配气系统内,不能视为监视的传送点(即控制气流从配气系统切换到消费者的点),所以一般不在减压点作流量测量。另因减压点并非监视的传送点,故无需附加的高精度成本。在其它调节器应用场合中(即工业过程、化学过程等),也有类似于上述天然气分配的流量测量问题。
此外,调节器会因操作磨损而发生故障,从而降低了沿管道控制压力的能力。损坏的调节器会使流体漏泄,既增加了流体浪费,又会造成险情。尽管损坏的调节器可以修理或调换,但常常难以检测调节器故障的时间和确定损坏的调节器。通常在管道长达数英里的供气系统中,更难以检测故障并确定故障的调节器。
原有技术的调节器在操作时,所有或大部分调节器元件通常都是一直接通的。在用电池电源对原有技术调节器供电的场合中,操作此类原有技术调节器通常造成不必要的能源消耗,降低了调节器的效率。另因延长使用或故障而造成调节器电池容量减少,若继续操作所有或大部分调节器元件都接通的原有技术调节器,会缩短此类调节器可以操作的时间。
发明概述根据本发明的一个方面,提供了一种方法,用于在调压系统中收集传感器数据,该调压系统包括一控制器和多个传感器,其中把控制器配置成收集传感器数据。该方法包括步骤将控制器置于第一模式,发出第一控制器指令以激发从多个传感器中选择的一传感器。把控制器置于第二模式达第一预定时段,使控制器在第二模式比工作于第一模式耗用较少的能量。待过了第一预定时段,再把控制器置于第一模式。发出第二控制器指令,收集来自所选传感器的传感器数据。
根据本发明的另一个方面,提供了一种方法,用于在调压系统中收集传感器数据,该调压系统包括一控制器和多个传感器,其中控制器在取样周期内被配置成收集来自每个传感器的数据。该方法包括步骤激发多个传感器中选择的第一传感器,收集所选第一传感器的传感器数据,再去除激发所选第一传感器。然后激发多个传感器中所选的第二传感器,并收集其传感器数据,再去除激发所选第二传感器。
根据本发明的再一个方面,提供了一种调压器,用于控制管道里的流体,其中调压器用电池操作。该调压器包括电池传感器、存储器和控制器。电池传感器适于检测电池的操作参数并产生操作参数信号,存储器适于存贮电池的容量阈值并产生阈值容量信号,控制单元则控制调压器的功耗。具体而言,控制器适于接收操作参数信号与阈值容量信号,并且产生指令信号,以多种操作模式中的至少一种操作模式操作调压器。
附图简介本发明诸新特征由所附如权利要求提出,参照以下结合附图所作的描述,能很好地理解本发明。在若干图中,用同样的标号表示同样的元件,其中

图1是表示本发明带流量测量设备的调节器的示意图。
图2是配流量测量设备的另一调节器实施例的示意图。
图3是调节器流量测量设备的透视图。
图4是符合本发明内容的调节器流量测量设备的截面侧视图。
图5是表示报警程序用户规定极限部分的流程图。
图6是表示逻辑报警子程序的流程图。
图7A-7E是表示逻辑报警子程序特定部分的流程图。
图8是表示气流调节器低功率电路的框图。
图9是表示低功率电路整个操作的流程图。
图10是表示低功率电路执行的初始化过程的流程图。
图11是表示低功率电路执行的适于节省电池功率的一例取样序列的流程图。
图12是表示对气流调节器确定操作模式方法的流程图。
图13是表示将气流调节器置于第一省功率模式方法的流程图。
图14是表示把气流调节器置于第二省功率模式方法的流程图。
图15是表示将气流调节器置于故障安全模式方法的流程图。
较佳实施例的详细描述图1示出本发明一较佳实施例的流体调压器,如气体调压器10。图示的气体调压器10包括后面要描述的气流测量设备,其中利用上游压力、下游压力和孔板打开测量来计算流量与其它信息。应该理解,图示的气体调压器只是本发明的一例流体调压器,根据本发明原理还可设置液体调压器。
图1的调节器包括调节体12、隔膜罩壳14和上罩壳16。在调节体12内,设置了接上游管道的入口18和接下游管道的出口20。调节体12里面的孔板22在入口18与出口20间建立通信。
隔膜26装在隔膜罩壳14里面而将其分为上下部14a、14b。压簧28接触隔膜26中央,位于隔膜罩壳14b下部,以向上方向偏置隔膜26。
柱30附接于隔膜26并随之运动。阈盘32等节流元件附接于柱30底端,位于孔板22下面,阀盘32的尺寸完全阻塞孔板22,切断入口18与出口20的联系。因而应明白,压簧28以向上方向偏置阀盘32而闭合孔板22。阀盘32形成不同的截面,当它下移时,孔板22未阻塞(或打开)的面积就逐渐增大,所以孔板22的打开面积与阀盘32的位置直接有关。
控制隔膜14a的上腔室里的气压,在闭合与打开位置之间移动阀盘32。罩壳14a上部的压力可用多种不同方式设置,本例用装载导向器(未示出)控制上部14a里的压力。然而,调节器10可以是应用不同类操作器诸如非装载导向器的类型,或者调节器10可以自我操作或压力装载,都不违背本发明的范围。
控制隔膜14a上部气压的另一种方法,包括从上游管道排到隔膜罩壳14a上部的第一管子,并配有控制通过其气流的第一螺线管。另设置的第二管子从隔膜罩壳14a上部排到下游管道,其内设置了控制通过流量的第二螺线管。PC接第一与第二螺线管,以控制它们的操作。为增大隔膜罩壳14a上部的压力,可打开第一螺线管让上游压力进入上部,将隔膜26向下驱动而打开孔板22。气体可通过第二螺线管排出,从而减小上流部14a的压力并抬高隔膜26,由此闭合孔板22。无论以何种方式提供和控制压力,应该明白,增大的压力都移动隔膜26与附接的阀盘32向下而打开孔板22,而减小的压力闭合孔板22。因为也可应用本领域内其它已知的结构,所以本结构仅是个举例,并不限制本发明范围。
根据本发明某些方面,为测量上下游的压力等级P1、P2,在节流元件的上下游设置了压力传感器。如图1所示,第一与第二压力传感器34、35装到上罩壳16。管子36从第一压力传感器34延伸到分接头而进入位于调节器入口18上游的管道,另一管子37从第二压力传感器35延伸到分接头进入位于调节器出口20下游的管道。因此,当把第一与第二压力传感器34、35装到上罩壳16上时,管子36、37就把上下游气压分别传到第一与第二压力传感器34、35。在另一方式中,第一与第二压力传感器34、35可以直接位于上下游管道,导线从压力传感器布向上罩壳16。为提供温度校正,需要时可在测量过程温度的上游管道里设置过程流体温度发送器48。
上罩壳16还包括测定阀盘位置的传感器。按图示实施例,柱30附接阀盘32并接至隔膜26。较佳地是柱30延伸部的行程指示器40,从隔膜延伸入上罩壳16,故阀盘32的位置对应于阀盘32的位置。因此,传感器包括指示器行程检测机构,较佳地为一霍尔效应传感器。该霍尔效应传感器包括一附接于行程指示器40上端的霍尔效应磁铁42,磁铁传感器44置于上罩壳16里面,用于检测霍尔效应磁铁42的位置。通过检测磁铁42的位置,可确定阀盘42的位置和孔板22的打开面积。第二行程指示器(未示出)可接至行程指示器40,以目视指示阀盘行程。第二行程指示器从行程指示器40向上运行,通过上罩壳16延伸到上罩壳16的顶面上方。
测量阀盘32行程的另一方法是应用一台置于上罩壳16内行程指示器40上方的雷达收发机(未示出),它可检测行程指示器40的位置并发射指示行程指示器位置的信号。
显然,除了上述的磁铁42与传感器44实施例外,还可以多种不同的方式测定阀盘32的位置。例如,可将激光传感器(未示出)设置在上罩壳16里测量行程指示器40的位置,或设置在隔膜罩壳14内直接测量一部分隔膜26的位置。当激光传感器位于后一位置时,就不需要行程指示器40了。此外,还可用超声传感器测定阀盘位置。
图2所示的另一种方法,测量隔膜罩壳14a上部的装载压力可推断阀盘位置,显然,阀盘32的位置随隔膜罩壳上部14a的压力而变。在该例中,设置在上罩壳16里的装载压力传感器46用于测量隔膜罩壳14a上部的压力,再用测得的装载压力确定阀盘位置。
回到图1的实施例,第一与第二压力传感器34、35和行程传感器44提供馈入电子流量模块50的输出。电子流量模块50可以诸如在图1所示的上罩壳16里与调节器设置在一起,或者定位于远地。入口压力、出口压力和阀盘位置用来测定通过调节器10可变孔板的流量。对于亚临界气流,用以下算法计算流速F=SQRT{{KSUB1}OVER{G*T}}*Ksub2*Y*P sub1*sinK sub3SQRT{{Psub1-Psub2}OVER{Psub其中F=流速,K1=绝对温度常数,G=流量媒体比重,T=流量媒体绝对温度,K2=柱位置常数,Y=柱位置,P1=上游绝对压力,K3=修整形状常数,P2=下游绝对压力。
柱位置与修整形状常数K2、K3对调节器的具体尺寸与类型是特定的,主要取决于特定的修整尺寸与形状。如本领域的技术人员将明白,K2与Y的乘积相当于传统的流量选择系数。以上算法适合计算通过线性的金属修整阀型调节器的亚临界(即P1-P2<0.5P1)气体流速。
对于临界的气流,通过消除正弦函数来修正计算。对其它类型的调节器,如非线性金属修整与弹性类调节器,则应用类似的算法,但柱位置常数K2变成与压降ΔP(即上游压力P1、P2之差)和/或阀柱位置相关的函数,在本领域是众所周知的。对液体流量,公式变成F=SQRT{{KSUB1}OVER{G*T}}*K sub2*Y*SORT{P sub1-P sub2}其中F=流速,K1=绝对温度常数,G=流量媒体比重,T=流量媒体绝对温度,K2=柱位置常数,Y=柱位置,P1=上游绝对压力,P2=下游绝对压力。
在图2实施例中应用类似的计算,测量隔膜罩壳14a上部的装载压力而推算阀盘行程,只是装载压力常数K4与量规装载压力P2代替了柱位置常数K2与柱位置Y值。装载压力常数K1也是应用专用的,必须对每类调节器1D测定。对于非线性弹性节流构件,装载压力常数K4是ΔP与“PL”的函数。
在该例中,在上罩壳16里面还设置了本地流量观察模块52,它包括提供合计流量信息的电子流量合计器,其输出口允许手持通信装置查访合计流量,并将本地流量合计器复位以供将来使用。在目前的较佳实施例中,本发流量观察模块52包括封闭在上罩壳16里面的LCD读出器。附接于上罩壳16顶部的帽17有一观察LCD的透明塑料窗。
通信模块54把流量数据发射给辅助通信装置55,诸如远地终端单元(RTU)、PC或任何其它能询问调节器控制的装置。通信模块54包括向远地计读系统(未示出)发送流量信息的天线53。还提供了电源模块56,用来为流量测量机构供电。电源模块56能对整个装置提供稳定电压,可用任何已知的源如太阳能电池、电池和交直流电源等供电。
显然,电子流量模块50、本发流量观察模块52、通信模块54和电源模块56可像图1那样分开设置,或设置在上罩壳16里面的单块主电路板上。
通过调节器10计算的流速可用独立的流量计58快捷地校正。为测量真实的流体流量,将透平或其它类型的流量计58临时插入下游管道。流量计58对辅助通信装置55(RTU、PC等)或直接对主电路板提供反馈,该反馈可用于根据观察的流量状态产生一误差函数,然后结合入调节器10所作的流量计算,提供更精确的流量数据。
目前较佳实施例的调节器流量测量与诊断装置示于图3,一般标为100。如图3所示,装置100包括柱体101,其第一端102适于接调节器(未示出)。如前面诸实施例一样,调节器置于具有上下游段的流体流动管道里。柱体101封闭了接调节器中隔膜(未示出)的行程指示器103。根据所示的实施例,用霍尔效应传感器来检测行程指示器103的位置。行程指示器103的部分104由带磁极片的磁性材料形成。霍尔元件105(图4)定位成检测磁性材料部分104,并按行程指示器103的位置产生位置信号。
罩壳106附接于柱体102,具有第一压力口107、第二压力口108、辅助压力口109和辅助口110(图3)。第一压力传感器组件111插在第一压力口107里面,一段管子(未示出)把组件111和流管的上游段连接起来。第二压力传感器组件114插入第二压力口108,一段管子(未示出)把第二组件114接至流管的下游段。第三压力传感器组件115可以插入辅助压力口109,在第三压力点作测量。如以上对前一例详述的那样,第三压力传感器115可用于测量流管内或调节器内各个位置的压力,以推断柱塞行程。在一较佳实施例中,设置了测量大气压的第四压力口117。设置的辅助口110用于接收来自另一装置如图1所示温度发送器48的离散或模拟输入。此外,设置的I/O口112用于接外部装置,下面再详述。
罩壳105里面设置多块电路板120a-e,用于控制装置100的各种操作(图5)。在图示例中,第一(或主)电路板120a包括第一、第二、第三压力传感器与大气压力传感器的接口和霍尔效应传感器105的接线。第二(或通信)电路板120b提供与外部装置通信的接口,它可以包括有线传输的接线,诸如调制与解调卡、RS232通信驱动器与CDPD调制解调器。此外,还可设置无线通信的收发机。第三(或主)电路板120c较佳地包括处理器、存储器、实时时钟和两条通信信道的通信驱动器。在其它东西中处理器还可包括一种多种上述用于计算流速的算法,而存储器可以存贮选定的参数,诸如每天的高低压力。供选用的第四电路板120d对辅助I/O装置55提供接口。此类I/O装置的例子包括检漏器、甲烷检测器、温度传感器和液位传感器。第五(或终端)板120e具有电源稳压器、现场终端(接I/O装置)、备用电源和可以插入其它板120a-d的接线。虽然图示实施例中示出了5块电路板120a-e,但应明白,可以使用单块电路板、5块以下或以上电路板,均不违背本发明的范围。
显然,装置100与外部设备之间的通信可以用RF调制解调器、以太网或其它已知通信方式实现。处理器使外部设备将期望的压力设定点与报警状态等信息输入装置100,检索贮存在存储器里的数据。检出的数据可以包括报警记录与存贮的操作参数,例如可以包括定期存贮在存储器中的上下游压力的历史,使装置100提供压力记录仪的功能。
根据本发明的某些方面,处理器包括一条报警信号生成程序,其第一部分将被测参数(即上下游压力与行程位置)与一些用户规定的极限作比较,如图5所示。此外,还可运行一条或多条逻辑子程序,比较至少两个被测参数,并根据特定的逻辑操作生成报警信号,其实例如图6和7A-7D所示。
首先转入液位报警,在150启动检查,确定用户是否输入了任何液位极限。首先压力、行程、流量与电池值同用户输入的高-高极限作比较(151),若任一值超出高-高极限,就在152读出日期与时间,并在153记录相应的高-高报警。然后在154将被测值与用户输入的高限作比较,若任一值超出高限,就在155读出日期与时间,并在156记录相应的高报警。接着在157将诸值与用户输入的低限作比较,若任一值低于用户输入的低限,就在158读出日期与时间,并在159记录相应的低报警。最后在160将诸值与用户输入的低-低极限作比较,若任一值低于低-低限,就在161读出日期与时间,并在162记录相应的低-低报警。
可根据计算的流速F设置其它极限报警,如用户可对瞬时与累计流量输入极限。当计算的流速F超过任一这些极限时,就能触发报警。还可根据柱行程设置报警。用户可以输入累计柱行程距离极限,在累计柱行程超限时触发维护报警。
检查了用户输入的极限报警后,可运行一条或多条逻辑子程序,确定是否存在逻辑报警状态。在本例中,把每条逻辑子程序组合成一般如图6所示的单条集成的逻辑子程序。如图6所示,在计算通过调压器的流量时(165),子程序一开始就收集所有的压力与行程数据,然后将每个被测参数与其它被测参数和任一用户规定的设定点二者作比较。对上游压力(166)、下游压力(167)、辅助压力(168)、柱行程(169)和流速(170)监视逻辑报警,还可对来自第三压力传感器组件和接I/O接线112的辅助装置的反馈设置附加的逻辑报警。在获得了各参数的相对值之后,再检查诸逻辑报警,下面将作详述。
图7A示出了根据上游压力测定逻辑报警的一较佳操作序列(步骤166)。首先,子程序在172检查有关上游压力的输入值。若输入的值与上游压力相关,子程序就判断被测的上游压力是否必须大于(173)、小于(174)或等于(175)用户输入的值。对每次相对比较(即步骤173、174、175),执行图7B-7D所示的一系列子步骤。
若报警要求上游压力大于某值,子程序就在176先检查用户输入的特定上游压力值(图7B)。若用户已输入上游压力值,就在177将被测上游压力与该输入值作比较;若被测值大于输入值,则在178设置上游压力大于标志。若不使用特定的用户输入值,子程序就检查是否将下游压力与上游压力作比较(179);若要比较,子程序在180判断上游压力是否大于下游压力;若大于,则在181设置上游压力大于下游压力标志。若下游压力不用作逻辑报警,于是子程序在182根据辅助压力检查逻辑报警值。若将辅助压力用作逻辑报警,子程序在183检查上游压力是否大于下游压力;若大于,在184设置上游压力大于辅助压力标志。
如图7C与7D所示,子程序在185-202执行类似步骤,判断上游压力是否小于或等于逻辑报警值。另对下游和辅助压力执行与图7B-7D所示一样的操作,判断它们是否大于、小于或等于规定的逻辑报警值。因这些操作相同,故不列出示明这些步骤的独立的流程图。
在169转向基于行程的逻辑报警(图7A),图7E示出逻辑序列流程图,因而子程序先在203检查是否未输入行程位置逻辑值。若输入了行程位置逻辑值,子程序在204判断被测值是否必须大于该逻辑值;若逻辑算子大于极限,子程序在205判断被测行程位置是否大于输入值;若大于,在206设置行程大于标志;若对行程不使用“大于”极限,子程序就在207检查“小于”极限;若检出“小于”极限,子程序在208判断被测行程是否小于输入值;若小于,在209设置行程小于标志。若不用“小于”值,子程序在210检查“等于”算子极限。若使用“等于”极限,子程序在211判断被测行程是否等于输入值;若等于,在212设置行程等于标志。根据图6的步骤170的要求,可用一系列类似的步骤来判断计算的流速是否大于、小于或等于某逻辑流量报警值。
根据设置的逻辑标志,可基于两个被测参数的比较而触发一些逻辑报警,如在行程位置等于零而下游压力在增大(当前下游压力大于前面刚测得的下游压力)时,可设置切断问题报警来触发。当存在设置相应逻辑标志的合适操作状态时,就触发切断问题报警,表明流体因节流元件损坏而正在通过调压器漏泄。当行程值大于零而下游压力信号在减小时,可产生另一逻辑报警,表明柱断裂。当行程值大于零而上游压力信号在增大时,可产生又一逻辑报警,也可表明柱断裂或与调节器有关的其它问题。当行程信号大于零而下游压力信号大于用户输入的下游压力极限时,可触发再一个逻辑报警,表明与控制调节器的导向器有关的问题。考虑到各种被测与计算的值,可输入其它逻辑报警,从而立即指示与调节器有关的其它潜在问题。
与处理器关联的存储器,较佳地包括可跟踪报警的日期、时间与类型的报警记录。外部通信装置可查访该报警记录以检索报警历史。另外,处理器较佳地包括一块异常报告(RBX)电路,它向远地的主计算机自动传送任何报警状态,因而可迅速报告管道里潜在的问题,并且识别特定的元件或损伤区域。
气流调节器10一般用电池电源供电,尤其适合将功耗量减至最小。参照图8,图示的低功率电路300,通过低静态功耗或应用切换型占空度操作法,被设计成最小的功耗。气流调节器10包括低功率电路300,其中的各个元件一般置于睡眠模式,在要求它们执行测量或诊断操作时被接通。低功率电路300通常包括与通信板120b和传感器I/O板120a通信相连的处理器板120c,板120c还适于支持扩展I/O板302。
处理器板120c包括与实时时钟(RTC)模块306、通信模块308、本地操作员中断(LOI)模块310、内部输入输出(I/O)模块312、外部静态随机存取存储器(静态RAM)模块314和电子可擦可编程只读存储器(EEPROM)模块316通信相连的处理器303。模块306-316各自可设置在各块印制电路板或一块或多块印制电路板上。
处理器303包括CPU304、内部时钟318、闪耀只读存储器(闪耀ROM)320和处理器随机存取存储器(处理器RAM)322,提供与各电路板102a、102b、302和模块306-316通信的控制与时序,并控制对不同模块306-316和传感器34、35、44、115的激活和功率分配。
CPU304以三种不同模式操作唤醒模式,CPU304耗用维持整个操作必需的功率量;睡眠模式,CPU304耗用维持其内部系统操作必需的减小的功率量;和深睡眠模式,CPU304几乎将自己关闭,以最小的功率量操作。在睡眠模式中,为了节电,降低CPU304的操作频率。在深睡眠模式中,为进一步节电,CPU304、内部时钟318和内部RAM322全部断电。
内部时钟318除了其它功能外,还可按操作员提供的配置的取样速率从睡眠模式中唤醒CPU304。闪耀ROM320是一种无需功率保持其内容的非易失性存储器,含有操作上的固件。处理器RAM322是一静态存储器,用来存贮非初始化变量与程序堆栈,它是易失型,每次上电必须初始化。
RTC模块306执行时刻与日历功能,可根据时刻与日历打印记录与历史、通信调出调度表、通信功率控制和报警。RTC模块306通过I2C总线和外部中断总线INT1同CPU304通信。进入深睡眠模式之前,CPU304一般对RTC模块306发出指令,以便发出外部中断INT1,在基于配置的取样率指定的时刻唤醒它。
通信模块308包括RS485驱动器,它适于同外部设备或可在单个RS485回路上多次卸下的工具通信。在请求外部通信时,通信模块308内的中断信号发生器向CPU304发出中断信号INT2,该信号令CPU304激发RS485驱动器在处理器与外部设备或工具之间作双向通信。若CPU正好处于睡眠或深睡眠模式,该中断信号就唤醒CPU304。
LOI模块310包括RS232驱动器,并准备接至实地配置工具。当LOI模块310检测到表明请求外部通信的活动时,就向CPU304发出中断信号INT3。若CPU304正好处于睡眠或深睡眠模式,中断信号INT3就把它唤醒。收到中断信号INT3后,CPU304就接通包括RS232驱动器的LOI模块,与配置工具作双向通信。
内部I/O模块312经处理器模拟口A1通信连接至CPU304,后者调节内部I/O模块的功率。为节省功率,内部I/O模块312通常处于睡眠模式,仅在内部I/O信号转换之前和之中接通。内部I/O模块312配置成对CPU304提供内部参数数据,包括电路板温度、加到电源端的电压与逻辑电池电压,而逻辑电池电压就是内部电池的端电压。内部I/O模块312还通知CPU304是否已安装了选用的通信卡,如RS232、2400波特调制解调器、CSC移动电话接口卡、峰窝数字包数据移动电话接口卡、码分多址CDMA移动电话接口卡或无线电接口卡。
EEPROM模块316存贮气流调节器10的配置、校正与安全参数,该存储器是非易失型,维持内容不需要功率。静态RAM模块314是存贮初始化变量、报警记录、事件记录和历史记录的静态存储器,其一部分供固件下载而保留,诸如固件升级和功能增强,这样在以固件升级对闪耀存储器320进行编程之前,有利于作安全与可靠性检查。应用可更换的锂电池,可为静态RAM模块314提供备份的供电。
通信板120b提供与包括主控装置的一个或多个外部设备作外部通信的接口。通信模块120b适应不同类型要求使用不同类驱动器的通信卡。特定的通信卡装好后,该卡对CPU304产生一识别所安装的通信卡类型的模拟信号。CPU304用该模拟信号数据对通信卡上的通信驱动器正确地作初始化和接口,一般无须操作员介入。通信卡包括发出中断信号INT4的中断信号发生器,在请求与外部通信设备通信时,对CPU304发出中断。响应于中断信号INT4,CPU304激发通信卡上的驱动器,从而在外部通信设备与CPU304之间实现双向通信。例如,通信板120b可通过调制解调器卡、RS232通信驱动器配置为有线通信,或通过蜂窝数字包数据(CDPD)调制解调器配置为无线通信。通信板120b还适于与其它设备接口,包括拨号调制解调器、其它蜂窝设备、无线电设备、卫星、Fieldbus接口或HART接口。
传感器I/O板120c包括一个或多个模数(A/D)转换器AD1、AD2,便于在CPU304与不同传感器之间通信,传感器包括第一至第四压力传感器34、35、115、117和行程传感器44。CPU304通过串行外围接口总线SPI与A/D转换器AD1、AD2通信。A/D转换器AD1、AD2总在在保持校正数据时受电,一般置于睡眠模式以尽量减少功耗。由于收集和转换取样的传感器读数必须与各个传感器34、35、44、115、117接口,故CPU304唤醒各个A/D转换器AD1、AD2。
传感器I/D板120c还包括多个传感器接口,包括第一至第四压力传感器接口P1-P3、PBAR和行程传感器接口TRAVEL。CPU304通过传感器接口P1-P3、PBAR、TRAVEL调节供给各不同传感器34、35、44、115、117的功率。功控制数据总线PCDB建立CPU304与传感器接口P1-P3、PBAR、TRAVEL之间的通信。传感器34、35、44、115、117通常被切断,只在必须读数或取样时接通。当要求对特定传感器34、35、44、115、117供电时,CPU304就向有关压力接口发出接通指令。各传感器接口P1-P3、PBAR、TRAVEL都包括基准电压、桥式放大器与电源开关。电源开关控制供给基准电压、桥式放大器与传感器34、35、44、115、117的功率。基准电压对传感器供电,对A/D转换器AD1、AD2提供参考输入,并对桥式放大器提供参考输出。在多个点应用参考信号,使低功率电路304具有比率计的功能,从而减少了参考漂移以及A/D转换精度漂移的影响。
传感器34、35、44、115、117适合工作于操作模式和睡眠模式。在睡眠模式中,传感器34、35、44、115、117耗用的功率量比在操作模式中少。为节省功率,传感器34、35、44、115、117在不用来取样数据时置于睡眠模式。例如,传感器34、35、44、115、117在初始化后可以置于睡眠模式,然后在CPU304要求取样数据时对它们激励或置于操作模式。同样地,A/D转换器也适于工作于睡眠与操作模式。在另一实施例中,与置于睡眠模式相对,A/D转换器不用时就直接将其切断。
扩展I/O302一般包括在单块卡上,该卡通过单个连接器连接到扩展串行外围接口SPI总线、模拟口、控制输出端与状态输入端。连接器还将现场信号从现场终端传到扩展I/O卡302,后者的功能一般由应用场合决定。
参照图9,图示的流程图示出了气流调节器10固件在低功率电路300上运行的操作状况。该固件存贮在闪耀存储器320中,其操作响应步骤402对低功率电路元件供电的命令而初始化,其中上电指令由CPU304或操作员产生。
在步骤404,CPU304开始初始化过程,因而按操作员提供的配置对低功率电路300和传感器34、35、44、115、117初始化,获得并处理定期的传感器读数或样本,作流速计算。操作员能将气流调节器10配置成以各种时间间隔和不同的速率对传感器数据取样。
然后在步骤406,CPU304根据操作员提供的配置,判断是否对取样操作初始化。若该配置指示CPU304应对传感器读数取样,则在步骤408,因要求选择的传感器34、35、44、115、117和选择的低功率电路300的元件从A/D转换器AD1、AD2中获取传感器读数样本,故CPU304开始对它们上电。各传感器和低功率电路元件在取样过程中完成其任务后,立即被断电。收集的数据包括来自上游压力传感器34、下游压力传感器35、辅助压力传感器115、大气压传感器117和行程传感器44的读数,收集的其它参数包括输入电压、电池电压、电池化学特征与电路板环境温度。在步骤410,CPU304利用收集的传感器数据计算流速。接着在步骤412,CPU304将每个收集的读数和计算的流速同操作员提供的上下限作比较,判断任一值是否偏离范围,或触发某一报警状态。CPU304判断任何报警是否改变了状态,诸如由设定报警状态变为清除报警状态,或由清除报警状态变为设定报警状态,并把情况记录在报警记录中。记录报警时,CPU304编制一异常报告(RBX),并经通信模块120b把报警状态自动传给远地的主计算机。因此,可迅速地报告管道中潜在的问题,并识别出特定的元件或受损区域。
在步骤414,CPU304判断是否要根据配置的归档速率将每个收集的读数和计算的流速归档。若CPU304断定要归档某个特定参数,如收集的读数或计算的流速,则在步骤416,CPU304就计算该参数的平均值与累计值,再把值记录在记录历史中。各参数的归档速率由操作员配置,可从每分钟归档一次到每60分钟归档一次。
若CPU304判定某一特定参数无须归档,它就把该参数的值加到该参数值的运行之和里,并在要求CPU304计算该参数的均值时,继续跟踪诸参数值在步骤420已相加的次数。
取样过程结束后,CPU304在步骤422发出执行系统检查诊断的指令。执行系统诊断过程,验证低功率电路在正常操作,对任何未决的RBX请求产生响应,保证应用最新的固件配置,监视固件更新,监视电池性能,保证气体调压器10工作在操作极限内。具体而言,CPU304监视气体调压系统功率,按低报警限、低低报警限、高报警限与高-高报警限范围正常操作。根据电池电压等级、配置的取样率、内部时钟速率、RTC时钟速率和通信等级,调节有关气体调压系统,以节省功率并延长电池寿命。在极低功率条件下,为进一步节省功率,甚至可以取消低功率电路300某些部分的功率。系统检查结束后,CPU304立即置于睡眠模式,使其工作于降低的操作频率,从而减小功耗量。
然后,CPU304检查低功率电路300内的不同通信系统,如通信模块308、LOI模块310和通信板120b,在步骤424检查任一通信口是否运行。若某一通信口处于运行状态,CPU304就保持唤醒状态并再返回步骤406,判断是否要重复取样过程并再次在步骤422作系统检查。
若通信口都未运行,CPU304在步骤426向RTC发出一条指令,使其通过外部中断INT1在指定时间唤醒CPU304,然后进入节省功率的深睡眠模式。尽管CPU304处于深睡眠模式,但通过例如LDI模块310、通信模块308或通信板120b发出的外部中断INT2、INT3、INT4,可以唤醒它。当指定的时段过去时,RTC在步骤428向CPU304发出外部中断INT1将它唤醒,再返回步骤404,再重复整个过程。
参照图10,现更详细地描述步骤404的初始化过程。如前所述,根据在步骤402向低功率电路元件供电的指令,激发初始化过程。CPU304在步骤430开始通过配置不同的输入/输出口指定正确的信号方向和默认信号电平,以禁止或减少低功率电路硬件的功耗。CPU304还对通信板120c、通信模块308、LOI模块310、A/D转换器AD1、AD2和包括RTC306的定时器建立端口功能。
在步骤432,CPU304作有效性检查,判断静态RAM314是否含有有效的程序配置。具体而言,对已知的配置模式检查静态RAM314的三个不同区域。若这三个不同区域都与已知的配置模式不匹配,就认为静态RAM存储器314无效。若存储器314无效,CPU304就在步骤434对整个存储器初始化,包括未初始化和已初始化的全部变量。然后在步骤436,设置静态RAM存储器标志。若RAM存储器314有效,则CPU304在步骤438只初始化未初始化的变量,并在步骤440清除静态RAM存储器标志。
接着在步骤442,CPU304建立与RTC模块306的通信链路并检查RTC306的正常操作。若RTC306不正常工作或失去了供给RTC306的功率,CPU304就按正确的日期与时间功能对RTC306再次初始化。然后CPU304在步骤444检查是否安装了调制解调器,若已安装了调制解调器,CPU304就初始化该调制解调器,然后减小其功耗。为限制起动时的最大电流耗用,在其余低功率电路硬件上电之前,要减小调制解调器的功耗。
在步骤446,通信板120c、通信模块308和LOI模块310里的诸通信口,均按配置的波特率、数据位、停止位和奇偶性作初始化。为避免通信在初始化过程剩余部分被启动,经通信口启动通信的中断INT2、INT3、INT4保持被禁止。然后在步骤448,配置任何已安装调制解调器的操作。
然后在步骤450,若在步骤432发现静态RAM314无效,CPU304就检查前一次保留在存储器配置是否被存入EEPROM316。若发现了前一次保留的存储器配置,在步骤452把它载入静态RAM314;若前一次保留的存储器配置未存入EEPROM316,则CPU304运用默认参数初始化静态RAM314。
在步骤454,初始化闪耀ROM参数。存贮在闪耀ROM320里的固件,一般由操作员更新。闪耀ROM参数支配更新过程,提供检错与确认。接着在步骤456,A/D转换器AD1/AD2被初始化并校正操作。初始化过程结束后,将A/D转换器AD1、AD2立即置于节电的睡眠模式。在步骤458,CPU304确认配置的取样与归档周期。CPU304经检查,保证每个归档周期至少有一个样本。设定取样标志,在完成初始化过程404后立刻开始取样过程。
气体调压器10用于取样传感器读数等不同的I/O参数、各种低功率电路参数和电池功率电平的取样序列,被专门设计成尽量减小电池功耗。只接通必须执行取样操作的传感器34、35、44、115、117和低功率电路元件,然后在CPU304收集了样本后立即切断。现参照图11,图示为一例可在步骤408执行的取样序列,被CPU304用于读选择的一组压力传感器34、35、115和行程传感器44,同时可尽量减少电池功耗。
在步骤450,CPU发出指令,开始接通A/D转换器AD1/AD2、上下游压力传感器34与35。在步骤452,在过了指定的时段后,CPU304设置内部时钟318在指定的时段之后向其发送唤醒信号并进入睡眠模式。睡眠持续期基于压力传感器34、35预热得足以提供精确读数所花的时间,一例这种睡眠持续期可以是50毫秒。在步骤454被内部时钟318唤醒后,CPU304读有关的A/D转换器AD1/AD2,获得压力传感器34、35的取样读数。然后在步骤456,CPU304发出切断功率传感器34、35的指令和接通辅助功率传感器115的指令。在步骤458,CPU304把采集的上下游压力读数样本转换成工程单位。CPU304设置内时钟318过了指定的时段后对其发送唤醒信号,并在步骤460进入睡眠模式。当CPU304在步骤462被内时钟318唤醒时,CPU304就读有关A/D转换器AD1、AD2,从辅助压力传感器115里取得读数。接着在步骤464,CPU304发出切断辅助功率传感器115的指令和接通行程传感器44的指令。CPU304在步骤466把取自辅助压力传感器115的样本转换为工程单位,并在步骤468设置内部时钟318在适当时间发出唤醒信号并进入睡眠模式。在响应于内部时钟信号318醒来后,CPU在步骤470读有关的A/D转换器AD2,获取行程传感器44里读数。在步骤472,CPU304发出切断行程传感器的指令,再在步骤474把行程传感器读数转换成工程单位。
CPU304通常在取样周期之间置于深睡眠。在CPU304完成取样传感器34、35、44、115、117而进入深睡眠模式之前,CPU304向RTC306发出指令以对其发送中断信号INT1,以在一段预定时间后将其置于唤醒模式,即操作模式。该预定时间相当于两个连续取样周期间的间隔时间,以配置的取样率为基础。当处于深睡眠模式时,响应于表示请求与通信设备作外部通信的中断信号,也可将CPU304置于醒来模式。
虽然以一组选择的传感器描述了该实例,但是涉及到更少或更多传感器读数的取样序列被认为在本发明范围内。例如,CPU304可获取来自大气压传感器117的读数、电池电平读数和有关处理器板120c性能的参数。也可应用其它一些取样序列而不违背本发明的精神,这类序列涉及因要求选择的元件获取传感器读数而将它们接通,然后再切断选择的元件。
如前所述,气流调节器10由电池供电,具有已知的功率需求。气流调节器的功率需求通常是配置的取样率的函数。换言之,传感器34、35、44、115、117的取样率越高,耗电量就越大,CPU304监视着电池容量电平,一般能对电池提供估计的调换日期。检出的电池化学特性,可用于识别向气流调节器10供电的电池类型,例如可用检出的电池化学特性判断所用的电池是铅酸型还是锂型电池。根据检出的电池端电压、电池化学特性和已知的气流调节器功率要求,CPU304可确定电池的剩余容量。CPU304还可应用与环境因素诸如检出的电池温度有关的数据,进一步调节电池的剩余容量值。
再参照图8,电池电压传感器502和电池化学检测器504以通信方式连接A/D转换器AD2,CPU304取样各传感器502、504通过A/D转换器AD2读出的数据。现参照图12,气流调节器10适合工作于四种电池操作模式之一正常模式、第一节电模式、第二节电模式和故障安全模式。根据电池剩余容量,CPU304将气流调节器10置于合适的操作模式。具体而言,电池电压传感器502检测电池端电压,A/D转换器AD2把检出的电池端电压转换成代表该检出电池端电压的数字信号。CPU304在步骤510读有关的A/D转换器AD2而得到电池端电压读数与电池化学特性,并在步骤512确定电池剩余容量。使用的电池容量和一组阈值电压或阈值容量贮存在存储器中。CPU 304将检测到的电池电压与每个阈值容量作比较,判断气流调节器10工作于正常模式还是第一节电模式、第二节电模式或故障安全模式。执行比较功能的逻辑单元是低功率电路固件的一个元件。
在步骤514,CPU304接着判断该电池是否正工作于大于其余工作容量25%的阈值容量。若电池正工作于大于25%的阈值容量,CPU304就在步骤516发出将气流调节器10置于正常操作模式的有关指令。若电池正工作于小于或等于25%的电平,则CPU304在步骤518判断电池是否正工作在某一范围内,而该范围小于或等于全电池容量25%的阈值容量和大于或等于全电池容量15%的阈值容量。若电池正工作在该范围内,则CPU304在步骤520发出将气流调节器10置于第一节电模式的有关指令。
在步骤522,CPU304判断电池是否正工作于小于或等于电池容量15%的阈值容量和大于全电池容量5%的最小阈值容量的范围内。若该电池被判定正工作于该范围内,就在步骤524把气流调节器10置于第二节电模式。在步骤526,CPU304判断电池是否正工作于低于全电池容量5%的最小阈值容量。若CPU304断定电池正工作于低于最小阈值容量,则在步骤528把气流调节器10置于故障安全模式。
现参照图13,描述CPU304发出的将气流调节器10置于第一节电模式的指令。在步骤530,把压力传感器读数与行程传感器读数等的传感器读数的取样速率减至第一节电程度,而在步骤532,减小内部时钟318的时钟速率。在步骤534,设置低报警,记录时间。事件记录、历史记录与报警记录仍保持在第一节电模式中。在第一节电模式中,出现的某些预定的事件可能要求提高时钟速率。例如,此类预定事件包括来自诸如通信板120b、通信模块308或LOI模块310等通信设备的外部中断。在步骤536,CPU检查是否要求根据预定的事件提高时钟速率。若CPU304断定要提高时钟速率,则在步骤538提高时钟速率,直到实现了要求更高时钟速率的功能性能。然后在步骤540,CPU304为了节省电池能量而发出降低时钟速率的指令。
参照图14,描述CPU304发出将气流调节器10置于第二节电模式的指令。在步骤542,进一步减小压力传感器读数与行程传感器读数等传感器读数的取样速率至第二节电程度,即取样率低于第一节电程度的取样率。在步骤544,终止所有通过通信板120b的外部通信。在步骤546,设置记时打印和记录低-低报警。内部时钟318的时钟速率保持减小的时钟速率,事件记录、历史记录和报警记录继续保持于第二节电模式。
参照图15,描述CPU304发出的指令,在认为主电池用完时把气流调节器10置于故障安全模式。如前所述,用静态RAM314存贮事件记录、历史记录和报警。在步骤548,激励可更换锂电池等后备电池对静态RAM供电,由此保持事件记录、历史记录和报警记录。为节电,在步骤550切断所有传感器34、35、44、115、117、502、504、A/D转换器AD1、AD2和包括CPU304的处理器板120c的诸元件,只有静态RAM314保持供电,不获取或存贮新的数据样本,直到调换了主电池。
显然,为示明本发明的实施例,应用了特定的电池容量阈值,诸如全电池工作容量的25%、15%和5%,但电池容量阈值可以是操作员配置的值,还可配用其它的电池容量阈值,这些都不违背本发明的精神。另外,虽然描述的实施例包括四种气流调节器操作模式,但是应用更多或更少的操作模式也符合本发明的范围。
前面的详细描述仅供透彻地理解,并无不必要的限制,因为本领域的技术人员显然知道各种修正。
权利要求
1.一种控制管道内流体的调压器,所述调压器用电池操纵,其特征在于,包括适合检测电池操作参数并相应地产生操作参数信号的电池传感器;适合存贮电池的阈值容量值并相应地产生阈值容量信号的存储器;和控制调压器功耗所述的控制器单元,其特征在于,控制器单元适合接收操作参数信号和阈值容量信号,而且相应地产生以多个操作模式中的至少一个操作调压器的指令信号。
2.如权利要求1所述的调压器,其特征在于,控制器单元包括带计算单元与逻辑单元的处理器,计算单元适合响应于操作参数信号产生指示电池剩余容量的剩余容量信号,逻辑单元适合比较剩余容量信号与阈值容量信号,并且根据逻辑程序相应地产生以多种操作模式中至少一种操作调压器的指令信号。
3.如权利要求2所述的调压器,其特征在于,多种操作模式包括节电模式和故障安全模式,当剩余容量信号小于阈值容量信号时,逻辑程序以节电模式操作调压器,当剩余容量信号低于最小阈值容量信号时,逻辑程序以故障安全模式操作调压器。
4.如权利要求3的调压器,其特征在于,还包括一耦接调压器的后备电池,其中逻辑程序适合以故障安全模式激励后备电池。
5.如权利要求3所述的调压器,其特征在于,逻辑程序适合以故障安全模式取消激励电池传感器。
6.如权利要求3所述的调压器,其特征在于,逻辑程序适合以故障安全模式关闭处理器。
7.如权利要求3所述的调压器,其特征在于,阈值容量值包括第一与第二阈值,节电模式包括第一与第二节电模式,存储器适合响应于第一阈值产生第一阈值信号,其中存储器适合响应于第二阈值产生第二阈值信号,而当剩余容量信号小于第一阈值信号时,逻辑程序适合以第一节电模式操作调压器,当剩余容量信号小于第二阈值信号时,逻辑程序适合以第二节电模式操作调压器。
8.如权利要求7所述的调压器,其特征在于,逻辑程序适合至少以第一和第二节电模式之一产生报警。
9.如权利要求8所述的调压器,其特征在于,报警包括第一和第二报警,而逻辑程序适合在第一节电模式产生第一报警,并在第二节电模式产生第二报警。
10.如权利要求7所述的调压器,其特征在于,处理器包括一适合提供某一频率的时钟信号的时钟,控制器单元适合以对应于时钟信号频率的取样速率接收操作参数信号,而逻辑程序适合在第一和第二节电模式之一降低时钟信号的频率。
11.如权利要求10所述的调压器,其特征在于,逻辑程序适合至少以第一和第二节电模式之一降低取样率。
12.一种适合控制调压器功耗的控制器单元,所述调压器用电池操作,其特征在于控制器单元包括适合检测电池操作参数并相应地产生操作参数信号的电池传感器;适合存贮电池阈值容量值并相应地产生阈值容量信号的存储器;和适合接收操作参数信号和阈值容量信号并相应地产生以至少多种操作模式之一操作调压器的指令信号的处理器。
13.如权利要求12所述的控制器单元,其特征在于,处理器包括计算单元、逻辑单元和时钟,时钟适合提供某一频率的时钟信号,计算单元适合以相应于时钟信号频率的取样速率接收电池传感器的操作参数,并相应地产生指示电池剩余容量的剩余容量信号,而逻辑单元适合比较剩余容量信号与阈值容量信号,并根据逻辑程序至少以多种操作模式之一操作调压器。
14.如权利要求13所述的控制器单元,其特征在于,多种操作模式包括节电模式和故障安全模式,当剩余容量信号小于阈值容量信号时,逻辑程序适合以节电模式操作调压器,当剩余容量信号低于最小阈值容量信号时,逻辑程序适合以故障安全模式操作调压器。
15.如权利要求14所述的控制器单元,其特征在于,阈值容量值包括贮存在存储器里的第一和第二阈值,节电模式包括第一和第二节电模式,存储器适合响应于第一阈值产生第一阈值信号,而响应于第二阈值产生第二阈值信号,当剩余容量信号小于第一阈值信号时,逻辑程序适合以第一节电模式操作调压器,当剩余容量信号小于第二阈值信号时,逻辑程序适合以第二节电模式操作调压器。
16.一种控制调压器功耗的方法,调压器用电池操作,其特征在于该方法包括步骤提供检测电池操作参数的电池传感器;存贮电池的阈值容量值;根据操作参数和阈值容量值,按照逻辑程序至少以多种操作模式之一操作调压器。
17.如权利要求16所述的方法,其特征在于包括步骤按操作参数测定电池的剩余容量值;比较剩余容量值与阈值容量值;和按剩余容量值与阈值容量值的比较结果,至少以多种操作模式之一操作调压器。
18.如权利要求17所述的方法,其特征在于,操作调压器的步骤包括步骤当剩余容量值小于阈值容量值时,以节电模式操作调压器;和当剩余容量值为零时,以故障安全模式操作调压器。
全文摘要
揭示了在包括控制器和多个传感器的调压器系统中收集传感器数据的方法,因在取样期内要求收集传感器数据,故要激励控制器和每个传感器,从而减少调压器系统的耗电量。其它节电措施还包括用电池传感器监视调压器电池的容量,随着电池容量的减小,把调压器置于减少功耗的操作模式。
文档编号G01F1/40GK1866145SQ200610084569
公开日2006年11月22日 申请日期2002年1月23日 优先权日2001年2月28日
发明者R·J·范德拉, P·R·亚当斯, D·E·伍尔伦斯, J·B·米利肯 申请人:费希尔控制产品国际有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1