货车质心高度动态检测方法

文档序号:5839444阅读:381来源:国知局
专利名称:货车质心高度动态检测方法
技术领域
本发明涉及一种货车安全监控方法,特别是关于一种货车质心高度动态检测 方法。
背景技术
货车在运输货物时,因其装载货物的种类和重量不同,其质心高度时常变化。 若质心高度较高、车速较快,货车在弯道行驶时很容易发生侧翻事故,造成重大 人员伤亡和财产损失。由此,国内外正在积极开展研究货车的运行安全与监控技 术,例如智能车速系统,即根据道路条件和车辆性能参数实现对车辆速度地自动 控制,从而使得车辆能够安全地通过弯道;又比如基于车路协调的安全控制技术, 通过车路通讯信息、车载雷达信息、车辆运动状态信息等,实时判断车辆的运行 安全状态,利用车载安全执行装置如电子辅助制动装置使车辆能够以安全的速度 运行。对于这些安全技术来说,车辆自身性能参数是建立正确安全控制算法的基 础,而车辆的质心高度又是这些参数中最为重要的参数之一,对车辆质心高度的
辨识则是最终能否实现车辆安全控制的关键,所以对车辆质心高度的动态监测具
有重要意义。
目前对货车质心高度的检测技术主要是利用称重仪、巻尺、角度仪等仪器对 货车质心高度进行静态测量,即必须在货车静止于称重仪器上时才能对其质心高 度进行测量,并且当货车载重量及货物种类变化时还必须重复上述过程才能获取 其新的质心高度。因此,对于目前的货车质心高度的检测技术而言,主要存在以 下问题第一,由于货车装载的货物种类与重量时常变化,所以现有的检测技术 没有针对性,当装载的货物发生变化时就难以获知其实际质心高度;第二,现有 技术检测出的货车质心高度很难保证它的实时准确性,从而导致基于此质心高度 所建立的车辆安全控制算法不准确,因此无法有效保障货车在弯道上地安全运行。

发明内容
针对上述问题,本发明的目的是提供一种能够在货车行驶过程中实时、准确 检测其质心高度的货车质心高度动态检测方法。
为实现上述目的,本发明采取以下技术方案 一种货车质心高度动态检测方 法,它包括以下步骤1)设置一货车质心高度动态检测装置,它包括方向盘转角 测量装置、横摆角速度测量装置、倾角测量装置和包括有单片机的电子控制单元; 所述单片机内的固化程序设置有质心高度动态检测算法模块;2)采集方向盘转角 信号,货车沿垂向的横摆角速度信号,货车车厢的侧倾角度信号,货车后轴的侧 倾角度信号,货车的纵向车速信号;3)通过所述质心高度动态检测算法模块,计 算出货车质心高度。
所述货车质心高度的计算式如下
<formula>formula see original document page 4</formula>
式中,^表示第k步采样时刻, ("为货车理论稳态横摆角速度信号,
为货车车速信号,L为货车轴距,3("为方向盘转角信号,C为货车的稳定性因 数,A("为校正稳态横摆角速度,/l为权系数,《 ("为横摆角速度,^为货车 侧向加速度,g为重力加速度,//("为k时刻的货车质心高度,e(k)为k-l时刻 的估计误差,、为货车悬架的侧倾角刚度,p("为货车车厢的侧倾角度信号, 为货车后轴的侧倾角度信号,//(/t-l)为k-l时刻的货车质心高度,/z。为货车车厢 底部至路面的高度,附为货车质量,Q(k)为增益矩阵,户(yt-l)为k-l时刻的对阵 矩阵,s为遗忘因子,P(k)为k时刻的对阵矩阵。
本发明由于采取以上技术方案,其具有以下优点1、本发明根据货车载重货 物的不同,弯道的曲率不同,货车的质心高度也不同的原理,提出了实时动态检 测货车质心高度,以实现对最高车速控制的方式。2、本发明通过设置在货车上的 检测装置对货车的各种动力学参数进行实时采集,并通过设置在单片机内的动态 检测算法模块对质心高度进行计算,因此可以实时得到精确的货车质心高度。3、 本发明可以根据实时计算出的质心高度,通过软件计算出货车侧翻的最高限速, 因此不但可以通过提醒驾驶员减速的方式控制侧翻事故的发生,而且可以通过设 置辅助制动装置(比如真空助力器和电子液压辅助制动装置等),自动强行制动 的方式,实现对货车的自动安全控制,避免交通事故的发生。4、本发明方法使用 的测量装置和控制单元基本上采用的都是车辆安全控制中的原有设备,对车辆质 心高度的检测几乎不需添加额外的测量装置。本发明可以广泛用于各种货车的行
车安全控制过程中。


图l是本发明的结构框图
图2是本发明的倾角测量装置安装位置示意图 图3是本发明电子控制单元的电路原理图
具体实施例方式
下面结合附图和实施例对本发明进行详细的描述。
本发明方法包括以下步骤
1) 如图l所示,设置一货车质心高度动态检测装置,它包括方向盘转角测量
装置l、横摆角速度测量装置2、倾角测量装置3和包括有单片机U1的电子控制 单元(Electronic Control Unit) ECU4;单片机Ul内的固化程序设置有质心高度动 态检测算法模块。
2) 采集方向盘转角信号,货车沿垂向的横摆角速度信号,货车车厢的侧倾角 度信号,货车后轴的侧倾角度信号,货车的纵向车速信号。
3) 通过质心高度动态检测算法模块,计算出货车质心高度。 步骤1)和2)中,方向盘转角测量装置l采用一方向盘转角传感器,其固定
安装于货车方向盘下方的转向柱上,其用于检测方向盘转角信号并输送给ECU4, 且输送给ECU4的信号为两路模拟电压信号, 一路用于判断方向盘转动的方向及 圈数,另一路用于判断方向盘在该圈内所转过的角度。在本实施例中,方向盘转 角传感器是BI公司的LH3-SX-4300A型转角传感器,最大输入电压为16V,量程 为-900^ +90(A可抗10g的冲击力,适用于车载环境,方向盘转角测量装置l也 可以采取各种类型的传感器,其安装位置也是可以变化的。
步骤l)和2)中,横摆角速度测量装置2采用一横摆角速度传感器,其安装 于货车车厢底部两条中轴线的交叉处,其用于检测货车沿垂向的横摆角速度信号 并输送给ECU4,输送给ECU4的信号为0~5V之间变化的模拟电压信号。在本实 施例中,横摆角速度传感器采用BEI公司的LCG50-00100-100型传感器,额定输 入电压为5Vdc,量程为±100°/"满足货车使用要求,但横摆角速度测量装置2 的类型不限于此。
如图2所示,步骤1)和2)中,倾角测量装置3采用两倾角仪31、 32,其中 倾角仪31安装在货车车厢底部纵向中轴线与后轴在车厢上的投影的交叉点处,倾 角仪32安装在后轴的中点处,分别用于检测货车车厢的侧倾角度p和货车后轴的 侧倾角度%信号,输出信号^和^为数字信号,可以通过倾角仪31、 32上的串口
输送给ECU4。在本实施例中,两倾角仪31 、 32采用Lamshine公司的LAM-TD-45D
型单轴倾角传感器,其内置有温度补偿及冲击抑制模块,适用于车载环境,但其 中任一倾角仪也可以采用两个位移传感器来代替。
如图3所示,步骤l)和2)中,ECU4包括一单片机U1及相关外围电路, 单片机U1具有三路A/D转换电路,且内部设置有一质心高度动态检测算法模块, 其将方向盘转角测量装置1及横摆角速度测量装置2输出的模拟电压信号转换成 数字信号,同时接收倾角测量装置3输送的数字信号,且根据被检测货车动力学 基本参数信息,及汽车动力学理论运行货车质心高度动态检测算法模块内的算法 计算货车侧向加速度和质心高度。在本实施例中,EUC4中的单片机U1采用摩托 罗拉公司生产、型号为MC9S08DZ60的八位单片机,也可以采用其它类似的单片 机,在此不作限制。
如图3所示,步骤l)和2)中,ECU4还包括一端分别连接方向盘转角测量 装置1两输出端和横摆角速度测量装置2输出端的三路滤波减噪电路,其另一端 分别连接ECU4中单片机Ul的三路A/D转换电路的输入端ADINO、 ADIN1和 ADIN2。第一路滤波减噪电路输入的是方向盘转角传感器1输出的方向盘转动方 向及圈数的信号,该电路由电容Cll 、 C12和电阻R1组成,电容C12与电阻R1 串联后,得到的串联支路与电容Cll并联;该并联电路的一端接地线,另一端同 时连接第一路A/D转换电路的输入端ADINO和一二极管Dl的阳极,二极管Dl 的阴极连接电源电压VCC;第二路滤波减噪电路输入的是方向盘转角测量装置1 输出方向盘在该圈内所转过角度的信号,该电路由电容C13 、 C14和电阻R2组 成,电容C14与电阻R2串联后,得到的串联支路与电容C13并联;该并联电路 的一端接地线,另一端同时连接第二路A/D转换电路的输入端ADIN1和一二极管 D2的阳极,二极管D2的阴极连接电源电压VCC;第三路滤波减噪电路输入的是 横摆角速度测量装置2输出的信号,该电路由电容C15 、 C16和电阻R3组成, 电容d6与电阻R3串联后,得到的串联支路与电容C15并联;该并联电路的一 端接地线,另一端同时连接第三路A/D转换电路的输入端ADIN2和一二极管D3 的阳极,二极管D3的阴极连接电源电压VCC。滤波减噪电路用于滤掉模拟信号 中的高频噪声,以防止后续A/D采样过程中发生信号混叠。滤波减噪电路除上述 电容式的滤波电路外,还可以釆用其它的电容式滤波电路,在此不限。若采用本 实施例中的滤波减噪电路时,电容Cll、 C12、 C13、 C14、 C15和C16为luF的 电解质电容,也可以是其它类型的电容,当为电解质电容时,上述电容的负极接 地。电阻R1、 R2禾卩R3为50H2。 二极管D1、 D2和D3用于保证单片机Ul中的
三路A/D转换电路的输入端ADIN0 、ADIN1和ADIN2的输入电压不超过电源电
压vcc。
如图3所示,步骤1)和2)中,ECU4中还包括一 CAN总线收发电路连接 一货车原有的车载CAN (Controller Area Network)网络5,用于从车载CAN网 络5中接收货车纵向车速信号。该CAN总线收发电路采用PCA82C250芯片U2 作为驱动器,PCA82C250是专用的CAN驱动芯片,分别为CAN总线和ECU4提 供差动发送和差动接收能力,并且完成CANH和CANL与CAN总线发送、接收 之间的转换。U2的1脚和4脚分别与单片机Ul的29脚和30脚相连,U2的7脚 和6脚分别接车载CAN网络5的高端CANH和低端CANL,用于接收车载CAN 网络5输入的货车纵向车速信号。电容C21和C22并联连接构成U2的滤波稳压 电路,该滤波稳压电路的一端与U2的3脚相连,另一端与U2的2脚相连,同时 U2的3脚还与电源电压VCC相连,U2的2脚与地线相连。
如图3所示,步骤l)和2)中,ECU4中还包括一串口收发器电路,该电路 采用Max232芯片U3作为串口收发驱动芯片,其包括2路发送器、2路接收器和 一个电压发生器电路提供TIA/EIA-232-F电平,符合TIA/EIA-232-F标准。其中每 一个接收器将TIA/EIA-232-F电平转换成5V TTL/CMOS电平,每一个发送器将 TTL/CMOS电平转换成TIA/EIA-232-F电平。本实施例中,U3只采用其中一路发 送器及一路接收器。U3的10脚与单片机Ul的15脚相连,9脚与单片机Ul的 16脚相连,7脚与倾角仪31、 32的串口线中的发送线相连,8脚与倾角仪31、 32 的串口线中的接收线相连。U3的1脚和3脚之间连接一电容C31, 1脚接C4的正 极;4.脚和5脚之间连接一电容C32, 4脚接C32的正极;2脚禾Q 16脚之间连接 一电容C33, 2脚接C33的正极,且16脚与电源电压VCC相连;6脚与一电容 C34的正极相连,C34的负极接地线;15脚接地线,同时与一电容C35的负极相 连,C35的正极与电源电压VCC相连;U3的其它管脚悬空。本实施例中,U2是 德州仪器公司(TI)推出的一款兼容RS232标准的芯片,电容C31、 C32、 C33、 C34和C35为luF的极性电容,但不限于此。
步骤3 )中,记经过滤波减噪电路并由单片机U1进行AD采样处理后的方向 盘转角信号为^(0和横摆角速度信号为^ (",记由串口接收到的由倾角仪31、 32输出的货车车厢的侧倾角度为p(A:)和后轴的侧倾角度为^(",记由车载CAN 网络5中接收的货车纵向车速信号为,其中A表示第k步采样时刻。
然后,单片机U1根据采集的信息运行货车质心高度动态检测算法计算货车质 心高度,其具体步骤如下(1) 计算理论稳态货车横摆角速度^(it):利用车辆稳态转向模型,根据实时
测量的方向盘转角信号^(",车载CAN网络5中接收的货车纵向车速信号"(",
其计算式如下
其中,Z为货车轴距,C为车辆的稳定性因数。本实施例中,Z=4.5m, C=0.0019 /w2 。
(2) 计算校正稳态横摆角速度^^):读取横摆角速度实际测量值^ (",考 虑到横摆角速度的实际测量存在一定的误差,因此将实测横摆角速度值6^("和 理论稳态横摆角速度值 (A)进行加权平均,从而得到一个校正横摆角速度值,其 计算式如下
,=(1-氛("+;1#)
其中,义为权系数,具体数值根据横摆角速度测量装置2的精度和具体安装 方式而定,也可由实验进行标定。本实施例中,取义=0.5。
(3) 计算货车当前的侧向加速度^(yfc):根据校正横摆角速度^("和当前纵向
车速w(",其计算式如下
(4) 估计货车质心高度//(":根据货车动力学参数、、s、 /z。、 m,及当前
侧向加速度^("和倾角^、 %,利用车辆稳态侧倾模型,建立车辆质心高度/z("
的回归最小二乘估计算法,其计算式如下
小)=、|一)_%("|-(辟-1)-/z。)m[^(" + g.一)]
其中,e(A)为k-l时刻的估计误差,2("为第k时刻的增益矩阵,P("为第 k时刻的对阵矩阵,//("为质心高度估计值,e为遗忘因子,^为货车车厢底部 至路面的高度,、为货车悬架的侧倾角刚度,m为货车质量,g为重力加速度。 本实施例中,g取9.8m/s2, s取0.99,/ 。取0.536m,、取6739Nm/deg。
尽管为说明目的公开了本发明的较佳实施例和附图,其目的在于帮助理解本 发明的内容并据以实施,但是熟悉本领域技术的人员,在不脱离本发明及所附的
权利要求的精神和范围内,可作各种替换、变化和润饰。因此,本发明不应局限 于最佳实施例和附图所公开的内容,本发明的保护范围以所附的权利要求书所界 定的范围为准。本发明能够在货车行驶过程中实时、准确检测其质心高度,确保 驾驶员行车安全。
权利要求
1、一种货车质心高度动态检测方法,它包括以下步骤1)设置一货车质心高度动态检测装置,它包括方向盘转角测量装置、横摆角速度测量装置、倾角测量装置和包括有单片机的电子控制单元;所述单片机内的固化程序设置有质心高度动态检测算法模块;2)采集方向盘转角信号,货车沿垂向的横摆角速度信号,货车车厢的侧倾角度信号,货车后轴的侧倾角度信号,货车的纵向车速信号;3)通过所述质心高度动态检测算法模块,计算出货车质心高度。
2、 如权利要求1所述的货车质心高度动态检测方法,其特征在于所述货车 质心高度的计算式如下<formula>formula see original document page 2</formula><formula>formula see original document page 2</formula>式中,A表示第k步采样时刻,《 ("为货车理论稳态横摆角速度信号, 为货车车速信号,L为货车轴距,^"为方向盘转角信号,C为货车的稳定性因 数,4("为校正稳态横摆角速度,/l为权系数,fi^(^为横摆角速度,^为货车 侧向加速度,g为重力加速度,//("为k时刻的货车质心高度,e(k)为k-l时刻的估计误差,、为货车悬架的侧倾角刚度,H"为货车车厢的侧倾角度信号, 为货车后轴的侧倾角度信号,l)为k-l时刻的货车质心高度,/^为货车车厢 底部至路面的高度,m为货车质量,Q(k)为增益矩阵,尸(A-1)为k-l时刻的对阵 矩阵,s为遗忘因子,P(k)为k时刻的对阵矩阵。
全文摘要
本发明涉及一种货车质心高度动态检测方法,它包括以下步骤1)设置一货车质心高度动态检测装置,它包括方向盘转角测量装置、横摆角速度测量装置、倾角测量装置和包括有单片机的电子控制单元;所述单片机内的固化程序设置有质心高度动态检测算法模块;2)采集方向盘转角信号,货车沿垂向的横摆角速度信号,货车车厢的侧倾角度信号,货车后轴的侧倾角度信号,货车的纵向车速信号;3)通过所述质心高度动态检测算法模块,计算出货车质心高度。本发明可以根据实时计算出的质心高度,通过软件计算出货车侧翻的最高限速,通过提醒驾驶员减速的方式或自动强行制动的方式,实现对货车的自动安全控制,避免交通事故的发生。本发明可以广泛用于各种货车的行车安全控制过程中。
文档编号G01M1/12GK101349606SQ20081011968
公开日2009年1月21日 申请日期2008年9月5日 优先权日2008年9月5日
发明者张德兆, 李克强, 李升波, 王建强, 连小珉 申请人:清华大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1