基于底跟踪的saa和dpca联合运动补偿方法

文档序号:6004510阅读:296来源:国知局
专利名称:基于底跟踪的saa和dpca联合运动补偿方法
技术领域
本发明涉及水声工程领域中的合成孔径技术,主要是一种基于底跟踪的SAA和 DPCA联合运动补偿方法。
背景技术
目前在国际上尚无成熟的海底地层的三维成像系统,本方案采用仿医用CT技术的海底地层声学三维成像方法实现掩埋雷探测识别。在三维成像机理方法上,通过高分辨阵处理实现对回波不同的水平方位高分辨力,通过脉冲压缩技术获得深度方向距离高分辨力,通过发射换能器每一次发射得到一个横断面地层的二维能量分布图,随着声呐平台向前运动,获得另一维走航方位上的合成孔径高分辨力,连续扫描即可获得地层地貌的三维探测成像。主要需要突破各维度成像分辨力的关键技术。由于拖体在工作状态中,受到海浪、海流、潮汐和拖船等因素的影响,运动平台不能按照理想直线轨迹运动,在海上拖曳工作状态中,拖体在自由姿态上的横摇、纵倾、上下起伏变化明显,对成像质量较大影响,当拖体的运动误差幅度大于λ/8时,SAS图像出现明显模糊,走航分辨力下降。达不到三维成像系统走航维的分辨力要求。运动姿态补偿可采用高精度的硬件设备进行,但是面临使用成本昂贵,并且受到工作环境的限制,海底地形地貌变化复杂,强散射体漫反射的干扰会导致SAA切变平均算法性能下降,冗余相位中心算法依靠冗余子阵获得覆盖相同区域的回波,但海水中、海底表面、地层的漫反射回波形成严重混响,拖体姿态的不平稳也导致照射海底区域的晃动,回波散射体信息冗杂,影响走航合成孔径高分辨成像。

发明内容
本发明的目的正是克服上述技术的不足,而提供一种基于底跟踪的SAA和DPCA联合运动补偿方法,本发明解决其技术问题采用的技术方案这种基于底跟踪的SAA和DPCA联合运动补偿方法,硬件传感器测量的姿态数据进行补偿后,采用底跟踪技术截取底界面附近的回波,利用底部散射体的空间和时间相关的冗余特性,通过切边平均SAA算法和冗余相位中心DPCA算法估计拖体残余的纵倾和上下起伏;最后积分并去除线性相位误差的影响而获得平台运动轨迹。作为优选,该方法包括以下步骤101)发射换能器按航行速度受控发射,需满足有冗余子阵重叠的空间关系;102)传输原始阵元数据和传感器数据;103)获得传感器测量的运动误差估计,软件初始化冗余子阵数据;104)获取冗余回波数据,处理获得底跟踪范围结果和搜索步长,截取底界面附近回波进行纵倾角和上下起伏估计,计算线性相位误差;105)接收每批次数据和硬件传感器数据,对数据进行传感器信息补偿;
106)完成底跟踪,截取数据完成纵倾角和上下起伏运动补偿,去除线性相位误差;107)将补偿后数据输出给成像模块,重复105) 107)。作为优选,所述回波选取垂直照射湖、海底的回波,能量最强,其附近较小的波束开角内,斜距变化也很小,回波散射体信息不冗杂,相比较其它角度上回波而言,提取这部分底分界附近的回波并通过算法获得的运动误差准确性大大提高。本发明有益的效果是1、发明选取垂直照射湖、海底的回波,能量最强,其附近较小的波束开角内,斜距变化也很小,回波散射体信息不冗杂,相比较其它角度上回波而言,提取这部分底分界附近的回波并通过算法获得的运动误差准确性大大提高。2、发明采用了水与底界面处显著变化的梯度特征和走航轨迹上分界面的连续性两大措施保证对底界面进行有效跟踪,确保了对底跟踪的准确性和稳定性。3、发明采用硬件粗补偿后进行软件细补偿的思想,工作状态易于实时实现,处理后的图像质量明显改善,提高走航分辨力,算法鲁棒性好。


图1 表示本发明适用的地层三维声成像技术方案示意2 表示本发明实施的声成像系统平台示意3 表示本发明算法流程结构框4 表示本发明实施中声纳平台受纵倾影响时阵元深度示意5 表示本发明实施中声纳平台声阵纵倾角示意6 表示本发明实施中声纳平台声阵上下起伏示意7 表示本仿真条件下小球原始SAS图像图8 表示用本发明处理小球运动补偿后的SAS图像图9 表示用本发明处理小球纵倾角pitch估计结果图10 表示用本发明处理小球上下起伏surge估计结果。
具体实施例方式下面结合附图和实施例对本发明作进一步说明为了解决在小型拖体中对海底地层的探测、绘制、三维成像显示,特别是在走航维度需要高分辨能力,本发明从硬、软件联合估计运动姿态进行研究,提出了一种基于底跟踪的切变平均自聚焦算法(SAA)和冗余相位中心算法(DPCA)联合估计的SAS运动补偿算法, 算法首先根据硬件传感器测量的姿态数据进行补偿,然后通过底跟踪技术截取底界面附近的回波,利用底部散射体的空间和时间相关的冗余特性,通过SAA算法估计拖体残余的纵倾角,采用DPCA算法估计拖体残余的上下起伏;最后积分并去除线性相位误差的影响而获得运动轨迹,实现拖体在走航状态下的横摇、纵倾、上下起伏运动误差的精确估计与补偿。 适用于声阵在大安装角度下的合成孔径成像系统。为了实现上述目的,本发明提供了一种仿医用CT技术的海底地层声学三维成像系统,在走航方位维(y轴)采用合成孔径技术,在深度方位维(ζ轴)采用宽带脉冲压缩技术,在水平方位维(X轴)获得方位角度高分辨的技术。系统平台在沿走航方位维受到运行速度的制约,需要满足1/2空间采样法则,系统沿着走航方位维向前直线移动,通过组合换能器发射技术产生宽带调频信号,布置多元呈矩形状排列的水听器阵。深度维度上对接收的每批回波信号进行宽带信号脉冲压缩技术,根据距离分辨力与信号带宽和声速的关系, ζ = C/2B,可以获得海底多目标在深度维度上的分辨力参数值;水平方位维度上通过垂直于平台运动方向安装的多个接收水听器组成一组物理孔径较短的线列阵,在接收到每批次数据中,采用高分辨力算法获得对“目标群”深度层,不同方位角度的高分辨力参数值;在走航方位维度上,平行于平台运动方向的多接收阵接收到一定孔径长度回波数据后,采用本发明提出的基于底跟踪的SAA和DPCA联合运动补偿后多子阵合成孔径技术处理,获得的走航分辨力与目标距离没有关系,与接收阵元物理尺寸有关,ξ =D/2,其中D为单个接收水听器物理阵元长度,获得走航方位维度上的目标高分辨力参数。每批次后获得地层的“目标群”深度和水平方位的横断面二维能量分布图,按照走航方位维逐次发射推进,帧数依次叠加,加入走航分辨力参数值,获得地层的三维显示结果。图1是本发明实施的地层三维声成像技术方案示意图,在三维成像机理方法上, 采用宽带脉冲压缩方法获得深度维度分辨力,采用高分辨算法获得水平方位维分辨力,采用本发明方法确保走航维度进行合成孔径处理后的分辨力。图2是本发明实施的三维声成像系统的要部构成示意图,为进行走航方向合成孔径处理,需要水下声基阵布置若干平行于平台运动方向的接收水听器。图3是本发明的流程图,下面按照图3的流程图详细介绍本发明的方法。在步骤101)中,在实施平台上,拖体前端安装发射换能器,后端安装接收基阵,同时拖体内部安装采集电子工作舱,前置处理工作舱及传感器舱,拖船上安装DVL和GPS,干端信号处理机,拖船通过拖缆拖动沿直线行进,同步时钟由精度最高的拖体内采样单元产生,传递到干端触发信号源信号,经功放输出后从拖缆到达信号处理机,信号处理器同时根据拖缆同步传递下来的实时运动速度信息调整发射周期,控制发射机产生线性调频信号。在步骤10 中,采集模块同步命令发出后,即开始采集接收水听器阵与传感器的数据,转化为数字信号后通过拖缆传输到干端进行处理显示。在步骤10 中,实施平台系统采用四元子阵走航合成孔径处理,基阵发射波束垂直照射海底,获得拖体内装传感器的信息,包括横摇、纵摇、航向、深度信息,假定海平面保持不变,利用传感器深度信息计算得到不同接收阵元位置处的声程差,如图4所示,第ρ个脉冲处,等效相位中WCi (ρ)的深度表达式hrpi = hsp+ ( Δ L+ (4-i) Au) · tan θ p i = 1,2,3,4其中ρ表示脉冲序号,hrpi表示在第ρ个脉冲时接收阵元i的深度,h 表示传感器的深度,Δ L表示传感器到等效相位中心C4的距离,Au表示实孔径长度的一半。采用接收的基阵数据初始化DPCA估计运动误差的冗余子阵信息数组。在步骤104)中,分为海底界面跟踪、纵倾角、上下起伏估计三部分。对数据进行海底界面的跟踪,由于发射阵和接收阵的波束开角都较大。在混响区内,海底回波信号的前端和后端对应的开角差别非常大,水平距离较长。获得的海底回波中各区域的散射体回波信息冗杂,由于拖体随暗涌上下起伏影响,发射前后批次中多个接收阵元采集到海水、海底相同区域回波信号会受拖体上下起伏干扰,会导致图像中水和底分界面及地层上出现上下起伏现象,如果从整个回波中提取运动信息,得到的结果会比较模糊。所以我们选取垂直照射海底的回波,相比较其它角度上回波而言,能量最强,其附近较小的波束开角内,斜距变化也很小,回波散射体信息不冗杂,从这部分回波提取并通过算法获得的运动误差结果较为准确。在山脉海底底跟踪中,根据回波信号在海水和海底界面处存在一个较大的幅度梯度进行推断。平坦海底底跟踪中,除了采用幅度梯度进行判别,并可根据走航轨迹上分界点的连续性预测可跟踪下一个分界底位置;这样可根据梯度显著变化的特征和走航轨迹上分界面的连续性对水底分界面进行有效跟踪。Sp, Zp, σ ρX第P次批次时,分别为该阵元接收样本点幅值能量,积分平滑后幅值能量,幅度梯度和水底分界点位置。Hm为积分平滑选择的汉明窗系数。η为平滑积分长度。选取单阵元接收数据,根据海底分界点幅值大,幅值梯度明显的特点。
权利要求
1.一种基于底跟踪的SAA和DPCA联合运动补偿方法,其特征是硬件传感器测量的姿态数据进行补偿后,采用底跟踪技术截取底界面附近的回波,利用底部散射体的空间和时间相关的冗余特性,通过切边平均SAA算法和冗余相位中心DPCA算法估计拖体残余的纵倾和上下起伏;最后积分并去除线性相位误差的影响而获得平台运动轨迹。
2.根据权利要求1所述的基于底跟踪的SAA和DPCA联合运动补偿方法,其特征是包括以下步骤101)发射换能器按航行速度受控发射,需满足有冗余子阵重叠的空间关系;102)传输原始阵元数据和传感器数据;103)获得传感器测量的运动误差估计,软件初始化冗余子阵数据;104)获取冗余回波数据,处理获得底跟踪范围结果和搜索步长,截取底界面附近回波进行纵倾角和上下起伏估计,计算线性相位误差;105)接收每批次数据和硬件传感器数据,对数据进行传感器信息补偿;106)完成底跟踪,截取数据完成纵倾角和上下起伏运动补偿,去除线性相位误差;107)将补偿后数据输出给成像模块,重复10 107)。
3.根据权利要求1所述的基于底跟踪的SAA和DPCA联合运动补偿方法,其特征是所述回波选取垂直照射湖、海底的回波。
全文摘要
本发明是一种基于底跟踪的SAA和DPCA联合运动补偿方法,硬件传感器测量的姿态数据进行补偿后,采用底跟踪技术截取底界面附近的回波,利用底部散射体的空间和时间相关的冗余特性,通过切边平均SAA算法和冗余相位中心DPCA算法估计拖体残余的纵倾和上下起伏;最后积分并去除线性相位误差的影响而获得平台运动轨迹。本发明有益的效果是采用了水与底界面处显著变化的梯度特征和走航轨迹上分界面的连续性两大措施保证对底界面进行有效跟踪,确保了对底跟踪的准确性和稳定性。采用硬件粗补偿后进行软件细补偿的思想,工作状态易于实时实现,处理后的图像质量明显改善,提高走航分辨力,算法鲁棒性好。
文档编号G01S15/89GK102183756SQ201110032988
公开日2011年9月14日 申请日期2011年1月25日 优先权日2011年1月25日
发明者丛卫华, 余小琴, 傅翔毅, 张卫华, 张峰山, 朱必波 申请人:中国船舶重工集团公司第七一五研究所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1