基于有限波长法的混沌介质成分浓度光学检测装置及方法

文档序号:5942133阅读:553来源:国知局
专利名称:基于有限波长法的混沌介质成分浓度光学检测装置及方法
技术领域
本发明涉及一种混沌介质成分浓度的检测方法。特别是涉及一种基于有限波长法的混沌介质成分浓度光学检测装置及方法。
背景技术
应用光学方法进行人体内成分检测(如胆红素)主要基于从人体皮肤内部扩散反射回来的光带有皮肤组织成分的信息。人体皮肤组织是具有高散射特性和吸收特性的混沌介质,对于此类混沌介质中成分浓度的光学检测需要有针对性的考虑,检测方法的确定与检测系统的构建主要依据待检测物质及相关干扰因素的光学特性。以胆红素为例,胆红素(Bulirubin,简称BR)是动物体内血红蛋白等化合物分解代谢的中间体或产物,不仅是一种内源性毒素,也是一种内源性抗氧化剂。胆红素的非正常代谢会引起一系列疾病,如色素型胆结石、高胆红素症以及黄疸等。为了便于更灵敏、实时地监测体内胆红素的浓度,为胆红素的研究提供可靠、准确的数据,人们在研究胆红素的过程中,逐渐建立、完善和发展起来一系列胆红素的定量分析方法。目前,临床主要采用有创的血清胆红素浓度检测方法,如重氮法、KHC3法、化学氧化法和氧化酶法,其具体检测原理如下。1)重氮试剂法重氮试剂法是历史最久、最为经典的方法,目前为止仍应用最广(刘军,王昌富.胆红素的检测方法及其与临床疾病的关系[J].中国康复理论与实践,2007,3,13(3) 273 274 ;杨荣伟,陈屹一,殷舟.4种总胆红素常规检测方法的比较[J].中国医学检验杂志,2005,4,6⑵144 146),100多年来它曾有过无数个版本,但最流行的为J-G法和M-E 法。J-G法先利用重氮试剂与胆红素反应,随后在碱性条件下使产生的重氮胆红素变为绿色 (本来为红色)而导致了光谱的转移。M-E法在重氮胆红素生成后直接进行比色(红色)。 重氮法存在两点缺陷一是重氮试剂不稳定,它必须由亚硝酸钠和氨基苯磺酸临时生成,生成后最多只能储存2天;二是重氮试剂与结合胆红素即间胆(Be)和ο胆红素(Bo)的反应特异性不佳。针对上述缺点,100多年来本法虽然经过无数的改良,但至今仍无满意的结^ ο2)氧化酶法二十世纪八十年代初,研究者们(Kosaka A,Yamamoto C, Morishita Y, et al, Enzymatic determination of bilirubin fractions in serum, Clin Biochem,1987, 20(6) :451 458)从土壤中发现并分离出能产生胆红素氧化酶(BOX)的菌株。随后的研究发现,利用胆红素氧化酶,在特定条件下,可以分别测出总胆(TB)、直胆(DB)、σ胆红素 (Bo)以及结合胆红素(Be) (Kurosaka K, Senba S, Tsubota H, et al, A new enzymatic assay for selectively measuring conjugated bilirubin concentration in serum with use of bilirubin oxidase, Clin Chim Acta, 1998,269(2) : 125 136),这为临床有选择性的测量提供了新的方法。氧化酶法测定胆红素具有简单、灵敏度高、特异性好的特点,且不受血清中其他生物分子的影响;缺点是试剂较昂贵,并受酶的稳定性、纯度等的影响。3)化学氧化法这类方法主要的有钒酸盐氧化法、亚硝酸钠氧化法(Kojma R,Sasayma Y, Koriyama K,et al,Measurement of serum bilirubin using sodium nitrite as unique oxidizing agent, Rinsho Kagaku(Nippon Rinsho Kagakkai),1997,26 (1) :22 30)、高碘酸氧化法等。因胆红素的四吡咯结构具有还原性,因此从理论上讲各种低分子的无机氧化剂和在一定条件下具有氧化性的各种过渡金属元素都可以氧化胆红素,引起450nm波长吸光度的下降,从而可用于胆红素的测定。此类方法优点是不受溶血、脂血等干扰物质的影响,与氧化酶法比较具有试剂价格低廉,精密度更高的优点,是目前临床检验室测定胆红素更佳的方法,但其实用性还有待进一步提高。4)其它有创的胆红素检测法KHC3法把样本中胆红素氧化成胆蓝素,通过测定其吸收峰700nm处吸光度的增加来计算出总胆红素的浓度(马佳,王毅超,经皮及血清检测胆红素含量在新生儿黄疸诊断中的比较,西南国防医药,2006,16(1) :51 52 ;何卫东,杨宝圩,蔡月真,KHC3法检测血清胆红素,国际检验医学杂志,2007,1,28 (1) 82 83)。甲酰胺法,血清中的σ胆红素经甲醇和甲酰胺等处理后能发生沉淀达到与未结合胆红素(Bu)等分离的目的,通过往沉淀物中加入甲酰胺和重氮试剂可使σ胆红素溶解并呈色,从而达到检测σ胆红素(Βσ)含量的目的(胡学章,检测δ胆红素的新法研究, 上海医学检验杂志,1991,6 (2) :73 75)。荧光法,胆红素在紫外光照射下,能发生π — η*跃迁,利于荧光的发射。用紫外光照射胆红素溶液,在特定波长附近能产生荧光,通过测量荧光强度可以知道胆红素的含量。荧光法具有诸多等优点,不过目前还只处于实验室研究阶段(王正工,鲁秀国,刘勋,荧光法测定胆红素的含量,东北师大学报,1990,8 (8) :95 99;杨培慧,郑志雯,蔡继业,胆红素与血红蛋白分子作用的发光光谱分析,发光学报,2004,25 (3) 247 251)。此外,研究者们还在开发并提出了许多其它的胆红素检测法,如高效液相色谱法 (HPLC)、毛细管胶束电动色谱法、抗胆红素单克隆抗体法和光纤传感器法(Liu X T, Hu J, Relationship between bilirubin free radical and formation of pigment gallstone, World J Gastroenterol,2002,8(3) 413 417 ;Okamural Y, Yamazakil Μ, Yamaguchi Τ, et al, Anti-bilirubin monoclonal antibody III, Preparation and properties of monoclonal antibodies to unconjugated bilirubin-Ix α , Biochimica et Biophysica Acta, 1991,1073(3) :538 542)等等。但是,传统的有创方法不仅给患者带来了生理上的痛苦,有可能造成感染的风险, 而且反复取血过程繁杂无法达到实时的监测。迄今,市场上已经广泛存在各种经皮胆红素测量装置。然而,由于精度较低,该装置仅适用于新生儿黄疸病的初次排查。主要原因是因为新生儿体内缺少干扰物如胡萝卜素,因此新生儿黄疸患者的皮下组织对460nm入射光的反射值随血清总胆红素的浓度增加而一致性减小,因而可使用460nm处的皮下组织的反射值来经皮测定新生儿血清总胆红素浓度。目前的测量装置大都以双波长检测方法为主,考虑血红蛋白在460nm处亦有强吸收值,故皮下组织中血红蛋白在460nm处对反射光谱也有显著影响,会干扰胆红素的经皮测量。同时假设血红蛋白在550nm处的摩尔吸光系数与在 460nm处的摩尔吸光系数相同,故用对460nm和550nm处的吸收值采用差分的方法来消除血红蛋白的干扰(马健2008)。由于人体个体差异较大,影响因素较多,导致最终检测结果的精度较差,不能用于临床诊断,仅可用于新生儿胆红素浓度检测的筛查。Bilicheck采用多波长(137个波长)的检测方法(McKenzie J 2010),针对上述问题有所改观,但是多波长势必带来仪器成本增高和数据处理算法的复杂性加大,进而影响仪器的普及应用。基于人体胆红素浓度检测存在的问题,在系统考虑影响胆红素浓度经皮检测的各种因素基础上,针对实际胆红素测量中个体光学性质差异较大,人体背景的噪声和环境的干扰以及胆红素浓度信息特异性低等特点,提出有限个波长混沌介质成分浓度的光学检测方法,并构建相应的装置,主要去除了血红蛋白和皮肤黑色素对于胆红素测量的影响,在提高用于经皮胆红素浓度测量精度基础上,拓广胆红素无创测量方式的实用价值。

发明内容
本发明所要解决的技术问题是,提供一种实现混沌介质中成分浓度的无创、动态和连续检测的基于有限波长法的混沌介质成分浓度光学检测装置及方法。本发明所采用的技术方案是一种基于有限波长法的混沌介质成分浓度光学检测装置及方法。基于有限波长法的混沌介质成分浓度光学检测装置,包括有光源,所述的光源通过耦合光纤测头连接混沌介质,所述的混沌介质又通过耦合光纤测头连接分光滤光系统,所述的分光滤光系统依次连接光电检测单元、单片机及显示屏。所述的光源采用氙闪光灯,用于提供波长范围为190-1100nm的光。所述的分光滤光系统是由半透半反棱镜和滤光片构成分出2、4、8…2n道光的分光滤光系统。所述的光电检测单元是由硅光电池构成用于进行光电转换。所述的耦合光纤测头由耦合光纤组成,包括有由中心向外依次设置的用于收集传输光源发出的光并入射到混沌介质中的耦合光纤内芯、塑料隔层、用于收集混沌介质的反射光并把反射光传输到分光滤光系统的耦合光纤外芯层和塑料保护套;实际测量时耦合光纤中入射光纤和出射光纤的相对位置是通过计算混沌介质传输的最佳光程长来推算出, 所述最佳光程长的具体计算公式如下
_ 1/lnlO ^ 0.434°ptimum _ ^~ W ^~
i=l i=l其中,c为样品成分浓度,α为比吸光系数,即波长的函数,η为溶液中物质成份个数,l0PtiM为最佳光程长;在混沌介质成分检测中,浓度变量只有一个待测成分,η取ι ;最佳光程长在低浓度测量时取Inptimum,在高浓度测量时取lh-。ptiM,所以耦合光纤入射光线直径dl和出射光纤直径d2及两光纤的相对位置d的设计需满足以下公式dl+d2+d ( I1^optimum, d = lh_。ptimum,所以计算得dl+d2 (、-。拟瞧-^-。^·。所述的耦合光纤外芯层包括有多个均勻分布的耦合光纤外芯和用于定位多个耦合光纤外芯的凝胶填充物。用于基于有限波长法的混沌介质成分浓度光学检测装置的方法,包括如下步骤1)将检测装置的耦合光纤测头置于混沌介质表面,并启动氙闪光灯发出强光;2)光源发出的光经耦合光纤内芯进入混沌介质,在混沌介质中传输后的反射光经耦合光纤外芯传到检测装置的分光滤光系统中,分光滤光系统所接收的反射光带有混沌介质各成分的信息;3)反射光在分光滤光系统中被半透半反棱镜分成所需的多束光,各光路经过相应透光率的滤光片滤光后得到设定波长光,照射到光电检测单元的受光端面进行光电变换, 光信号转变为模拟电信号;4)模拟电信号在单片机中由A/D转换变为数字电信号,该数字电信号经过放大、 比较,然后通过单片机中相应的具体检测算法即有限个波长检测法得到计算结果;5)计算结果通过显示屏显示,这个结果称为待测成分摩尔值X,该待测成分摩尔值X与混沌介质中待测成分浓度Y成线性关系,并根据回归方程Y = A+BX求得相应的数值, 其中A、B为常数。所述的有限个波长检测法包括确定不同波长法中的基准波长和确定不同波长法中的其它波长。所述的确定不同波长法中的基准波长是,通过基准波长原理对混沌介质中待测成分浓度检测进行光谱修正,消除实时测量背景和环境干扰,进而提高混沌介质中待测成分的检测精度,纯吸收介质中溶液的吸光度表示为Α(λ) = { εψ(λ) . Cw0+[ ε , ( λ )ε w ( λ ) ] -Cj-I其中Cwtl为无溶质时水的摩尔浓度,由以上公式可知溶质成分i的浓度改变所引起的样品吸光度变化量可表示为^^ = R(A)KA)]./当dA( λ VdCi = 0即ε i ( λ r) = K ε w( λ r)时,对应波长λ r的吸光度与溶质的浓度无关,该波长即为溶质的基准波长;其中&为溶质i的水置换系数,且有Δ Cw = Δ Ci ; 1等于比色皿的厚度;ε “λ)与ε w( λ)分别表示相应波长下溶质i与水的摩尔吸收系数。所述的确定不同波长法中的其它波长是,选定待检测成分的最大吸收峰所在波长作为第一个特定波长λ工,然后根据对待检测成分影响程度大小将各影响因素排序,依据相应的光学特性确定第二个特定波长λ 2,以及后续几个特定波长λ 3、λ 4、λ 5波长,并与前述基准波长共同构成有限个波长,用于混沌介质中成分浓度的光学检测。本发明的基于有限波长法的混沌介质成分浓度光学检测装置及方法,采用待测物质最佳光程长方法、及待测物质的基准波长理论去除检测的背景和环境干扰,并采用混沌介质中影响待测物质检测的其他成分的光学特性消除这些成分的影响;本发明具有测量精度高、测量结果可靠性好、使用过程中不需要耗材或者仅需要很少量的耗材和测量速度非常快等特点。因此本发明可更加准确、方便的测量出混沌介质中的某种成分的浓度,可实现混沌介质中成分浓度的无创、动态和连续检测。


图1是本发明检测装置的整体结构示意图; 图2是本发明检测装置中测头的结构示意图; 图3是光在混沌介质中行程的示意图; 图4是胆红素浮动基准波长的理论计算图; 图5是血红蛋白、胆红素和黑色素的摩尔吸收系数随波长变化6是黑色素浓度与黑色素摩尔吸收系数曲线负斜率的关系图。 图中1光源2 测头3分光滤光系统 4:光电检测单元5单片机 6 显示屏 7:混沌介质 21 耦合光纤内芯 22 塑料隔层 23 耦合光纤外芯层 24 塑料保护套 25 凝胶填充物26 耦合光纤外芯
具体实施例方式下面结合实施例和附图对本发明的基于有限波长法的混沌介质成分浓度光学检测装置及方法做出详细说明。如图1所示,本发明的基于有限波长法的混沌介质成分浓度光学检测装置,包括有光源1,所述的光源1通过耦合光纤测头2连接混沌介质7,所述的混沌介质7又通过耦合光纤测头2连接分光滤光系统3,所述的分光滤光系统3依次连接光电检测单元4、单片机5及显示屏6。所述的光源1采用氙闪光灯功率为10-50W,用于提供波长范围为190-1100nm的光 (Jenway-67-series-spectrophotometers光谱仪说明书)。所述的分光滤光系统3是由半透半反棱镜和滤光片构成分出2、4、8…2n道光的分光滤光系统,并且根据需要导出一定数量的波长。所述的光电检测单元4是由硅光电池构成用于进行光电转换,把光信号转换为模拟电信号。单片机5(型号C8051F340),用于信号处理,根据所得到的特定波长信号结合相关算法,计算得到待测成分摩尔值;LCD显示器6,用于数据显示,显示的数据为待测成分的浓度值。所述的耦合光纤测头2用于把光源的发射光入射到混沌介质,并收集反射光信息。包括有由中心向外依次设置的用于收集传输光源发出的光并入射到混沌介质7中的耦合光纤内芯21、塑料隔层22、用于收集混沌介质7的反射光并把反射光传输到分光滤光系统3的耦合光纤外芯层23和塑料保护套24。所述的耦合光纤外芯层23包括有多个均勻分布的耦合光纤外芯26和用于定位多个耦合光纤外芯沈的凝胶填充物25。测头是由耦合光纤组成,在实际检测中,可以根据待测成分浓度的检测范围,通过计算混沌介质传输的最佳光程长来设计耦合光纤测头。因为在光谱分析技术中需要从重叠光谱中提取微弱化学信息,因此选择合适的测量条件,对于提高测量精度具有重要意义。根据朗伯-比尔定律可知,吸收峰的强度主要决定于特定波长下样品的吸光系数和光程长。为了不丢失样品信息,应根据不同的测量波长选择最佳光程长进而来设计测量测头,这样可以提高反射光谱的测量灵敏度,即提高被测成份浓度变化所引起的反射光谱信号变化幅度,对于减少仪器噪声引起的浓度测量误差具有重要意义。因为光在皮肤中是沿一个香蕉型的路径传播的,故所求出来的最佳光程长为具体径向位置r的平均光程长,通过最佳光程长的计算,可以推算出实际测量时耦合光纤中入射光纤和出射光纤的相对位置(图2中dl,d2和d表示)。对于单波长光谱测量分析, 最佳光程长在吸光度A = O. 434时获得,此时灵敏度值最大,测量误差最小;另外,对于同种测量溶液,只要测量波长选定,则最佳光程长固定,与具体的被测成份无关。最佳光程长的具体计算公式如下
权利要求
1.一种基于有限波长法的混沌介质成分浓度光学检测装置,包括有光源(1),其特征在于,所述的光源(1)通过耦合光纤测头( 连接混沌介质(7),所述的混沌介质(7)又通过耦合光纤测头( 连接分光滤光系统(3),所述的分光滤光系统( 依次连接光电检测单元(4)、单片机(5)及显示屏(6)。
2.根据权利要求1所述的基于有限波长法的混沌介质成分浓度光学检测装置,其特征在于,所述的光源(1)采用氙闪光灯,用于提供波长范围为190-1100nm的光。
3.根据权利要求1所述的基于有限波长法的混沌介质成分浓度光学检测装置,其特征在于,所述的分光滤光系统(3)是由半透半反棱镜和滤光片构成分出2、4、8…2"道光的分光滤光系统。
4.根据权利要求1所述的基于有限波长法的混沌介质成分浓度光学检测装置,其特征在于,所述的光电检测单元(4)是由硅光电池构成用于进行光电转换。
5.根据权利要求1所述的基于有限波长法的混沌介质成分浓度光学检测装置,其特征在于,所述的耦合光纤测头O)由耦合光纤组成,包括有由中心向外依次设置的用于收集传输光源发出的光并入射到混沌介质⑵中的耦合光纤内芯(21)、塑料隔层(22)、用于收集混沌介质(7)的反射光并把反射光传输到分光滤光系统(3)的耦合光纤外芯层03)和塑料保护套04);实际测量时耦合光纤中入射光纤和出射光纤的相对位置是通过计算混沌介质传输的最佳光程长来推算出,所述最佳光程长的具体计算公式如下其中,C为样品成分浓度,α为比吸光系数,即波长的函数,η为溶液中物质成份个数,Ioptifflim为最佳光程长;在混沌介质成分检测中,浓度变量只有一个待测成分,η取1 ;最佳光程长在低浓度测量时取I1Itimim,在高浓度测量时取lh_。ptimUffl,所以耦合光纤入射光线直径dl和出射光纤直径d2及两光纤的相对位置d的设计需满足以下公式dl+d2+d ^ ll-optimum,d — lh-optimum,所以计算得dl+d2 1 l—optimum lh-optimum0
6.根据权利要求5所述的基于有限波长法的混沌介质成分浓度光学检测装置,其特征在于,所述的耦合光纤外芯层03)包括有多个均勻分布的耦合光纤外芯06)和用于定位多个耦合光纤外芯06)的凝胶填充物05)。
7.一种用于权利要求1所述的基于有限波长法的混沌介质成分浓度光学检测装置的方法,其特征在于,包括如下步骤1)将检测装置的耦合光纤测头置于混沌介质表面,并启动氙闪光灯发出强光;2)光源发出的光经耦合光纤内芯进入混沌介质,在混沌介质中传输后的反射光经耦合光纤外芯传到检测装置的分光滤光系统中,分光滤光系统所接收的反射光带有混沌介质各成分的信息;3)反射光在分光滤光系统中被半透半反棱镜分成所需的多束光,各光路经过相应透光率的滤光片滤光后得到设定波长光,照射到光电检测单元的受光端面进行光电变换,光信号转变为模拟电信号;.4)模拟电信号在单片机中由A/D转换变为数字电信号,该数字电信号经过放大、比较,然后通过单片机中相应的具体检测算法即有限个波长检测法得到计算结果;.5)计算结果通过显示屏显示,这个结果称为待测成分摩尔值X,该待测成分摩尔值X与混沌介质中待测成分浓度Y成线性关系,并根据回归方程Y = A+BX求得相应的数值,其中A、B为常数。
8.根据权利要求7所述的用于基于有限波长法的混沌介质成分浓度光学检测装置的方法,其特征在于,所述的有限个波长检测法包括确定不同波长法中的基准波长和确定不同波长法中的其它波长。
9.根据权利要求8所述的用于基于有限波长法的混沌介质成分浓度光学检测装置的方法,其特征在于,所述的确定不同波长法中的基准波长是,通过基准波长原理对混沌介质中待测成分浓度检测进行光谱修正,消除实时测量背景和环境干扰,进而提高混沌介质中待测成分的检测精度,纯吸收介质中溶液的吸光度表示为Α(λ) = { εψ(λ) . Cw0+[ ε “入)卞 εψ(λ)] · CJ · 1其中Cwtl为无溶质时水的摩尔浓度,由以上公式可知溶质成分i的浓度改变所引起的样品吸光度变化量可表示为= ⑷-《 ⑷]./当ClAUVdCi = 0即ε iU』=ki εψ(λ』时,对应波长λ ^的吸光度与溶质的浓度无关,该波长即为溶质的基准波长;其中&为溶质i的水置换系数,且有ACw = ^iACi ;1等于比色皿的厚度;ε Αλ)与εψ(λ)分别表示相应波长下溶质i与水的摩尔吸收系数。
10.根据权利要求8所述的用于基于有限波长法的混沌介质成分浓度光学检测装置的方法,其特征在于,所述的确定不同波长法中的其它波长是,选定待检测成分的最大吸收峰所在波长作为第一个特定波长λ工,然后根据对待检测成分影响程度大小将各影响因素排序,依据相应的光学特性确定第二个特定波长λ 2,以及后续几个特定波长λ3、λ4、入5波长,并与前述基准波长共同构成有限个波长,用于混沌介质中成分浓度的光学检测。
全文摘要
一种基于有限波长法的混沌介质成分浓度光学检测装置及方法。装置光源通过耦合光纤测头连接混沌介质,混沌介质通过耦合光纤测头连接分光滤光系统,分光滤光系统依次连接光电检测单元、单片机及显示屏。分光滤光系统是由半透半反棱镜和滤光片构成分出2、4、8…2n道光的分光滤光系统。方法中有限个波长的确定,采用胆红素基准波长处吸收信息去除皮肤背景和杂散光干扰,采用对胆红素浓度检测影响最大的血红蛋白和黑色素吸收相关的波长去除这些影响因素的影响;采用最佳光程长原理计算出胆红素光学检测时的最佳光程长,并用于光学测头的设计。本发明可更加准确、方便的测量出混沌介质中的某种成分的浓度,可实现混沌介质中成分浓度的无创、动态和连续检测。
文档编号G01N21/31GK102564983SQ20121003220
公开日2012年7月11日 申请日期2012年2月14日 优先权日2012年2月14日
发明者徐可欣, 蒋景英, 龚启亮 申请人:天津大学, 天津市先石光学技术有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1