长波红外空间调制干涉小型化方法

文档序号:6179031阅读:280来源:国知局
长波红外空间调制干涉小型化方法
【专利摘要】长波红外空间调制干涉小型化方法,其特征在于干涉组件由一个分光镜、角锥反射镜Ⅰ、角锥反射镜Ⅱ和两个孔径光阑组成;分光镜与入射平行光成135度放置;角锥反射镜Ⅰ的顶点位置相对反射光光轴位置开始,沿反射光光轴垂直方向逆时针偏移1/4横向剪切量的位移量;角锥反射镜Ⅱ的顶点位置相对透射光光轴位置开始,沿透射光光轴垂直方向逆时针偏移1/4横向剪切量的位移量;两个孔径光阑分别设置在两个角锥反射镜的顶点位置处,并且分别垂直于反射光光轴和透射光光轴放置。在光学参数一致的情况下,减小了分光镜的尺寸,干涉组件的尺寸和光谱仪的整体尺寸得到有效控制,材料的生长难度和加工难度均降低,节约了成本。
【专利说明】长波红外空间调制干涉小型化方法
【技术领域】
[0001]本发明属于干涉光谱学领域,涉及一种长波红外波段的空间调制干涉小型化方法。
【背景技术】
[0002]自20世纪60年代第一台傅里叶变换成像光谱仪的出现以来,至今已有40多年的历史。早期基于动镜扫描的时间调制型傅里叶变换光谱仪技术已经非常成熟,广泛应用于航天及航空遥感领域。上世纪80年代,为了克服基于动镜扫描的时间调制型傅里叶变换光谱仪中存在的缺点,人们开始对空间调制型傅里叶变换光谱仪进行研究。美国LawrenceLivermore国家实验室进行了红外波段,成像傅立叶变换(IFT)系统的研究,并做了相关的模拟试验。在美国空军的支持下,美国Florida技术研究所、Kestrel公司及Pillips实验室成功完成了用于航空遥感的可见光超光谱傅里叶变换成像光谱仪(FTVHS),FTVHS核心部件采用了带狭缝光阑的三角式干涉仪,以面阵CCD作为探测器件。进入本世纪,美国夏威夷大学采用全反射Sagnac干涉仪为核心部件研制成功了无狭缝的窗扫大孔径空间调制成像光谱仪。国际科学应用公司提出了利用改进的Mach-Zehnder干涉仪作为高光通量静态空间调制型傅里叶变换成像光谱仪的思路。日本的田名纲健雄等人提出了 Michelson空间调制型干涉仪的思路,法国Tosa公司采用该方案在远红外实现了窗扫大孔径空间调制成像光谱仪初步实验。
比较而言,Mach-Zehnder干涉仪不易装调,工程化较为困难。图1是Mach-Zehnder干涉仪光路原理图,由图可以看出,两个分光镜和两个反射镜均需要高精度的加工和安装才能保证出射光程差的精度,加工装调难度大。
Sagnac和Michelson空间调制型干涉仪同属横向剪切型干涉仪。图2是横向剪切型干涉仪原理图,横向剪切型干涉仪中的干涉组件相当于一个横向剪切器,即无穷远处光源发出的光(或者经准直后的光线)经干涉组件后,具有相同出射角度的光束被横向剪切为两部分,然后经傅里叶透镜聚焦到像面的同一点上;横向剪切的作用相当于把一个光源S分解为两个位于无穷远处的虚拟光源S1、S2,并且这两个光源之间的距离等于横向剪切器(干涉组件)的横向剪切量L。因此,产生相位差,在像面上产生干涉条纹。
Sagnac三角式干涉仪在甚长波红外窗口上存在系统尺寸大,部件昂贵、成本闻,分光棱镜加工和镀膜困难等问题,目前在可见光和近红外领域应用较多。图3是Sagnac干涉仪光路原理图。Sagnac干涉装置是用两个半五角棱镜胶合来实现。可以看出,光线经过棱镜的光路较长,使得棱镜尺寸较大,由于可透长波红外波段的材料有限且吸收率较高,经过棱镜的行程越长则吸收越大,光利用率越低;分束膜镀制难度较大,需要将两块棱镜胶合或者在两者之间填充高折射率材料,增大了实现的难度。如果Sagnac干涉装置采用的是反射镜和分光镜来实现,其效果将导致光线的行程比采用两个半五角棱镜的光线行程更长,系统体积更大。
图4是常规的高通量横向剪切型Michelson静态干涉仪干涉组件光路原理图。平行光束经分光镜分光,分别经2个角锥反射镜反射,两个角锥反射镜中一个角锥反射镜顶点位置放置在光轴上,另一个角锥反射镜顶点相对光轴横向移动1/2个横向剪切量,使得两束出射光线产生一个横向剪切量的相位差,从而使得两束光线经傅里叶透镜后产生达到光谱分辨率所需要的光程差。该方法为本发明的最接近现有技术,解决了 Sagnac干涉仪棱镜尺寸大、棱镜胶合与分束膜的镀制工艺难度大等问题,但是,实际设计尺寸仍然太大,分束镜需要使用较大的特殊晶体材料,对光学加工的要求较高。

【发明内容】

[0003]为解决常规的Michelson静态横向剪切型干涉仪的角锥反射镜和分光镜尺寸偏大的问题,本发明提供一种长波红外空间调制干涉小型化方法,以减小角锥反射镜和分光镜的尺寸,实现干涉仪的小型化。
本发明的长波红外空间调制干涉小型化方法,其特征在于:干涉组件由一个分光镜、角锥反射镜1、角锥反射镜II和两个孔径光阑组成;分光镜与入射平行光成135度放置;角锥反射镜I的顶点位置相对反射光光轴位置开始,沿反射光光轴垂直方向逆时针偏移1/4横向剪切量的位移量;角锥反射镜II的顶点位置相对透射光光轴位置开始,沿透射光光轴垂直方向逆时针偏移1/4横向剪切量的位移量;两个孔径光阑分别设置在两个角锥反射镜的顶点位置处,并且分别垂直于反射光光轴和透射光光轴放置。
本发明的干涉方法是:场景扫描经望远系统准直后的光线进入干涉组件,由分光镜按照相同振幅分为两束,一束为反射光,另一束为透射光;反射光经角锥反射镜I反射,再经过分光镜透射出干涉组件;透射光经角锥反射镜II反射,再被分光镜反射出干涉组件;两束光线组合形成具有一个剪切量的相干光,通过傅里叶透镜聚焦,成像到红外探测器像面上,形成干涉条纹,再利用傅里叶变换处理器进行快速傅里叶变换得到景物的光谱信息。
本发明的有益效果是:在光学参数一致的情况下,通过对两个角锥反射镜同时偏移和对孔径光阑位置的合理设置,减小了分光镜的尺寸,干涉组件的尺寸和光谱仪的整体尺寸得到有效控制。由于分光镜多采用高透过率的ZnSe材料,分光镜尺寸的减小,降低了材料的生长难度和加工难度,节约了成本。
【专利附图】

【附图说明】
[0004]图1 Mach-Zehnder干涉仪光路原理图;
图2 Sagnac干涉仪光路原理图;
图3横向剪切型干涉仪原理图;
图4常规的高通量横向剪切型Michelson静态干涉仪光路原理图;
图5本发明的小型化长波红外空间调制干涉成像光谱仪示意图;
图6孔径光阑设置在望远系统后的小型化长波红外空间调制干涉仪的尺寸示意图;
图7孔径光阑设置在傅里叶透镜前的小型化长波红外空间调制干涉仪的尺寸示意图;图8孔径光阑设置在角锥反射镜顶点位置的小型化长波红外空间调制干涉仪的尺寸示意图;
图9孔径光阑设置在望远系统后的小型化长波红外空间调制干涉仪干涉组件的尺寸
图;图10孔径光阑设置在傅里叶透镜前的小型化长波红外空间调制干涉仪干涉组件的尺寸图;
图11孔径光阑设置在角锥反射镜顶点位置的小型化长波红外空间调制干涉仪干涉组件的尺寸图;
图12单个角锥反射镜顶点相对光轴偏移1/2个横向剪切量的干涉组件最优尺寸示意
图; 图13两个角锥反射镜同时相对光轴位置偏移1/4个横向剪切量的干涉组件最优尺寸示意图;
图14角锥反射镜顶点偏移量对角锥反射镜口径尺寸影响的尺寸示意图。
图中:1.分光镜,2.角锥反射镜I,3.角锥反射镜II,4.反射镜I,5.反射镜II,6.分光镜I,7.分光镜II,8.望远系统,9.干涉组件,10.傅里叶透镜,11.探测器,12.傅里叶变换处理器,13.孔径光阑。
【具体实施方式】
[0005]以下结合附图及实施例,对本发明作进一步详细说明。此处所描述的具体实施例仅用以解释本发明,并不限定本发明。
如图5所示,本实施例为本发明方法应用于采用320X 256元探测器的长波红外空间调制干涉成像系统小型化的例子。包括望远系统8,傅里叶透镜10,红外探测器11,傅里叶变换处理器12,其特征在于:干涉组件9由一个分光镜1、角锥反射镜I 2、角锥反射镜II 3和两个孔径光阑13组成;分光镜I与入射平行光成135度放置;角锥反射镜I 2的顶点位置相对反射光光轴位置开始,沿反射光光轴垂直方向逆时针偏移1/4横向剪切量的位移量;角锥反射镜II 3的顶点位置相对透射光光轴位置开始,沿透射光光轴垂直方向逆时针偏移1/4横向剪切量的位移量;角锥反射镜I 2和角锥反射镜II 3可采用两个直角屋脊反射镜或两个角锥体棱镜进行替换;两个孔径光阑13分别设置在角锥反射镜I和角锥反射镜II的顶点位置处,并且分别垂直于透射光光轴和反射光光轴放置。
本发明的干涉方法是:场景扫描经望远系统8准直后的光线进入干涉组件9,由分光镜I按照相同振幅分为两束,一束为反射光,另一束为透射光;反射光经角锥反射镜I 2反射,再经过分光镜透射出干涉组件;透射光经角锥反射镜II 3反射,再被分光镜反射出干涉组件;从干涉组件出射的两束光线组合形成一个具有剪切量的相干光,通过傅里叶透镜10聚焦,成像于红外探测器11像面上,形成干涉条纹,再利用傅里叶变换处理器12进行快速傅里叶变换得到景物的光谱信息。
上述的横向剪切量L和干涉仪光谱分辨率,由以下公式计算;
Z =Cl)
y
Av-^-(2)
2?£
公式中,£为横向剪切量,R为红外探测器的最大光谱分辨本领,对于320X256元探测器,以320象素方向为光谱维,i?=0.5iV= 0.5 x 320 =160 , N为干涉图的单边采样点总数,I为所能探测的最短波长,如波段8~12 μ m,即为8 μ m,y为像面最大光谱分辨本领的边长度,/£为傅里叶透镜焦距,Α?为光谱分辨家ε力探测器像元尺寸,。由以上两式可知,使用320X256元、像元尺寸30 μ m,响应波段8~12 μ m的长波红外探测器时可以达到的光谱分辨率优于ScnT1。当选定了探测器后,剪切量£由需要达到的光谱分辨率和傅里叶透镜焦距决定。
本发明方法具有使干涉组件小型化的技术效果:
首先,如图8所示,孔径光阑13设置在本发明所述的角锥反射镜I 2与角锥反射镜II 3顶点位置时,分光镜I的尺寸有所减小。比较孔径光阑设置在望远系统8后的图6和孔径光阑设置在傅里叶透镜10前的图7,在相同的光学参数前提条件下,孔径光阑设置在角锥反射镜的顶点位置时,望远系统、干涉组件和傅里叶透镜尺寸都得到了控制,为最优化位置,干涉仪尺寸得到控制。图9、图10和图11分别表示在相同光学参数下,孔径光阑13分别位于望远系统8后、傅里叶透镜10前、角锥反射镜I 2和角锥反射镜II 3顶点位置时的干涉组件尺寸图。三幅图分别标出了分光镜I的有效尺寸。可以看出,孔径光阑设置在角锥反射镜顶点位置时,分光镜尺寸比设置在望远系统后,或者设置在傅里叶透镜前的都小,为最优化位置。
其次,角锥反射镜I 2和角锥反射镜II 3顶点偏移量对干涉仪尺寸的影响。图12所示的是角锥反射镜I 2顶点相对反射光光轴垂直方向偏移1/2个横向剪切量L时的干涉组件最优尺寸,图13所示的是角锥反射镜I 2与角锥反射镜II 3分别沿反射光与入射光光轴垂直方向逆时针偏移1/4个横向剪切量L时的干涉组件最优尺寸。在光学参数一致情况下,单个角锥反射镜顶点相对光轴偏移的干涉组件尺寸,和两个角锥反射镜同时相对光轴位置偏移时的干涉组件尺寸,分别受高度A和紀影响,计算公式为:
【权利要求】
1.长波红外空间调制干涉小型化方法,包括:望远系统⑶、傅里叶透镜(K))、红外探测器(11)和傅里叶变换处理器(12),其特征在于:干涉组件(9)由一个分光镜⑴、角锥反射镜I (2)、角锥反射镜II⑶和两个孔径光阑(13)组成;分光镜⑴与入射平行光成135度放置;角锥反射镜I⑵的顶点位置相对反射光光轴位置开始,沿反射光光轴垂直方向逆时针偏移1/4横向剪切量的位移量;角锥反射镜II⑶的顶点位置相对透射光光轴位置开始,沿透射光光轴垂直方向逆时针偏移1/4横向剪切量的位移量;两个孔径光阑(13)分别设置在角锥反射镜I⑵和角锥反射镜II⑶的顶点位置处,并且分别垂直于反射光光轴和透射光光轴放置。
2.根据权利要求1所述的长波红外空间调制干涉小型化方法,其特征在于:本发明的干涉方法是场景扫描经望远系统准直后的光线进入干涉组件⑶,由分光镜⑴按照相同振幅分为两束,一束为反射光,另一束为透射光;反射光经角锥反射镜I⑵反射,再经过分光镜透射出干涉组件;透射光经角锥反射镜II⑶反射,再被分光镜反射出干涉组件;两束光线组合形成具有一个剪切量的相干光,通过傅里叶透镜(1Φ聚焦,成像到红外探测器(11)像面上,形成干涉条纹,再利用傅里叶变换处理器(12)进行快速傅里叶变换得到景物的光谱信息。
3.根据权利要求1所述的长波红外空间调制干涉小型化方法,其特征在于:分光镜⑴使用高透过率的ZnSe材料,镀有分光膜的面位于入射平行光的入射面,透过波段8?12μπι,透射/反射率为1/1 ;镀有增透膜的面位于入射平行光的出射面,透过波段8?12 μ m,透过率大于97%。
4.根据权利要求1所述的长波红外空间调制干涉小型化方法,其特征在于:角锥反射镜I⑵和角锥反射镜II⑶可采用两个直角屋脊反射镜或两个角锥体棱镜进行替换。
【文档编号】G01J3/26GK103674243SQ201310469722
【公开日】2014年3月26日 申请日期:2013年10月10日 优先权日:2013年10月10日
【发明者】付艳鹏, 郑为建, 李训牛, 王海洋, 金宁, 雷正刚, 曾怡, 张卫峰, 窦建云 申请人:昆明物理研究所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1