磁场传感器的制造方法

文档序号:6217901阅读:614来源:国知局
磁场传感器的制造方法
【专利摘要】本发明提供了一种磁场传感器。该磁场传感器包括:传感器本体,用于探测所处环境的磁场信号,包括:磁芯,其外部由内筒包裹;以及感应线圈,缠绕于内筒的外围,其中间抽头接地;以及信号放大模块,与感应线圈的两端相连接,用于将传感器本体探测的磁场信号进行放大,并通过单端方式输出;单端转差分模块,与信号放大模块相连接,用于将信号放大模块通过单端方式输出的磁场信号转换为差分形式;以及供电及控制模块,用于为信号放大模块、单端转差分模块提供电源,并且将单端转差分模块输出的差分形式的探测信号输出。本发明使用有磁芯线圈结构替代空心线圈,在匝数不变情况下,相比于空心线圈需要增加单匝面积来提高传感器灵敏度。
【专利说明】磁场传感器【技术领域】
[0001]本发明涉及磁场传感器【技术领域】,尤其涉及一种磁场传感器。
【背景技术】
[0002]随着经济发展对于油气需求的增加,常规的油气资源已经不能满足这种需求的增长,并且我国石油大部分依赖进口,原油生产的增幅不及国内石油需求的增长。面对如此严峻的石油资源环境,非常规油气的页岩气引起了高度的重视。我国页岩气资源量相当丰富,勘探潜力巨大。然而页岩气地质条件复杂和特殊,非常规的油气藏成藏条件复杂,储层致密,非均匀性强。我国页岩气资源的探勘开发还处于初级阶段,没有系统的配套技术,有诸多技术上的问题。目前国内首个页岩气时频电磁实验项目已经通过了验收,在南方碳酸盐岩发育区的非地震勘探攻关工作取得了良好效果。这意味着瞬变电磁方法在页岩气的探勘研究中能够发挥重要的作用。
[0003]时间域电磁法或称瞬变电磁法(Time-domainelectromagnetic method orTransient electromagnetic method,简称TEM),是一种时域观测的人工源电磁探测方法,它在发送一次脉冲磁场的间歇期间,使用接收线圈观测地下介质的随时间衰减的二次涡流场。衰减过程分为早、中和晚期。早期的电磁场相当于频率域中的高频成分,衰减快,探测深度小;而晚期成分则相当于频率域中的低频成分,衰减慢,探测深度大。通过测量断电后各个时间段的二次场随时间变化规律,可得到不同深度的地电特征。不同电导率的地下介质所产生的二次场大小与衰减速率不同,一般而言,电阻率高的地下介质激励的二次场的幅值大,衰减快 。电阻率低的地下介质(良导体)二次场幅度低,衰减慢。因而其不受高阻层屏蔽,能克服低阻覆盖层的影响,探测深度大。
[0004]时间域电磁法是通过探测油气藏的电性及电化学异常来确定油气状况,相对于其他非地震方法能详细了解油气藏的深度、分布和储量信息,因而具有携带方便,分辨率高,探测深等不可比拟的优势,已经广泛应用于探勘行业,在金属矿勘探,油气勘探和地下水资源勘探等方便发挥了巨大的作用,特别在油气探测方面。
[0005]时频电磁法(Time-Frequencyelectromagnetic method,简称 TFEM)与长偏移距瞬变电磁法(Long-offset transient electromagnetic method,简称 L0TEM)作为时间域电磁法几种通用方法,其信号发射接收示意图如图1A所示,采用长线源接地电极发送一次场,接收装置与发射装置的偏移距一般大于5km,接收装置为磁场传感器,用于测量二次场的磁场信号,接地电极用于测量电场信号。
[0006]图1B为现有技术用于时间域电磁法的磁场传感器结构不意图。如图1B所不,该磁场传感器包括三部分组成:空心线圈,按照一定尺寸绕制特定匝数,感应磁场信号产生电压;电路,抑制线圈谐振,放大空心线圈感应信号。骨架结构,支撑空心线圈以及固定电路。为磁场传感器重量主要来源。
[0007]然而,在实现本发明过程中, 申请人:发现上述用于时间域电磁法的磁场传感器具有如下技术缺陷:[0008](I)磁场传感器灵敏度不够,传感器内部空心线圈总面积为100m2左右,在TFEM和LOTEM的应用中,空心线圈面积需要达到1000m2以上,这就需要空心线圈匝数与单匝面积的提高,增加了空心线圈的重量,同时会提升结构部分的重量,传感器的体积和重量变大,野外携带施工难度很大,如某款磁场传感器尺寸为6.25mX6.25m,重量为25kg ;
[0009](2)磁场传感器频率线性响应范围不足。LOTEM与TFEM施工时发射多种不同频率的方波,信号带宽覆盖宽,要求磁场传感器有响应的足够宽的线性频率响应,才能准确接收对应地下深度的介质信息。由于谐振频率存在,带宽很难满足要求,传统的临界阻尼匹配技术线性响应频率区间有限,没有充分发挥磁场传感器的性能;
[0010](3)磁场传感器灵敏度固定,不能根据实际情况调节。LOTEM和TFEM在施工时为了达到探测不同深度地下目标的目的,往往收发偏移距变化较大,则相应的接收信号强度亦变化较大,现有磁场传感器接收灵敏度均采用固定形式,往往在收发偏移距变大时接收信号幅度迅速变弱,信噪比下降,无法满足接收机信号有效采集。

【发明内容】

[0011](一)要解决的技术问题
[0012]鉴于上述技术问题,本发明提供了一种磁场传感器,以减小传感器的体积与重量,提高磁场传感器灵敏度。
[0013](二)技术方案
[0014]根据本发明的一个方面,提供了一种磁场传感器。该磁场传感器包括:传感器本体,用于探测所处环境的磁场信号,包括:磁芯,其外部由内筒包裹;以及感应线圈,缠绕于内筒的外围,其中间抽头接地;以及信号放大模块,与感应线圈的两端相连接,用于将传感器本体探测的磁场信号进行放大,并通过单端方式输出;单端转差分模块,与信号放大模块相连接,用于将信号放大模块通过单端方式输出的磁场信号转换为差分形式;以及供电及控制模块,用于为信号放大模块、单端转差分模块提供电源,并且将单端转差分模块输出的差分形式的探测信号输出。
[0015](三)有益效果
[0016]从上述技术方案可以看出,本发明磁场传感器具有以下有益效果:
[0017](I)使用有磁芯线圈结构替代空心线圈,在匝数不变情况下,相比于空心线圈需要增加单匝面积来提高传感器灵敏度,有磁芯线圈只需要选择适合尺寸磁芯,利用磁性材料的磁通聚集作用,有效放大了磁芯截面内的磁场强度,这样有磁芯线圈仅需要围绕磁芯绕制,单匝面积大大减小,同时传感器体积的减小使得结构的质量大大下降,本发明的磁场传感器重量小于4kg ;
[0018](2)使用有限欠阻尼匹配,相比于传统的临界阻尼匹配磁场传感器线性区域仅为谐振频率的33%,有限欠阻尼匹配可用的线性区域为谐振频率的70% ;
[0019](3)利用开关实现了对磁场传感器的增益控制,提高了灵敏度。
【专利附图】

【附图说明】
[0020]图1A为现有技术时频电磁法与长偏移距瞬变电磁法中信号发射接收的示意图;
[0021]图1B为现有技术磁场传感器结构示意图;[0022]图2A为根据本发明实施例磁场传感器的结构示意图;
[0023]图2B为图2A所示磁场传感器电路连接的示意图;
[0024]图3为图2B所示磁场传感器中供电及控制模块和其他模块整体管脚设置的示意图;
[0025]图4为采用临界阻尼匹配与有限欠阻尼匹配的磁场传感器性能对比曲线;
[0026]图5为图2B所示磁场传感器中增益放大模块的结构示意图;
[0027]图6为图2B所示磁场传感器中信号放大模块的结构示意图;
[0028]图7为图2B所示磁场传感器中单端转差分模块的示意图;
[0029]图8为本实施例磁场传感器中接收线圈灵敏度测试曲线;
[0030]图9为本实施例磁场传感器中接收线圈噪声测试曲线。
【具体实施方式】
[0031]为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。需要说明的是,在附图或说明书描述中,相似或相同的部分都使用相同的图号。附图中未绘示或描述的实现方式,为所属【技术领域】中普通技术人员所知的形式。另外,虽然本文可提供包含特定值的参数的示范,但应了解,参数无需确切等于相应的值,而是可在可接受的误差容限或设计约束内近似于相应的值。实施例中提到的方向用语,例如“上”、“下”、“前”、“后”、“左”、“右”等,仅是参考附图的方向。因此,使用的方向用语是用来说明并非用来限制本发明的保护范围。
[0032]本发明提出了一种用于TFEM和LOTEM等时间域电磁方法的磁场传感器,其特点为灵敏度高,工作频率低,探测深度深,体积小,重量轻。可以广泛应用于大深度,3D阵列式时间域电磁勘探应用。
[0033]在本发明的一个示例性实施例中,提供了一种磁场传感器。图2A为根据本发明实施例磁场传感器的结构示意图。图2B为图2A所示磁场传感器电路连接的示意图。请参照图2A和图2B,本实施例磁场传感器包括:供电及控制模块、电源转换模块、传感器本体、信号放大模块、增益控制模块和单元转差分模块。其中,供电及控制模块作为一单独部分,除供电及控制模块外的其他模块封装为一整体,两者之间通过12芯线缆连接。
[0034]以下分别对本实施例磁场传感器的各部分进行详细说明:
[0035]1、供电及控制模块
[0036]供电及控制模块主要作用有三个:第一,为磁场传感器提供低噪声供电;第二,利用组合开关对磁场传感器的放大倍数进行增益控制;第三,将单端转差分模块返回的探测信号输出。本实施例中,采用两块输出电压为6V的电池Batteryl和Battery2。
[0037]供电及控制模块与其他模块整体之间为12芯线缆连接,并且通过一 5芯输出接口来输出单端转差分模块输出的探测信号。图3为图2B所示磁场传感器中供电及控制模块和其他模块整体管脚设置的示意图。请参照图2A、图2B和图3,供电及控制模块和其他模块整体之间的各管脚设置如下:
[0038](I)管脚7_US+与管脚Il-GND分别接入Batteryl的正负端,管脚12-GND与管脚10-us_分别接入Battery2的正负端,Us+和Us_为电源的正负端,GND为电源的地;
[0039](2)管脚5-A0,管脚6-A1和管脚2-AGND为增益控制模块的控制端。其中,管脚5-A0通过第一开关SWl连接至管脚2-AGND ;管脚6-A1通过第二开关SW2连接至管脚2-AGND。
[0040]当第一开关SWl和第二开关SW2同时断开时,控制信号为高高;
[0041]当第一开关SWl和第二开关SWl同时闭合时,AO和Al分别接地,控制信号为低低;
[0042]当第一开关SWl闭合,第二开关SW2断开时,控制信号为低高;
[0043]当第二开关SWl断开,第二开关SW2闭合时,控制信号为高低。
[0044]可见,该第一开关SWl和第二开关SW2的组合控制方式有四种,分别对应四种不同的增益。
[0045](3)管脚3_V0Ut+和管脚4-Vwt_连接至单端转差分模块的输出端,并作为供电及控制模块5芯输出接口的管脚I和管脚2 ;管脚8-Uc+和管脚9-U。连接至传感器本体标定线圈的两端,并作为供电及控制模块5芯输出接口的管脚3和管脚4 ;管脚1-Shield连接至磁场传感器屏蔽层,并作为供电及控制模块5芯输出的管脚5。
[0046]2、电源转换模块
[0047]该电源转换模块用于将电池输出的±6V的信号转换为士 5V的供电电压。该供电电压为信号放大模块放大电路的INA115芯片、增益控制模块中的MAX309芯片、单端转差分模块中的芯片AD822等供电。本实施例中,电源转换模块使用的芯片型号为LT1125与LT1175,作为常见电源转换电路,本发明对此不再赘述。
[0048]需要说明的是,本实施例中,供电及控制模块提供的电压与信号放大模块、增益控制模块和单端转差分模块中芯片所需的电压不一致,故需要电源转换模块。本领域技术人员应当清楚,在供电及控制模块提供的电压与芯片所需电压一致的情况下,该电源转换模块也可以省略。
[0049]3、传感器本体
[0050]请参照图2A,传感器本体主要由磁芯、内筒、隔片、感应线圈、中筒、标定线圈及屏蔽层、阻抗匹配电阻Rt等多部分组成。磁芯位于最内层,磁芯外部采用内筒包裹,在内筒上等间隔固定多个隔片,隔片之间缠有漆包线作为感应线圈,线圈外部采用中筒包裹,中筒外侧贴有屏蔽层,且外表面缠绕标定线圈。其中,内筒和外筒由绝缘材料制备,优选为玻璃纤维。
[0051]请参照图2B,感应线圈的中间抽头接地,其两端经由阻抗匹配电阻Rt之后,作为差分输出的两端,连接至信号放大模块的输入端。标定线圈的两端连接至U。+和U。』
[0052]2.1 磁芯
[0053]磁芯形状呈细长长方体形状,长度为600mm,截面积为采用纳米晶带材叠放而成,带材厚度为0.03mm-0.05mm之间。纳米晶材料的初始磁导率大于30000。该磁芯可以增加信号强度约为380倍,即有效磁导率约为380。采用该磁芯的TEM磁场传感器,和传统空心TEM磁场传感器相比(空气的磁导率为I),体积大为缩小。
[0054]磁芯实现方式的理论依据如下,磁芯的有效有效磁导率为:
【权利要求】
1.一种磁场传感器,其特征在于,包括: 传感器本体,用于探测所处环境的磁场信号,包括: 磁芯,其外部由内筒包裹;以及 感应线圈,缠绕于所述内筒的外围,其中间抽头接地; 信号放大模块,与感应线圈的两端相连接,用于将所述传感器本体探测的磁场信号进行放大,并通过单端方式输出; 单端转差分模块,与所述信号放大模块相连接,用于将所述信号放大模块通过单端方式输出的磁场信号转换为差分形式;以及 供电及控制模块,用于为所述信号放大模块、单端转差分模块提供电源,并且将所述单端转差分模块输出的差分形式的探测信号输出。
2.根据权利要求1所述的磁场传感器,其特征在用户,所述磁芯由纳米晶带材叠放而成或由磁性材料一体制备。
3.根据权利要求1所述的磁场传感器,其特征在于,所述传感器本体还包括: 多个隔片,固定于磁芯外部的所述内筒上,所述感应线圈缠绕于各隔片之间。
4.根据权利要求3所述的磁场传感器,其特征在于,所述传感器本体还包括: 中筒,包裹于所述感应线圈的外部,其外侧贴有屏蔽层; 标定线圈,缠绕于所述中筒的外表面,其两端直接通过所述供电及控制模块输出。
5.根据权利要求1所述的磁场传感器,其特征在于,还包括: 匹配阻抗,连接于所述感应线圈两端之间,用于对感应线圈输出的信号进行阻抗匹配,其中,该匹配阻抗采用有限欠阻尼方式与所述感应线圈匹配,匹配系数介于0.71至0.86之间。
6.根据权利要求1所述的磁场传感器,其特征在于: 所述供电及控制模块的管脚5 (AO)和管脚6 (Al)分别通过第一开关(SWl)和第二开关(SW2)连接至管脚2 (AGND),该第一开关(SWl)和第二开关(SW2)提供四种组合控制方式;所述磁场传感器还包括:增益控制模块,用于利用所述四种组合控制方式控制所述信号放大模块的增益。
7.根据权利要求6所述的磁场传感器,其特征在于,所述增益控制模炔基于MAX309芯片组成,其各管脚设置如下: (1)管脚AO和Al分别电性连接至供电及控制模块的管脚5(AO),管脚6 (Al),并且两者分别通过相应电阻与供电正电压连接 (2)管脚NOlA和管脚N02A之间采用第四电阻(R4)串联;管脚N02A和管脚N03A之间采用第五电阻(R5)串联;管脚N03A和管脚N04A之间采用第六电阻(R6)串联;管脚N04A和管脚NOlB之间采用第七电阻(R7)串联;管脚NOlB和管脚N02B之间采用第八电阻(R8)串联;管脚N02B和管脚N03B之间采用第九电阻(R9)串联;管脚N03B和管脚N04B之间采用第十电阻(RlO)串联; (3)管脚EN通过第十一电阻(Rll)和供电正电压连接;管脚VDD与供电正电压连接;管脚VEE与供电负电压连接;管脚GND和地线连接; 其中,管脚N01A、管脚N04B、管脚COMA和管脚COMB连接至该增益控制模块的四个输出端。
8.根据权利要求7所述的磁场传感器,其特征在于,所述信号放大模块包括: 低通滤波器,用于滤除输入信号中的高频信号; 放大电路,基于集成电路芯片INAl 15组成,该集成电路芯片INAl 15的各管脚设置如下:管脚SEN1、管脚SEN2、管脚GSl与管脚GS2分别与增益放大模块MAX309芯片的管脚COMA、管脚COMB、管脚NOlA和管脚N04B连接;管脚V+和管脚V-分别接供电正电压和供电负电压;管脚REF直接接地;输出管脚OUT与管脚FB端之间串联第三电阻R3,管脚FB连接至该信号放大模块的输出端
9.根据权利要求8所述的磁场传感器,其特征在于,所述低通滤波器包括: 第一电阻(Rl),其第一端连接至感应线圈的输入负端; 第一电容(Cl),其一端连接至第一电阻(Rl)的第二端,其另一端接地; 第一限幅电路,由首尾相连的第一二极管和第二二极管组成,其中第一二极管的正端连接至第二二极管的负端; 第二电阻(R2),其第一端连接至感应线圈的输入正端; 第二电容(C2),其一端连接至第二电阻(R2)的第二端,其另一端接地; 第二限幅电路,由首尾相连的第三二极管和第四二极管组成,其中第三二极管的负端连接至第四二极管的正端,第三二极管的正端连接至第二二极管的正端。
10.根据权利要 求1所述的磁场传感器,其特征在于,所述单端转差分模块包括: 第一反向放大电路,包括:第一 AD822芯片,其中,该第一 AD822芯片的反相输入端通过第十四电阻(R14)和第十五电阻(R15)连接至信号放大模块的输出端Vrat ;其正向输入端通过第十六电阻(R16)连接至地;其输出端经由第十九电阻(R19)和第二十电阻(R20)连接至该单端转差分模块的正相输出端Vrat+;第十九电阻(R19)和第二十电阻(R20)之间的端点通过反馈电阻连接至第一 AD822芯片的反相输入端,且反馈电阻与第三电容(C3)并联,该反馈电阻包括第十七电阻(R17)和第十八电阻(R18); 第二反向放大电路,包括:第二 AD822芯片,其中,该第二 AD822芯片的负相输入端通过第二十一电阻(R21)连接至第十九电阻(R19)和第二十电阻(R20)之间的端点;其正相输入端通过第二十二电阻(R22)连接至地,其输出端经由第二十四电阻(R24)和第二十五电阻(R25)连接至该单端转差分模块的输出端Vwt_,第二十四电阻(R24)和第二十五电阻(R25)之间的端点通过第二十三电阻(R23)连接至该第二 AD822芯片的负相输入端。
11.根据权利要求1至10中任一项所述的磁场传感器,其特征在于,还包括: 电源转换模块,与所述供电及控制模块相连接,用于将其电源电压转换为供电电压,提供给所述信号放大模块和单端转差分模块。
12.根据权利要求1至10中任一项所述的磁场传感器,其特征在于,应用于时间域电磁法勘探作业中。
【文档编号】G01R33/02GK103777151SQ201410047320
【公开日】2014年5月7日 申请日期:2014年2月11日 优先权日:2014年2月11日
【发明者】朱万华, 刘凯, 闫彬, 刘雷松, 方广有 申请人:中国科学院电子学研究所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1