使用交流直流整流器生成电力故障报警信号的方法

文档序号:6221761阅读:179来源:国知局
使用交流直流整流器生成电力故障报警信号的方法
【专利摘要】这里公开了一种在输入AC电压丢失情况下以根据负载条件调整PFW信号生成的时刻的方式最佳地生成电力故障报警(PFW)信号的方法。PFW电压阈值值在较轻负载条件下可以设定为较低的值,在较重负载条件下可以设定为较高的值。PFW信号生成也可以由当总线电压下降到电压阈值值时设定的计时机制触发。计时机制的倒计时时间根据确定的总线电压下降速度设定。以这种方式,较轻负载条件下延迟发出PFW信号,电源单元能够在发出PFW信号之前在较轻负载条件下延续正常工作。
【专利说明】使用交流直流整流器生成电力故障报警信号的方法

【技术领域】
[0001]本发明一般涉及电源领域。更具体地,本发明涉及通过AC到DC电源产生电源故障报警信号。

【背景技术】
[0002]电源单元将主AC电压转换为提供给一个或多个负载,如计算机、服务器或其他电气设备的内部组件的一个或多个稳压DC电压。
[0003]图1示出了用于提供电力到服务器的在数字控制下的常规电源单元。该电源单元包括用于功率因数校正(PFC)和AC-DC电压转换的初级侧以及用于DC-DC电压变换的次级侦U。初级侧接收AC输入电压,如主线AC电压,并输出DC总线电压,例如400V。次级侧将从初级侧输出的DC总线电压转换成耦合负载使用的想要的DC电压电平,如15V、5V、或3.3V。初级侧的PFC级通过第一数字信号控制器(DSC)数字控制。次级侧的DC-DC级通过第二DSC或带有用于管理的微控制器(MCU)的模拟控制芯片数字控制。在初级侧和次级侧之间存在双向或单向发送的通信信号。一个这样的通信信号是从初级侧发送到次级侧的电力故障报警(PFW)信号。PFW信号用于通知电源的次级侧,甚至耦合到次级侧的系统,由于短期电源关断需要采取行动,这通常是输入AC电压丢失(voltage loss)之后的几毫秒。这个报警给予次级侧和/或系统采取适当的措施的机会,如切断负载以避免由于AC电压丢失而导致的任何损坏或故障,甚至操作数据丢失。当从PFC级输出的DC总线电压降低到阈值电平时(通常是由于输入AC电压的丢失产生的),触发PFW信号。在一个示例性实施例中,PFC级包括耦合的用来存储能量并平滑总线电压的纹波的大容量电容。大容量电容向次级侧提供储存的能量,以在输入AC电压丢失和设备关断之间的时间间隔期间连续工作。在正常工作中,正常的总线电压是AC电压的函数。然而,当出现电源故障时,AC电压丢失,从PFC级输出的总线电压由于大容量电容放电而下降。由于下降的电压可能会影响次级侧的安全工作,因此在实践中,需要监测DC总线电压电平。如果监测得到的DC总线电压降低到PFW电压阈值,从初级侧发送PFW信号到次级侧。如果DC总线电压电平随后进一步下降到关断电压阈值,那么电源单元关断,从而切断提供给耦合负载的电源。
[0004]图2示出了用于实现相对于从图1的PFC级输出的总线电压的PFW信号的示例性时序图。如图2所示,正常的总线电压主要是DC电压加上取决于特定电源单元的特性的二次谐波。在时刻t0,输入AC电压丢失,此时DC总线电压不再输入AC电压的函数,而是存储在大容量电容中放电能量的结果。大容量电容放电的速度,以及因此DC总线电压随着AC电压丢失下降的速度,都是耦合到DC-DC级输出端的负载的函数。负载越重,DC总线电压下降的速度越快。如果DC负载在AC电压丢失之前或之后没有变化,那么总线电压下降的速度几乎不会改变。当DC总线电压值下降到PFW电压阈值时,在时刻tl,PFW信号从初级侧发送到次级侧。当DC总线电压值下降到关断电压阈值时,在时刻t2,电源单元断电。时间间隔tA是发出PFW信号和电源关断之间的时间。时间间隔tH是保持时间,是输入AC电压丢失和电源关断之间的时间。保持时间tH是大容量电容提供的设备关断前的时间延迟。
[0005]传统上,PFW电压阈值和关断电压阈值都是固定值。PFW信号的产生只依赖于PFW电压阈值的设定值,而无论负载条件如何。图3示出了对应于耦合到图1的电源单元的较轻负载、中等负载和较重负载条件的示例性时序图。时序图A对应于较重负载条件。时序图B对应于中等负载条件。时序图C对应于较轻负载条件。如先前描述以及图3所示,DC总线电压降低的速度对于较重负载条件是最快的,对于较轻负载条件是最慢的。较重负载吸收更多的电流,这导致更快地消耗大容量电容中存储的能量。因此,较重负载条件的保持时间tHA比中等负载条件的保持时间tHB短,中等负载条件的保持时间tHB比较轻负载条件的保持时间tHC短。同样地,较重负载条件的发出PFW信号和电力关断之间的间隔时间(间隔tA)是最短的,长于中等负载条件的间隔tB,并且长于较轻负载条件的间隔tC。
[0006]对PFW电压阈值和关断电压阈值进行设定,以针对最坏情形的负载条件设定发出PFW信号和电源关断之间的时间间隔,确保在电力丢失情形中适当的关断。由于较重负载条件导致DC总线电压降低的速度最快,因此PFW电压阈值,以及因此发出PFW信号和电力关断之间的时间间隔根据关断所需的最短时间设定,这对应于最短时间较重负载条件和间隔tA。对于较轻、中等负载条件,DC总线电压下降的速度并不那么快,但PFW电压阈值根据较重负载条件设定。这会导致中等和较轻负载条件过早地发出PFW信号,这不必要地限制了电源单元的运行时间。例如,中等负载条件下发出PFW信号和电源关断之间的时间间隔(间隔tB)大于必需的时间量(这是间隔tA)。间隔tB和间隔tA之间的这种差异是设备可以运行但并没有运行的时间。类似地,轻负载条件下的时间间隔tC也大于必需的时间间隔tA,并再次导致不必要的设备停机时间。


【发明内容】

[0007]实施例涉及一种以根据负载条件调整PFW信号生成的时刻的方式最佳地生成PFW信号的方法。在一些实施例中,PFW电压阈值在较轻负载条件下设定为较低的值,在较重负载条件下设定为较高的值。在其他实施例中,PFW信号生成由当总线电压下降到电压阈值值时设定的定时机制触发。时间机制的倒计时时刻根据确定的总线电压下降速度设定。以这种方式,较轻负载条件下延迟发出PFW信号,电源单元能够在发出PFW信号之前在较轻负载条件下延续正常工作。
[0008]在一个方面中,公开了一种生成电力故障报警信号的方法。该方法包括:监测电源单元的总线电压;根据耦合到电源单元输出端的负载的变化负载条件调整电力故障报警电压阈值值;以及当总线电压下降到电力故障报警电压阈值值时生成电力故障报警信号。在一些实施例中,调整电力故障报警阈值值包括:确定总线电压下降速度;以及根据总线电压下降速度设定电力故障报警电压阈值值,以允许在生成电力故障报警信号和电源单元断电为电力关断做准备之间的时间段最短。在一些实施例中,调整电力故障报警阈值包括确定负载条件,以及根据所确定的负载条件确定电力故障报警电压阈值值,从而允许在生成电力故障报警信号和电源单元断电为电力关断做准备之间的时间段最短。
[0009]在另一个方面,公开了另外一种生成电力故障报警信号的方法。该方法包括设定电力关断电压阈值值,以及设定准备电力关断的最短时间段。该方法还包括测量电源单元中的总线电压,以及确定总线电压下降速度。该方法还包括根据电力关断电压阈值值、准备电力关断的最短时间段和总线电压下降速度确定将在何时生成电力故障报警信号。该方法还包括生成电力故障报警信号。在一些实施例中,该方法还包括根据耦合到电源单元输出端的负载的负载条件调整将在何时生成电力故障报警信号。在一些实施例中,较重负载条件下的总线电压下降速度比较轻负载条件下的更快。在一些实施例中,确定将在何时生成电力故障报警信号包括通过计算电压等于总线电压下降速度乘以准备电力关断的最短时间段并将计算得到的电压与电力关断电压阈值值相加来设定电力故障报警电压阈值值,以及比较总线电压和设定的电力故障报警电压值。在此情形中,当总线电压下降到设定的电力故障报警电压值时,生成电力故障报警信号。在一些实施例中,确定总线电压下降速度包括:设定第一电压阈值值和第二电压阈值值,其中第一电压阈值值大于第二电压阈值值,第二电压阈值值大于电力关断电压阈值值;比较总线电压和第一电压阈值值、第二电压阈值值;计时总线电压到从第一电压阈值值下降到第二电压阈值值的时间;以及通过将第一电压阈值值和第二电压阈值值之间的电压差除以计时得到的时间来计算总线电压下降速度。在此情形中,确定将在何时生成电力故障报警信号以及生成电力故障报警信号可以包括:根据计算得到的总线电压下降速度计算总线电压从第二电压阈值值下降到电力关断电压阈值值的第一时间段;从第一时间段减去准备电力关断的最短时间段等于第二时间段;设定计时器对第二时间段计时;以及当计时完第二时间段时,生成电力故障报警信号。在一些实施例中,总线电压下降速度随着耦合到电源单元输出端的变化的负载条件变化。
[0010]在又一个方面,公开了又一种生成电力故障报警信号的方法。该方法包括设定电力关断电压阈值值和设定准备电力关断的最短时间段。该方法还包括:接收对应于耦合到电源单元输出端的负载的负载条件;根据电力关断电压阈值值、准备电力关断的最短时间段和接收到的负载条件确定将在何时生成电力故障报警信号;以及生成电力故障报警信号。在一些实施例中,该方法还可以包括根据变化的负载条件调整将在何时生成电力故障报警信号。
[0011]在又一个方面,提供了一种用于生成电力故障报警信号的设备。该设备包括:用于监测电源单元的总线电压的部件;用于根据耦合到电源单元输出端的负载的变化负载条件调整电力故障报警电压阈值值的部件;以及用于当总线电压下降到电力故障报警电压阈值值时生成电力故障报警信号的部件。在一些实施例中,用于调整电力故障报警阈值值的部件包括:用于确定总线电压下降速度的部件;以及用于根据总线电压下降速度设定电力故障报警电压阈值值以允许在生成电力故障报警信号和电源单元断电为电力关断做准备之间的时间段最短的部件。在一些实施例中,用于调整电力故障报警阈值值的部件包括用于确定负载条件的部件,以及用于根据所确定的负载条件确定电力故障报警电压阈值值,从而允许在生成电力故障报警信号和电源单元断电为电力关断做准备之间的时间段最短的部件。

【专利附图】

【附图说明】
[0012]参照附图描述几个示例性实施例,其中相同的组件提供具有相同的参考标号。示例性实施例旨在说明,而不是限制本发明。附图包括以下:
[0013]图1示出了用于提供电力给服务器的在数字控制下的常规电源单元。
[0014]图2示出了用于实现相对于从图1的PFC级输出的总线电压的PFW信号的示例性时序图。
[0015]图3示出了对应于耦合到图1的电源单元的较轻负载、中等负载和较重负载条件的示例性时序图。
[0016]图4示出了根据一个实施例的用于不同负载条件的可变PFW电压阈值的概念实现。
[0017]图5示出了一种用于确定可变PFW电压阈值值的示例性方法。
[0018]图6示出了给定负载条件的图5方法的概念实现。
具体实施例
[0019]本申请的实施例涉及一种用于生成电力故障报警信号的方法。本领域的普通技术人员应该认识到对该方法的下面的详细描述仅是说明性的,并不意在以任何方式进行限制。获得本公开的益处的这些技术人员将很容易想到该方法的其他实施例。
[0020]现在详细参照附图中示出的方法的实现。在整个附图和下面的详细说明中将使用相同的参考指示符指代相同或相似的部件。为了清楚起见,并非在此描述的实现的所有的常规功能都会被示出和描述。当然,应该理解的是,在任何这样的实际实现的开发中,必须做出许多实现特定的决定来实现开发者的具体目标,如符合与应用和商业相关的限制,并且这些具体目标会随着从一个实现到另一个以及从一个开发者到另一个而变化。此外,应该理解的是,这种开发努力可能是复杂和费时的,但是仍然是那些获得本公开的益处的本领域的普通技术人员的常规工程任务。
[0021]图4示出了根据一个实施例的不同负载条件下可变PFW电压阈值的概念实现。三个示例性时序图如图4所示,每个时序图都对应于不同的负载条件。时序图A对应于较重负载条件。时序图B对应于中等负载条件。时序图C对应于较轻负载条件。在时刻tO,AC输入电压丢失,DC总线电压由存储在大容量电容中的能量供应。较重的负载吸收更多的电流,这导致更快地消耗大容量电容。较重负载条件下DC总线电压下降的速度最快,较轻负载条件下最慢。因此,对应于较重负载条件的时序图A的斜率大于对应于中等负载条件的时序图B,反过来时序图B的斜率大于对应于较轻负载条件的时序图C的斜率。每个时序图的斜率都是下降的DC总线电压相对于时间的函数。
[0022]电源单元需要设定的时间量为电力关断做准备。这个最短时间对应用来说是特定的。对PFW电压阈值值进行设定以提供准备关断电源所需要的时间。对于较重负载条件,PFff电压阈值值设定为PFW电压阈值值A。值A足够大,使得总线电压下降速度与时序图A对应,总线电压从PFW电压阈值值A下降到关断电压阈值的时间tA等于准备电力关断所需要的时间。然而,在较轻负载条件下,如对应于时序图B的中等负载条件下,总线电压降低的速度不那么大,因此中等负载条件的PFW电压阈值值不需要与较重负载条件对应的PFW电压阈值值A—样大。由于总线电压下降的速度,中等负载条件比较重负载条件的慢,因此在图4中示出为时序图B具有比时序图A更小的斜率,中等负载条件的PFW电压阈值值设定为PFW电压阈值值B。如图4所示,PFW电压阈值值B被设定为比PFW电压阈值值A更低的电压电平。由于中等负载条件下总线电压下降的速度更慢,因此较低的PFW电压阈值值B仍能够提供准备电力关断所需要的时间,时间tA。为了说明的目的,图4示出了如果相同的PFW电压阈值值A也被用于中等负载条件,那么本应该提供用来准备电力关断的时间量tB。通过在中等负载条件下使用降低的PFW电压阈值值B,设备可以延长其正常工作的时间。延长的正常工作的时间量等于时间tB和tA之差(tB-tA)。换句话说,电源单元,以及耦合到电源单元的中等负载,都能够在发出PFW信号之前延长正常的工作。
[0023]同样,在更轻的负载条件下,如与时序图C对应的较轻负载条件下,总线电压下降的速度继续降低。总线电压下降的速度在较轻负载条件下没有中等负载条件下那么大,因此较轻负载条件的PFW电压阈值值也不需要与对应于中等负载条件的PFW电压阈值值B —样大。由于总线电压下降的速度在较轻负载条件下比在中等负载状态下更慢,因此在图4中示为时序图C具有比时序图B更小的斜率,较轻负载条件的PFW电压阈值值设定为PFW电压阈值值C。如图4所示,PFW电压阈值值C被设定为比PFW电压阈值值B更低的电压电平。由于较轻负载条件的总线电压下降低速度较低,因此PFW电压阈值值C仍能够提供准备电力关断所需要的时间,时间tA。为了说明的目的,图4示出了如果相同的PFW电压阈值值A也被用于较轻负载条件,那么本应该提供用来准备电力关断的时间量tC。通过在较轻负载条件下使用降低的PFW电压阈值值C,设备可以延长其正常工作的时间。较轻负载条件下延长的正常工作的时间量等于时间tC和tA之差(tC-tA)。与固定的PFW电压阈值值相t匕,可变的PFW电压阈值值,如用于中等负载条件的PFW电压阈值值B和用于较轻负载条件的PFW电压阈值值C,能够在较轻负载条件下延长电源单位的正常工作时间。
[0024]在一些实施例中,确定可变PFW电压阈值值的方法利用在固件中实施的计算算法。在一些实施例中,该方法确定AC电压丢失后总线电压下降的速度,并使用该确定的速度来计算相对于预定关断电压阈值值的PFW电压阈值值。图5示出了一种用于确定可变PFW电压阈值值的示例性方法。图6示出了给定负载条件的图5方法的概念实现。图6中示出的示例性实施例对应于图4中的较重负载条件。应该理解的是,图5的方法可以应用到其他的负载条件。该方法通过包括在电源单元中的处理单元,或可替换地外部耦合到电源单元的处理单元实现。在一些实施例中,处理单元是包括在电源单元中的DSC。足够用于实现该方法的存储器可以包括在处理单元内,与处理单元分离并在电源单元内,或外部耦合到电源单元。
[0025]在步骤10,设定电源单元的关断电压阈值值。当总线电压值达到关断电压阈值值时,电源单元会被关断。如图6所示,设定的关断电压阈值值对应于关断电压阈值值V2。关断电压阈值值是基于包括(多个)DC输出电压的电源单元的设计规格的固定的、预定的值。
[0026]在步骤20,设定第一电压阈值值。如图6所不,设定的第一电压阈值值对应于第一电压阈值值Val。
[0027]在步骤30,设定第二电压阈值值。如图6所示,设定的第二电压阈值值对应于第二电压阈值值Va2。第一电压阈值Val大于第二电压阈值值Va2。第二电压阈值值Va2大于关断电压阈值值V2。第一电压阈值值Val和第二电压阈值值Va2都大于随后的预定PFW电压阈值值。在一个不例性应用中,当AC输入电压存在时的正常总线电压约为400V,第一电压阈值值Val约为340V,第二电压阈值值Va2约为330V,关断电压阈值值V2约为316V。
[0028]在步骤40,对总线电压进行采样,并将采样得到的总线电压值与第一电压阈值Val进行比较。如果确定采样得到的总线电压大于第一电压阈值值Val,那么对下一个采样得到的总线电压重复步骤40。如果确定采样得到的总线电压小于或等于第一电压阈值值Val,那么只要总线电压保持小于或等于第一阈值电压值值Val,方法就移动到步骤50。总线电压根据预定的采样率进行采样。在一些实施例中,采样通过电源单元中的初级侧DSC进行。在其他实施例中,与初级侧DSC分离的采样电路被用来采样总线电压。
[0029]在步骤50,计时器从零值开始计时。
[0030]在步骤60,对总线电压进行采样,并将采样得到的总线电压与第二电压阈值值Va2进行比较。如果确定采样得到的总线电压大于第二电压阈值值Va2,那么对下一个采样得到的总线电压重复步骤60。采样得到的总线电压也与第一电压阈值值Val比较,以确定采样得到的总线电压是否仍小于或等于第一阈值电压值值Val。如果采样得到的总线电压保持小于或等于第一阈值电压值值Val,那么定时器继续运行,并重复步骤60。如果确定采样得到的总线电压小于或等于第二电压阈值值Va2,那么该方法移动到步骤70。
[0031]在步骤70,读取计时器的值,它的值对应于总线电压从第一电压阈值值Val下降到第二电压阈值值Va2的时间量。
[0032]在步骤80,计算总线电压下降的速度。总线电压下降的速度对应于总线电压降低的速度。总线电压下降的速度基于第一阈值电压值值Val和第二电压阈值值Va2之间已知的电压降和在步骤70中从计时器读出的时间计算。具体地,如果定时器的值是采样得到的总线电压等于第一电压阈值值Val的时刻tal和采样得到的总线电压等于第二电压阈值值Va2的时刻ta2之间的差,那么定时器的值是ta2_tal,总线电压下降速度等于(Val_Va2)/(ta2_tal)。
[0033]在步骤90,使用在步骤80中计算得到的电压下降速度以及第二电压阈值值Va2和关断电压阈值值V2之间已知的电压差来计算第二电压阈值值Va2和关断电压阈值值V2之间的时间差,t2_ta2。时间差t2_ta2的计算根据:
[0034]t2-ta2=((ta2-tal)/(Va2-Val))*(V2_Va2) (I)
[0035]其中(ta2-tal)/(Va2_Val)是电压下降速度的倒数。
[0036]在步骤100,从在步骤90中计算得到的第二电压阈值值Va2和关断电压阈值值V2之间的时间差中减去与生成PFW彳目号和电力关断之间的时间差对应的准备电力关断所需要的预定时间tA。步骤100中的计算结果提供总线电压从第二电压阈值值Va2下降到最小电压(此时基于当前负载条件的电压下降速度仍有时间发出PFW信号)的时间量。时间差tl-ta2的计算根据:
[0037]tl-ta2=(t2-ta2)-tA(2)
[0038]在步骤110,将步骤100中计算得到的时间差放置在倒数计时器中。当倒数计时器达到零时,生成PFW信号。
[0039]当在步骤70读取计时器的值时,步骤80、90和100在时刻ta2的几个处理周期内执行。因此,将步骤100中计算得到的时间差在步骤110放置在倒数计时器中基本上对应于时刻ta2。因此,倒数计时器在大致时刻tl到达零,并适当地生成PFW信号,从而留下电源单元被关断之前的时间tA。
[0040]应该理解的是,计算得到的电压下降速度可以被替代性地用来适当地生成PFW信号。例如,总线电压下降速度可以与已知的关断电压阈值值V2和已知的准备电源关断所必需的时间tA —起使用来计算PFW电压阈值值。一旦总线电压降低到计算得到的PFW电压阈值值,就生成PFW信号。
[0041]在一个替代性实施例中,确定负载条件,如通过次级侧DSC/MCU或耦合到电源单元的一些外部控制器,并将所确定的负载条件通信到初级侧DSC。在一个示例性实施例中,负载条件通过测量负载从电源单元吸收的电流量来确定。初级侧DSC使用接收到的负载条件来设定对应的PFW电压阈值值,如通过使用查找表。
[0042]已经在包括细节的具体实施例方面对本申请进行了描述,以方便理解该方法构建和操作的原理。各图中描述和示出的许多组件可以互换以实现所需要的结果,并且该描述也应该解读为包括这些互换。因此,本文中提及的具体实施例以及其细节并非旨在限制所附权利要求的范围。对本领域技术人员来说显而易见的是,可以在不脱离本申请的精神和范围的情况下对选择用于说明的实施例做出多种修改。
【权利要求】
1.一种生成电力故障报警信号的方法,所述方法包括: a.监测电源单元的总线电压; b.根据耦合到电源单元输出端的负载的变化负载条件调整电力故障报警电压阈值值;以及 c.当总线电压下降到电力故障报警电压阈值值时生成电力故障报警信号。
2.如权利要求1所述的方法,其中调整电力故障报警阈值值包括确定总线电压下降速度,以及根据总线电压下降速度设定电力故障报警电压阈值值,以允许在生成电力故障报警信号和电源单元断电之间的为电力关断做准备的时间段最短。
3.如权利要求1所述的方法,其中调整电力故障报警阈值值包括确定负载条件,以及根据所确定的负载条件确定电力故障报警电压阈值值,从而允许在生成电力故障报警信号和电源单元断电为之间的电力关断做准备的时间段最短。
4.一种生成电力故障报警信号的方法,所述方法包括: a.设定电力关断电压阈值值; b.设定准备电力关断的最短时间段; c.测量电源单元中的总线电压; d.确定总线电压下降速度; e.根据电力关断电压阈值值、准备电力关断的最短时间段和总线电压下降速度确定将在何时生成电力故障报警信号;以及 f.生成电力故障报警信号。
5.如权利要求4所述的方法,还包括根据耦合到电源单元输出端的负载的负载条件调整将在何时生成电力故障报警信号。
6.如权利要求4所述的方法,其中较重负载条件下的总线电压下降速度比较轻负载条件下的更快。
7.如权利要求4所述的方法,其中确定将在何时生成电力故障报警信号包括通过计算电压等于总线电压下降速度乘以准备电力关断的最短时间段并将计算得到的电压与电力关断电压阈值值相加来设定电力故障报警电压阈值值,以及比较总线电压和设定的电力故障报警电压值。
8.如权利要求7所述的方法,其中当总线电压下降到设定的电力故障报警电压值时,生成电力故障报警信号。
9.如权利要求4所述的方法,其中确定总线电压下降速度包括: a.设定第一电压阈值值和第二电压阈值值,其中第一电压阈值值大于第二电压阈值值,第二电压阈值值大于电力关断电压阈值值; b.比较总线电压和第一电压阈值值、第二电压阈值值; c.计时总线电压从第一电压阈值值下降到第二电压阈值值的时间;以及 d.通过将第一电压阈值值和第二电压阈值值之间的电压差除以计时得到的时间来计算总线电压下降速度。
10.如权利要求9所述的方法,其中确定将在何时生成电力故障报警信号以及生成电力故障报警信号包括: a.根据计算得到的总线电压下降速度计算总线电压从第二电压阈值值下降到电力关断电压阈值值的第一时间段; b.从第一时间段减去准备电力关断的最短时间段等于第二时间段; c.设定计时器对第二时间段计时;以及 d.当计时完第二时间段时,生成电力故障报警信号。
11.如权利要求4所述的方法,其中总线电压下降速度随着耦合到电源单元输出端的负载的变化的负载条件变化。
12.—种生成电力故障报警信号的方法,所述方法包括: a.设定电力关断电压阈值值; b.设定准备电力关断的最短时间段; c.接收对应于耦合到电源单元输出端的负载的负载条件; d.根据电力关断电压阈值值、准备电力关断的最短时间段和接收到的负载条件确定将在何时生成电力故障报警信号;以及 f.生成电力故障报警信号。
13.如权利要求12所述的方法,还包括根据变化的负载条件调整将在何时生成电力故 障报警信号。
14.一种用于生成电力故障报警信号的设备,所述设备包括: a.用于监测电源单元的总线电压的部件; b.用于根据耦合到电源单元输出端的负载的变化负载条件调整电力故障报警电压阈值值的部件;以及 c.用于当总线电压下降到电力故障报警电压阈值值时生成电力故障报警信号的部件。
15.如权利要求14所述的设备,其中用于调整电力故障报警阈值值的部件包括用于确定总线电压下降速度的部件,以及用于根据总线电压下降速度设定电力故障报警电压阈值值以允许在生成电力故障报警信号和电源单元断电之间的为电力关断做准备的时间段最短的部件。
16.如权利要求14所述的设备,其中用于调整电力故障报警阈值值的部件包括用于确定负载条件的部件,以及用于根据所确定的负载条件确定电力故障报警电压阈值值,从而允许在生成电力故障报警信号和电源单元断电之间的为电力关断做准备的时间段最短的部件。
【文档编号】G01R19/165GK104049139SQ201410109738
【公开日】2014年9月17日 申请日期:2014年3月14日 优先权日:2013年3月14日
【发明者】Z·Z·叶, X·徐 申请人:弗莱克斯电子有限责任公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1